
ARC Project A89131897

The Development of Modelling

Strategies for Whole Sky Spectrums

under Real Conditions for

International Use

Geoffrey G. Roy
Nancy Ruck
Graeme Reid

Frederick C. Winkelmann
Warren Julian

University of Sydney
Murdoch University

September 1995

ARC Project A89131897

Final Report

The Development of Modelling

Strategies for Whole Sky Spectrums

under Real Conditions for

International Use
Geoffrey G. Roy

Computer Science, PSET,
Murdoch University,
Murdoch WA 6150

Nancy C. Ruck
Department of Architectural & Design Science

University of Sydney,
Sydney NSW 2006

Graeme Reid
Computer Science, PSET,

Murdoch University,
Murdoch WA 6150

Frederick C. Winkelmann
Lawrence Berkeley Laboratory

Berkeley, California 94720
United States of America

Warren Julian
Department of Architectural & Design Science

University of Sydney,
Sydney NSW 2006

The University of Sydney
Murdoch University

 September 1995

Acknowledgments

This is the final report from a research project aimed at the development of a new universal
method for the development of sky luminance models for use in daylighting studies and the
simulation of interior lighting conditions in buildings.

Financial support for the project came from the Australian Research Council (Grant No.
A89131897), and is gratefully acknowledged.

Contents

SUMMARY ... 1
1.0 Project Objectives ... 1
2.0 Main Results... 2
3.0 Work Program Description ... 2
4.0 Determination of Future Research Directions .. 3

TECHNICAL REPORT.. 4
1.0 Introduction and Overview... 4

1.1 Introduction.. 4
1.2 Overview .. 4

2.0 Sky Models and Modelling... 6
2.1 Introduction.. 6
2.2 Standard sky models ... 8
2.3 Other sky models .. 9
2.4 Sky models from measured luminance data.. 10
2.6 Conclusions .. 12

3.0 New Modelling Strategies .. 13
3.1 Model Types... 13
3.2 Design Requirements .. 14
3.3 Model Forms .. 15
3.4 Modelling Data Structures for SDF... 19

4.0 The SDF Access Functions... 23
4.1 Accessing SDF Models ... 23
4.2 Model Manipulation Functions.. 23
4.3 Model Parameter Functions... 25
4.4 Analysis Functions .. 25
4.5 User Libraries ... 25

5.0 Contouring and Interpolation ... 31
5.1 The Contouring Task .. 31
5.2 Constructing the Surface Model .. 31
5.2 Surface Approximation ... 36
5.4 Reconstructing the Surface ... 37

6.0 Modelling Operators .. 39
6.1 Using Sky Models... 39
6.2 Operating on SDF Models .. 39
6.3 Standard SDF Operators ... 41
6.4 Operator Function Descriptions .. 44

7.0 The SKYMAP Interactive Modelling Package.. 46
7.1 Functional Overview... 46
7.2 Operation of the SKYMAP System... 47
7.3 Model Displays ... 54
7.4 Example Displays.. 57

8.0 Example Use of SDF Operators ... 60
8.1 Operator Use .. 60
8.2 An Intermediate Sky ... 60
8.3 A Localised Clear Sky... 62
8.4 Ratio of Two Skies ... 65

9.0 Macro Programming .. 66
10.0 Practical Validation of SDF Models ... 70

10.1 Daylight Study Comparisons ... 70
10.2 Adding SDF Functionality to DOE-2 .. 72
10.3 The Results - Overcast Sky ... 74
10.4 The Results - Clear Sky... 78
10.5 Summary .. 79

11.0 Conclusions ... 82
References .. 84
Publications from the Project... 87
Appendix A. Various Formulae ... 88

Sun Position .. 88
Normal Incident Extraterrestrial Irradiance .. 89
CIE Standard Overcast Sky (CIE, 1990).. 89
CIE Standard Clear Sky (CIE, 1973) ... 90
CIE Intermediate Sky .. 90
Perez All-Weather Model (Perez, et al, 1992) .. 91
Harrison Sky Model (Harrison, 1991) .. 93
BRE Average Sky Model (Littlefair, 1981) .. 94
Nakamura Intermediate Sky Model (Nakamura et al, 1987) 94

Appendix B. Commonly Used SDF Parameter Types .. 95
Appendix C. Descriptions of SDF Functions.. 96

Included in Library sdf ... 96
Included in Library sdfops...106

Appendix D. Format for Text File Model Input ..109
Appendix E. Programming AEM Models ...112
Appendix F. CIE Terminology ...114
Appendix G. CIE Standard Symbols...118

1

SUMMARY

1.0 Project Objectives

The aim of this project is to widen the research of the recent ARC research project entitled
'The development and verification of sky models which represent the predominant skies in
Australia for the prediction of daylight in buildings' to include sky conditions worldwide.
The data from luminance measurements from the International Daylight Measurement
Program (IDMP) are used to develop modelling strategies which have been applied and
tested in a proven internationally used computer program. The results are to be used in the
development of software packages in the International Energy Agency's Task 21: Daylight
in Buildings.

The significance of the research lies in the development of sky modelling strategies for the
whole sky spectrum under real conditions and their applicability world-wide by providing a
process in which local sky models can be created in computerised terms.

Specific objectives to attain this aim are:

(a) The development of new ideas for a common and consistent representation of
existing sky luminance models and their definition in computational terms for sky
model comparisons and the creation of new sky luminance models

(b) The development of a methodology for the inclusion of an efficient representational
format for use with existing computer software and/or software packages.

(c) The designing and implementation of an interactive computer system to demonstrate
the use of the models.

(d) The comparison and validation of existing analytical sky models using measured data
and the representational format.

(e) The displaying and testing of the representational format in proven internationally
used computer software such as DOE-2 and evaluating the output.

2

2.0 Main Results

A new approach to modelling sky luminance is defined which can be used to accurately
represent the luminance characteristics of the sky under all sky conditions. The approach
consists of a Standard Digital Form (SDF) describing a sky's luminance distribution in an
efficient form with little loss of information content. The SDF can be accessed through a set
of functions which allows comparisons of the luminance distributions of various sky models
and their manipulation and integration into simulation packages.

The purpose of the comparison studies are to prove the feasibility of integrating these
functions representing sky luminance models into an internationally used simulation package
such as DOE-2. The International Energy Agency Task 21: Daylight in Buildings will be
incorporating this Standard Digital Form (SDF) in their work program to improve and
develop new computer software packages calculating daylight input into buildings to
predict building energy performance such as the ADELINE package.

The physical results of the project are also embodied in a series of C-language functions
which provide the tools for the implementation of the ideas and their integration into third
party software systems. These libraries of functions are available to researchers for further
development and/or testing and possible integration into other software packages. For
research and academic purposes no fees are payable. Commercial use of the software is
possible under agreed commercial terms.

3.0 Work Program Description

To carry out the project objectives the work program consisted of the following:

(a) Determining a range of new modelling strategies for the luminance distributions
across the sky dome to cater for local conditions worldwide by surveying existing
sky luminance models.

(b) Determining an efficient representational format and defining the semantics for
representation both as a data structure and as a permanent file.

(c) Providing a set of functions to allow a user to read, create and manipulate the format
to represent local sky luminance distributions.

3

(d) The development of an interactive computer package (SKYMAP) to demonstrate
the use of the underlying modelling concepts and to facilitate the construction of sky
models.

(e) Validating the models by comparing the SDF of the standard CIE clear and overcast
sky models with empirical representations of these CIE skies in existing proven
computer software and examining and evaluating the differences.

4.0 Determination of Future Research Directions

The feasibility of integrating Standard Digital Form functions into a simulation package has
been proven. However the definition of edges to define discontinuities in the luminance
distribution due to clouds and other obstructions to the sky dome is a problem yet to be
solved. This can be accomplished manually by tracing the edges of clouds or obstructions
on a screen from displayed sky models or photographs and placing the results into an SDF
model before contours are computed.

There is the need for generating more precise methods for the assessment of cloud
characteristics, their spatial distribution and the depiction of cloud edges which are better
carried out automatically by the development of new automated instrumentation and
procedures for sky imaging, for example as demonstrated by Davies, Griggs and Sullivan
[Davies et al, 1992]. Various filtering methods to isolate cloud components, particularly
edges from clear sky and direct solar images are now being investigated in an ARC research
project 'Automated sky luminance and cloud cover estimation for improved sky modelling
in different climate zones'.

4

TECHNICAL REPORT

1.0 Introduction and Overview

1.1 Introduction

It was concluded in the ARC project 'The development and verification of sky models
which represent the predominant skies in Australia for the prediction of daylight in
buildings' that appropriate models representing local sky conditions are required if
daylighting is to become a predictable quantity in the design of energy efficient buildings or
if sky models are to be developed for specific purposes such as simple models that can be
used at sketch design stage to assess daylight quantity and quality in interiors; or more
detailed models giving half-hourly descriptions of the sky luminances for research purposes
or for the development of electric lighting control systems in buildings.

Research class measurement stations in the International Daylight Measurement Program
are beginning to provide data on real sky luminance distributions and as a result sky
luminance distributions such as the CIE Overcast Sky can be re-assessed against measured
results. The quantity of data available is producing a profusion of sky models with claimed
high accuracy for particular locations. However it is necessary to take into account the
statistical nature of the daylight climate and the end purposes for which the sky models are
being measured or developed before appropriate models can be determined for daylight
design in buildings.

This project's objective is to develop new ideas for a consistent format for sky model
representation and its definition in computational terms to encompass all possible sky
models to enable comparison and manipulation. Daylighting designs can then be tested
against a standardised sky luminance format rather than the current criterion of illuminance.
The determination of daylight availability based on sky luminances can be used to produce
luminance patterns in daylit interiors. The use of luminance rather than illuminance will
produce a means to assess glare and the quality of the visual environment which is currently
impossible with current illuminance design techniques.

1.2 Overview

To attain the objectives the project consists of several tasks:

5

(a) A survey of existing sky luminance models (Section 2)

(b) A common representation of existing sky luminance models which will allow
comparison, manipulation and the construction of new and appropriate sky luminance
models for local conditions (Section 3)

(c) A method to access a standard representation through a set of functions (Section 4)

(d) The transferring of empirical and measured sky luminance models to the
representational format by contouring and interpolation (Section 5)

(e) Defining modelling operators to manipulate and transform sky luminance models
(Section 6)

(f) Displaying sky models using the interactive SKYMAP system (Section 7)

(g) Using SDF operators to build localised sky models (Section 8)

(h) Macro programming to define new sky luminance models and to extract luminance
properties of sky models. (Section 9)

(i) Validation of the new modelling methods by integration of the SDF functions into the
DOE-2 program and undertaking a series of daylighting computations (Section 10).

The Appendices contain the range of basic formulae used in the project and the formal
definitions (manual pages) for the SDF functions.

6

2.0Sky Models and Modelling

.c2.2.1 Introduction

The sun provides the primary source of radiant energy for most of our human activity. The
diffusing influence of the earth's atmosphere not only influences the quantity of this radiant
energy, but also its distribution as it impacts the surface of the earth. This project is
concerned with a particular facet of the sun's radiated energy - the diffuse sky component
which appears as visible light ie. the energy spectrum falling between 400 and 700
nanometres wavelength. This visible component is of particular interest to the designers of
buildings in a number of ways, for example:

• The study of the quantity of natural daylight penetrating buildings through windows and
skylights for the purpose of ensuring adequate levels of interior lighting. The required
levels of interior lighting will vary with the tasks being performed, and often must be
designed to meet health and safety requirements.

• The design of artificial lighting, and associated control mechanisms to reduce the use of
artificial lighting by accounting for the availability and dynamics of natural light to
conserve energy and cost.

• The simulation of the quality of interior lighting to assist in the design of interior spaces
(colours and luminance contrasts).

Daylight consists of the visible direct radiation from the sun or sunlight and the diffuse
radiation from the sky or skylight. As the sunlight penetrates the earth's atmosphere a
proportion is diffused by the atmosphere via a process of refraction and absorption due to
molecules and particulate matter. In heavily overcast days, little direct radiation arrives at
the surface of the earth - most is diffuse radiation. Even with clear sky conditions, the
diffuse component contributes to the natural light that penetrates windows or skylights.
While direct beam penetration will have a significant effect, it is often limited by sun
screening devices as it can cause glare (ie. high levels of contrast) which is generally
considered undesirable in interior lighting.

The intensity of the skylight varies with the movement of the sun during the day and year
and with variations in atmospheric turbidity which are due to the climate and factors such as
cloud type and cover. For the calculation of sky luminances, the sky is envisaged as an
imaginary hemispherical dome placed directly above the location being studied, with the

7

surface having a luminance distribution equivalent to the diffuse light being filtered through
the atmosphere. This project focuses on the determination of sky luminance distributions
and examines ways of modelling these luminance distributions over the sky dome excluding
the direct beam component.

The impact of the various atmospheric elements on the sky luminance distribution can be
complex. Global composition effects such as turbidity can be modelled reasonably well but
the impact of non-uniform cloud conditions (which is the norm), as well as other
obstructions on the horizon (eg. adjoining buildings and trees) are problems which need to
be solved in the daylighting design of buildings. Clouds of various types (and altitudes) can
cause both increased and decreased luminance levels from patches of the sky dome. Some
cloud patches can be brighter or duller than the background sky depending on cloud type
and location relative to solar position. This means that the daylight available at a window is
influenced significantly by the orientation of the window relative to the position of the
patches of cloud. Even fully overcast sky conditions have their own characteristic variations
and are rarely uniform.

Another major practical influence on the availability of daylight is the effect of physical
obstructions. Most buildings in urban areas are located adjacent to others. This means that
some parts of the sky dome are hidden from view. In addition, there will be reflected light
from the surfaces of the adjoining buildings which, depending on the surface characteristics,
may also impact on the light penetrating a window. For windows near ground level, local
vegetation can also reduce the amount of light available from the sky dome.

An approach to estimating daylight illumination and luminance distributions within an
interior space taking into account obstructions can involve the use of scale model
photometry. While modelling the window and room are not difficult, modelling the sky is
more problematical. An innovative sky simulator recently constructed in Switzerland is
comprised of a computer controlled heliodon rotating about a sky simulator consisting of a
partial hemisphere of specified variable luminance [Scartezzini, 1994]. A video camera with
probe is used to determine interior luminance patterns within the scale model. While this
approach has potential, it is first necessary to know the sky luminance distributions for a
particular location before these can be programmed on the simulator.

In the computation of the quantity and quality of daylight in an interior, knowledge is also
required on the optical properties of the window glazing and the interior surface
reflectances, as the total light received at a reference point within a room is a combination
of the internal and external reflections as well as the sky component seen through the
window. The calculation processes of the daylight components reflected from external

8

ground surfaces and internal room surfaces are not included in this project which is
concerned solely with the source of the daylight ie the sky luminance (excluding the direct
beam component) and its distribution over the sky dome. There are specialized computer
software for this purpose eg. DOE-2 [Winkelmann and Selkowitz, 1985, Winkelmann et al,
1993] and SUPERLITE.

2.2 Standard sky models

To enable analytical studies of the daylighting in buildings it is necessary to have a means of
representing the luminance distribution of the sky dome. The modelling of sky luminance
distributions has been carried out for several years with most attempts assuming standard
sky conditions which can be modelled using an analytical function. In practice, however, sky
luminance distributions are far more complex than models represented by empirical
formulae.

The empirical sky models most commonly used are the Commission Internationale de
L'Eclairage (CIE) Standard Clear and Overcast Skies representing the extremes ie. clear and
fully overcast sky conditions. However they are only very loosely related to measured sky
luminance models and unrelated to any meteorological data of cloud cover or type, or
sunshine duration recorded at a particular site. Although these standards are not advanced
sufficiently to suit the future needs for computer-aided design or expert systems involving
energy conscious design, they are considered adequate for some clear and overcast
conditions, particularly in Europe, although they are not always appropriate in other
locations in tropical and subtropical climate zones. However these CIE models provide a
reference for this project as they can be mathematically defined.

The Standard Clear Sky [CIE, 1973] represents the luminance distribution for a perfectly
clear (cloudless) sky based on known (or assumed) values for the atmospheric moisture
content and turbidity. The model is based on the theoretical diffusion characteristics of the
earth's atmosphere.

The Standard Overcast Sky [CIE, 1990] defines the luminance distribution for a fully, and
uniformly, overcast sky with stratus type clouds. In this case the luminance peaks at the
zenith. The relative luminance distribution has a 1 to 3 horizon to zenith ratio and only
varies with the altitude of the part of sky of concern. The CIE has also standardised a
modification (1 to 2 ratio) for areas with high ground reflection such as snow.

A full description of these skies is given in the Appendix.

9

2.3 Other sky models

The CIE standard skies refer to the extremes of cloudiness conditions. Problems when
using the CIE Standard Overcast as a design tool have generated the need to consider other
intermediate skies or partly cloudy skies between these extremes. A number of approaches
have been taken. Either the two extremes of overcast and clear have been weighted by some
meteorological or luminous factor eg. a cloud ratio [Harrison, 1991], a diffuse ratio
[Matsuura, 1987] or a simplified theoretical approach has been attempted. Some examples,
which rely on empirically determined constants are:

The BRE Average Sky [Littlefair, 1981] assumes a uniform diffuse background with a
direct solar and a circumsolar component making use of luminance data measured by
Wegner [Wegner, 1975]. It has been modified to fit south-east England and was developed
to be suitable for indoor daylight calculation. It is based on measurements of a wide range
of real skies.

The Mean sky [Nakamura and Oki, 1986] is composed of three basic skies including an
intermediate sky [Nakamura, Oki and Iwata, 1987] with absolute illuminance values. The all
weather distribution is obtained by linear combinations of these three skies

The BRE average sky and the mean sky by Nakamura, Oki et al. are useful for some limited
purposes such as the estimation of energy savings or prediction of the average interior
luminous environment. However these skies can be used only in restricted parts of the
world.

The Perez All-Weather Model [Perez et al, 1992] is derived from the CIE Clear Sky, but
includes the facility to control the luminance distribution through a set of three parameters
to reflect the local insolation conditions (solar elevation, sky clearness, and brightness).
These are influenced by the ratio of normal to diffuse incident radiation.

The Harrison Model [Harrison, 1991] includes two luminance distribution profiles,
overcast and clear. The general profile is a linear combination based on opaque cloud cover
and the solar zenith angle. The opaque cloud cover was measured by the University of
Calgary's cloud detector.

The Kittler Homogeneous Sky [Kittler, 1987] requires an assessment of the illuminance
turbidity coefficient which can be derived from direct illuminance data [Navvab et al, 1984].
It simulates the diffusion characteristics of a real sky by an equivalent homogeneous sky and

10

has had reported success in modelling resultant horizontal illuminances particularly for the
extreme conditions.

All these models have reported some success in modelling daylight in particular locations in
the world [Marland, 1991]. Recently, a database of irradiance measurements has been
established to compare various luminance models [Perez et al, 1991] but with varying
results. In the Perez comparison studies the input consisted of global and direct (diffuse)
irradiance. Those models using illuminance eg. the Kittler and Harrison models were linked
to irradiance by a luminous efficacy ratio creating a possible source of error. The relative
failure of a number of partly cloudy and "all weather" models to accurately predict sky
luminance conditions is due to the assumption of the form of linear interpolation between
extreme conditions. These cannot be expected to model accurately the circumsolar region
nor the dynamic luminances of a partly cloudy sky. In addition, a more consistent and
flexible format is required to compare one model against another.

2.4 Sky models from measured luminance data

Actual knowledge of sky luminances comes from measured data recorded by sky scanners
at a fixed set of points over a short duration of time. For example the PRC Krochmann
scanner [Krochmann, 1991] completes the task of scanning 145 data points in about 20 secs
and at each data point records the average luminance over a patch of sky subtending an
angle of 10 degrees. Measured data from this type of scanner have indicated that sky
luminance patterns vary considerably depending on location, solar position and atmospheric
conditions [Hayman and Stevens, 1992]. Results have also placed some doubt on the use of
the CIE standard models in some parts of the world. But long term records from scanners,
such as at Sydney Airport [Hayman el al, 1993] allow statistical analyses which can provide
information of the effects of different types of sky conditions on sky luminances and their
distributional properties. Such data are essential as an aid to the development of design
models for a particular location.

While scanning devices give reasonably good records of sky luminance patterns, the
resolution is insufficient to define and isolate the discontinuities often present (eg. edges of
clouds or other obstructions) and these devices are expensive to purchase and difficult to
maintain in operation. This project proposes ways in which sky models can be developed for
daylighting design with minimal calls on expensive recording devices.

11

2.5 The sky modelling problem

For a specific location a means of modelling the local sky conditions is needed. Since
measured data are not available for every location, effective methods for using existing
knowledge need to be determined such as the use of existing empirical models and any
available measured data which are relevant to the target location. The problem is how to
devise suitable models for a particular sky condition.

In addition, a design model may be needed for different purposes. It may be needed to
represent a set of conditions which can be used for further analysis to achieve design
specifications eg. to devise bright or dull skies for the analysis of interior daylight levels
and/or the qualities of interior light or rapidly varying skies to test the performance of
control devices which adjust the levels of artificial lighting levels to meet design standards
for work place illuminance.

A desirable characteristic of a sky luminance model is the ability to provide estimates of the
luminance at some position (ie. altitude and azimuth) on the sky dome relative to the
orientation of the window at some time of day and location on the earth's surface. New
methods are proposed in this project aimed at solving these problems and to assist in the
design of sky models which are suitable for locations where the standard models are not
directly applicable.

The methods include:

• Designing a modelling strategy which allows models to be specified to suit local
conditions taking into account the varying properties of time, solar altitude, latitude,
and longitude.

• Allowing any data source (eg. any of the empirical models, or data from a scanner)
to be integrated into a single modelling strategy.

• Providing a vehicle which will produce the required results of luminance at a
specified azimuth and altitude for a given time of day.

• Allowing for the output from the process to be fed directly into simulation packages
which can use these data.

Assuming that the formal output from a sky model is only of practical use when integrated
into a simulation package no attempt has been made to realise the results in a traditional

12

way, but rather to define them in terms of a set of functions which are intended to be
integrated into other software packages.

The proposed modelling framework is therefore based on the definition and realization of a
set of programmed functions which provide the basic facilities for a user (programmer) to
access them, use them, and provide the results directly into other simulation packages. This
approach has the distinct advantage of ensuring that the implementations are correct. Most
empirical models defined in the literature are poorly described, or they often contain
typographical errors which make implementation difficult if not unreliable. Our approach
better assures correctness without the problems of transcribing complex formulae.

2.6 Conclusions

The sky modelling problem has been approached as a design problem. The process has
aimed at the development of a format which accommodates the constraints of a limited
knowledge of local sky conditions. The task of developing a sky model for any location
world-wide requires an integration and synthesis of all available knowledge about that
locality and hence a single sky model with an input of fixed parameters and an output of
luminance values is not possible. Rather, the aim has been to provide a set of tools which
can be used to assist in the development of a more accurate interpretation from known data.

13

3.0 New Modelling Strategies

3.1 Model Types

Models of the luminance distribution of the sky have to date been defined in the form of
analogue expressions which describe the luminance at any point on the sky dome. These
have been derived from various theoretical assumptions pertaining to the diffusion
characteristics of the atmosphere validated with limited measured data. The resulting
empirical relationships provide an estimate of the luminance distribution with some level of
reliability or accuracy. Some examples are outlined in Appendix A. While such models may
be defined for a given location their use at other locations is, arguably, unreliable.

Models of this kind are classified as Analogue Empirical Models (AEMs). An AEM is an
empirically derived expression composed of a set of parameters and/or coefficients, which
allow the luminance of any point on the sky dome to be computed. This type of model is
very convenient for computational purposes as input comprises only the necessary
parameters (including location, time, solar altitude and atmospheric conditions) and
calibration coefficients.

Given the renewed interest in modelling sky conditions through the International Daylight
Measurement Program, we also must include the Measured Data Model (MDM). MDMs
are defined by sets of data resulting from various types of measurements which allow the
luminance levels from various parts of the sky dome to be described. Typically these
measurements are made with a scanning device which can record the luminance at a set of
(well defined) points on the sky dome. From these data the luminance distribution on the
sky dome can be determined.

One of the available scanner devices is manufactured by PRC Krochmann GMBH of Berlin.
This device will measure luminance values on a 12° grid on the sky dome with a 10°
acceptance angle in a period of about 20 seconds. This gives a grid of 145 "points".
Various filters can also be used to sample selected parts of the visible spectrum.

MDMs naturally provide "good" quality data for the location of the measuring device and
for the time at which the measurements were recorded. In addition these data may be used
to validate, calibrate or design AEMs which may be suitable for the location. It is also
possible to use MDMs directly in simulation programs, where the "real" luminance data can
be used to study the lighting conditions, or the behaviour of lighting control devices, over
periods of time. In this case the MDM can naturally account for turbidity and cloudiness

14

during a "real" period of time for the locality. MDMs may also be used to define the
luminance characteristics for sky simulators used with physical scale models.

Given that both these forms of model (AEM and MDM) have their own advantages a
modelling approach which can use information from both these model forms may be
considered to be rather useful. We will adopt this approach.

A third modelling strategy can also be proposed. The Hybrid Data Model (HDM) will
facilitate the construction of (new) artificial models which can be derived from other
models, especially AEMs and MDMs. For example a sky model could be constructed from
a selected AEM, scaled using data from local measurements, with cloud cover and type
included to represent local sky conditions. The resulting model is thus a hybrid of the
MDM and AEM models, combined to represent the local conditions.

Each of these model types has its own particular value and area of application. AEMs are
very convenient for computation purposes, but generally lack the realism necessary to
represent real local conditions. MDMs can provide accurate estimates for specific locations
and times, but are more expensive to obtain and somewhat complex to process. HDMs
offer the promise of building locally specific models based on more general models, or on
models derived from other locations.

3.2 Design Requirements

As a way of facilitating the representation and manipulation of each of these model forms in
an integrated and consistent way, a common representation scheme is proposed which will
allow:

• A common description scheme to cover all model forms and origins.

• Models derived from different data sources to be directly compared.

• Models to be manipulated using a common set of tools.

• The definition of a set of operators to take data from models of any type and to
construct new models.

• Any form of model to be used for the common analysis tasks (daylight analysis,
simulation studies, etc).

15

The luminance distribution across the sky dome is a complex phenomenon and not
appropriately represented by uni-dimensional statistics such as mean, standard deviation and
other measures of dispersion or variance. The representation scheme must therefore include
the spatial component in a formal way.

For relatively uniform sky conditions (eg CIE clear and overcast skies) various AEMs have
been shown to represent luminance distributions reasonably well [Hayman et al, 1993]. For
partly cloudy sky conditions the problem is more complex as the luminance distribution
becomes much less uniform, and even discontinuous due to the effects of clouds and other
horizon obstructions to the sky dome.

A representation format is therefore proposed which has the following properties:

• Allows the distribution of luminance to be described at varying levels of detail and
resolution.

• Facilitates the representation of discontinuities due to effects of clouds and other
obstructions to the sky dome.

• Minimises the loss of information in the representation so that the original spatially
variant data can be recovered with acceptable precision.

We now have a set of design goals for our new approach to sky luminance modelling.

3.3 Model Forms

The simplest way of achieving these goals may be through a grid-based model, by recording
the luminance values at a set of grid points located over the sky dome. There, however, are
several major problems with this approach.

The accuracy of a grid based model depends on the resolution of the grid (spacing of grid
points). To increase the accuracy of the model, the size of the grid spacing must be
decreased. This means that the total number of grid points will grow with the square of the
grid size. Secondly, a grid generally has to be uniform1, which means that regions of rapidly
varying luminance with be represented with less accuracy than regions with little variation.
Grid-based schemes cannot take direct account of discontinuities in the luminance

1This is not strictly true, but it would add considerably to the complexity of the resulting computations.

16

distribution caused by clouds and other obstructions to the sky dome. Discontinuities can
only be inferred from rapidly changing data values.

In theory increasing the grid resolution will solve most of these problems but at the expense
of rapidly increasing data complexity.

In an attempt to avoid these problems we have devised a new approach which records the
luminance data as sets of iso-luminance contours in the sky dome, combined with edges to
represent discontinuities in luminance. The iso-luminance contours define a simple contour
map of the luminance distribution with the contour spacing chosen to suit the required
resolution. Each contour is taken as a polyline which can be defined by a value, and a set of
co-ordinate pairs. The iso-luminance contour can be open or closed.

To represent discontinuities in the luminance distribution edges are introduced. Edges are
assumed to be closed polygons. Edges will provide information for the interpolation
scheme which is designed to account for the presence of edges. To enable reasonable
interpolations to be made near the edge of the sky dome (the horizon) an edge is also
located around the perimeter. This will allow a consistent interpolation scheme to be
proposed across the full sky dome.

(a) (b)

Figure 3.1: (a) Grid-based representation, (b) Contour-based representation

In Figure 3.1(b) the shaded areas represent areas of obstruction due to cloud and local
building development. The • denote vertex locations on iso-luminance contours (note that
in Figure 3.1(a) not all the grid is shown). The ° marks denote vertex locations on the

edges in Figure 3.1(b).

A regular grid scheme shown in Figure 3.1(a) might be used to represent this luminance
distribution, this will require approximately 84 vertices (ie azimuth and altitude values).

17

The contour scheme in Figure 3(b) requires about 66 vertices (made up from 33 vertices on
iso-luminance contours, and 33 vertices on lines of discontinuity, or edges).

In the case of the grid scheme, to improve the accuracy of the model we must reduce the
size of the grid interval. If we reduce it to half then the number of vertices will quadruple
(ie O(n2)). In this case 84 vertices will increase to about 336.

In the case of the contour scheme, we can increase the resolution by halving the contour
interval. We could also consider decreasing the interval of vertices along the contour, but
the value of this will depend on how the original intervals were chosen. If we also halved
the interval then we would increase the total number of vertices by O(n2). This would not
offer the advantages we are looking for.

We will see later in this report that the process by which the iso-luminance contours are
computed (and thus the vertex locations) is such that it ensures that the interval between
vertices is related to the curvature of the contour. Iso-luminance contours that are
relatively straight will have more widely spaced vertices than more highly curved contours.
This is exactly what we need. We will argue, therefore, that with such a scheme the vertex
spacing along the iso-luminance contour is optimized and thus little improvement in
resolution will be achieved by further reduction of interval. The number of contour
intervals will, however, have a significant effect. It would appear that beyond some number
(eg 16) contour intervals the improvements in accuracy are small. If we keep the same
curvature limits on the contours and edges, then the number of vertices will therefore, at
most, double (ie. O(n)) if we halve the contour interval.

From experience we know that a model for a single sky requires 2-3,000 bytes of data to
give an acceptably accurate representation, with typically 16 contour intervals.

Within an SDF we thus have two classes of polylines:

Iso-luminance contours.

P0

P1 P2 P3

P4

P5

P6

P7

Figure 3.2: Iso-luminance Polylines

18

To fully define a contour we need to have its value (luminance level in Lux), and a set of
co-ordinate pairs, one for each of the vertices (labelled P0 to P7 in Figure 3.2). These co-

ordinates will be taken to be in polar co-ordinates, by azimuth and altitude (θ and φ), which
define a unique position on the sky dome. The conventions used are as follows:

Azimuth: 0° - true north
90° - east
180° - south
range of valid values 0 to 180°

Altitude: 0° - at horizon
90° - zenith
180° - Diametric horizon.

These conventions allow a position to be defined by four 8-bit bytes. Both azimuth and
altitude being defined by a degree and minute value in the ranges 0 to 180° and 0 to 59'
respectively.

Edges:

Edges describe lines of discontinuity and are assumed to be closed polygons. This means
that an edge has a well define inside and outside as shown in Figure 3.3.

P1

P10 P9

P2
P3

P8

P7

P4

P6

P5

P0

P12

P11

Inside

Figure 3.3: Edge Polygons

In this case each vertex is defined by a set of (θ, φ, Ii, Io) quadruples. At each vertex we
record the luminance value on the inside of the edge (Ii), as indicated by the � symbol in
Figure 3.3, as well as the one on the outside (Io) as indicated by the symbol.

19

The combinations of iso-luminance contours and edges with inside-outside luminance values
allows us considerable flexibility to interpolate with some confidence over the whole sky
dome, including right up to the horizon edge as well as other edges in the model. The
interpolation problem is shown schematically in Figure 3.4. Without the knowledge of a
discontinuity, the contouring interpolation scheme can only choose those neighbourhood
points which appear relevant (eg closest) as in Figure 3.4(a). When the edge is included,
the interpolation can be controlled to contain only those points on the same side of the
edge. We would thus expect to see results like as shown in Figure 3.4(b), with surface a
discontinuity along the edge.

edge

(a) (b)

Figure 3.4: (a) Contour interpolation without the edge,
(b) Contour interpolation with the edge.

The proposed modelling framework is thus a digital representation in the sense that the
continuous variation of luminance is represented by a set of discrete data values, and we
will refer to this as the Standard Digital Form (SDF).

3.4 Modelling Data Structures for SDF

A complete sky model requires further information in addition to the iso-luminance and
edge information if it is to be useful. For example we must record the location and time
information for the sky model. We may also wish to record other data (equipment details,
global irradiation data, data provider, etc) which might be available from the original source
(whether AEM, MDM or HDM). We may also wish to perform some analyses and retain
the results within the model itself (eg average luminance, cloud cover). The SDF therefore
facilitates a general scheme for storing parameters and their values. A parameter is a
named object which can be defined and inserted into a SDF model, along with its associated
data items.

It would be usual to expect parameters like "site" (to include data items of longitude°,
longitude', latitude°, latitude' and reference longitude°) and "time" (to include data items of

20

year, month, day, hour and minutes) to be present since these are necessary to fully define a
sky model. Other parameters can be user-defined and added as required. These might be,
for example, cloud cover, radiation data, average luminance data, sun position and so on.

The iso-luminance contours and edges are also included in the SDF model as parameters.
These parameters are naturally used to compute user-requested analyses (eg luminance at a
point, average luminance in a region of sky) which are obtained through specially prepared
functions.

The SDF model therefore is composed of sets of parameters. Each one is defined by its
name and a set of data items. In general we can visualise the parameter description in the
form:

parameter name

item1
item2

:
:

itemn

There are no limitations on the number of data items for a parameter. Parameter items can
be one two or mutli-byte data types, depending on the range of values required. Some
typical examples of parameter descriptions are:

site
longitude
latitude

ref. longitude

time
year

month
day

hours
minutes

21

sun
azimuth
degrees
azimuth
minutes

altitude degrees
altitude minutes

Parameters of this type enable us to define the context of a particular sky model. As
described above, iso-luminance contours and edges are also defined in terms of parameters,
as follows:

iso
size

r level value
e size
p (azimuth, altitude)1
e (azimuth, altitude)2
a :
t (azimuth, altitude)n

edge
size

r type code
e size
p (internal value, external value, azimuth, altitude)1
e (internal value, external value, azimuth, altitude)2
a :
t (internal value, external value, azimuth, altitude)n

These definitions for iso-luminance contours and the edges allow multiple contours/edges to
be defined within a single parameter list.

A more complete list, and description, of the commonly used and built-in parameters is
given in Appendix B.

22

We can now therefore define an SDF model as a collection of parameters of these and other
user-defined data types. The user of an SDF model does not need to be concerned with the
details as the realization of the model is typically hidden from the user. The user will
interface to the model through a set of pre-defined functions which will handle all the detail
and ensure the correctness of the data and the resulting luminance computations.

User defined parameters are definable using similar types of data structures. The user is
provided with the tools to define functions of the type exemplified by the site, sun and time
parameters shown above. Facilities for this will be described later.

As defined, an SDF model can (should) contain at least:

• a site parameter
• a time parameter
• a non-empty set of iso parameters
• a non-empty set of edge parameters (note that we will always insert an edge around

the horizon to facilitate interpolation near this boundary).

This information is sufficient to uniquely define a single sky model. Typically, however, we
will require a sequence of models to represent the sky conditions over a day, several days or
even a longer period to be accessed by appropriate simulation packages. We can easily
extend our modelling concepts to include multiple models within a single data structure as
shown below:

sdf
model1
model2

:
:

modeln

The complete data structure is intended to be realized in a database, and initially in the form
of a simple sequential file. While this format is less efficient (than a random access file
structure) for locating a particular model from the set of models, most interest lies in
accessing models in a sequential fashion. This is certainly the case for simulation purposes
where the models for a particular location are required in time sequence. Assuming that the
file of models is created in the correct sequence then little is lost in accessing them
sequentially. An SDF model file may, if required, contain just a single model

23

4.0 The SDF Access Functions

4.1 Accessing SDF Models

Access to SDF models is exclusively through a set of formally defined functions that can be
used within a computer program. This allows a well defined (and hopefully correct) set of
tools to be provided to the user at a level which can be directly linked into a simulation
package or some other user-written software package.

The user, therefore, does not need to have very much concern about the details of the data
structures and how they are implemented and managed. Our functions have been written in
the C-language, but can readily be linked to FORTRAN coded programs.

The relationships between the SDF data, the SDF access functions and the user's program is
shown in Figure 4.1.

SDF Access Functions

SDF Data File

User's Application
Program

Figure 4.1: Relationships of SDF Date Files, Access Functions and the User's Program

We have implemented several classes (and levels) of SDF functions to facilitate the needs of
users. These functions are summarized below.

4.2 Model Manipulation Functions

These functions provide high level access to SDF files, SDF models within files and
conversions to SDF from other standard models which have been provided. In the

24

following brief descriptions, the semantics of the function parameters can be inferred from
their names. A more complete description of the data types in included in Appendix C.

ƒ1. To open an existing file containing SDF models, or to create a new file intended to
contain SFD models:

FileDesc = sdfOpenFile(Filename,Mode)

ƒ2. To close the file:

sdfCloseFile(FileDesc)

ƒ3. To create a new model:

ModelDesc = sdfCreateModel()

ƒ4. To load the next model from an open file into memory:

ModelDesc = sdfLoadModel(FileDesc)

ƒ5. To save a model from memory and append to a currently open file:

sdfStoreModel(ModelDesc,FileDesc)

ƒ6. To delete a model from memory:

sdfFreeModel(ModelDesc)

ƒ7. To import a model of a particular kind (AEM or MDM) from a file, or a hard coded
definition, and convert into SDF:

ModelDesc = sdfImport(ModelType,ModelDesc,MatchFunc,FileDesc)

where the ModelType parameter will be the predefined name of one of the available
model types.

25

4.3 Model Parameter Functions

These functions provide access to individual model parameters, to create new parameters
and to insert them into models. Note that iso-luminance and edge type parameters are not
directly accessible in this way. They are only available via the analysis functions, see below.

ƒ8. To add a parameter to a model:

Exists = sdfSetParameter(ModelDesc,ParDesc,Format,P1,P2,...)

ƒ9. To extract a parameter from a model:

Exists = sdfGetParameter(ModelDesc,ParDesc,Format,P1,P2,...)

ƒ10. To delete a parameter from a model:

Exists = sdfDeleteParameter(ModelDesc,ParDesc)

4.4 Analysis Functions

The analysis functions provide the basic capabilities for computing luminance levels at some
point, or region, in the sky dome from the SDF model.

ƒ11. To calculate the luminance at a point:

Lum = sdfPointLuminance(ModelDesc,&Point)

ƒ12. To calculate the average luminance of a patch of sky defined by an arbitrary polygon
patch:

TotalLum = sdfAreaLuminance(ModelDesc,PointList,&Patch_area)

This suite of functions thus provides most, if not all, of the tools that a user would require
to establish, manipulate and use the SDF modelling approach.

4.5 User Libraries

These functions are formally provided in two libraries which can be linked with a user's
program to provide the complete functionality required. The user's program can thus be
quite simple since the library functions handle all the detailed conversions and memory

26

management operations. The data type definitions are contained in appropriate header files
which must also be included by the user.

To demonstrate the steps required we now present some simple programs which
demonstrate the use of the library functions. To begin with, the Makefile (below) sets out
the linking process using the two libraries sdf and sdfops. These contain all the pre-defined
SDF functions that the programmer needs to access and are fully described in Appendix C.

CC = /opt/local/bin/gcc -fpcc-struct-return
CDEBUGFLAGS = -O2
SDFINCDIR = /home/skymap/include
SDFLIBDIR = /home/skymap/lib
CFLAGS = $(CDEBUGFLAGS) -I$(SDFINCDIR)
FFLAGS = $(CDEBUGFLAGS)
LDFLAGS = -L$(SDFLIBDIR)
LDLIBS = -lsdf -lsdfops -lm

OBJS = test1.o

test1: $(OBJS)
 $(RM) $@
 $(CC) -o $@ $(OBJS) $(CDEBUGFLAGS) $(LDFLAGS) $(LDLIBS)

clean:
 $(RM) test1 *.o core make.log

Note that the name of the file containing the program is test1.c in this Makefile.

Program 1: To access an AEM and extract the luminance at a specificed point on the sky
dome.

The basic steps are:

(i) create a sky model (template) in which we will specify the time and location
required.
(ii) set the time and site parameters in the template.
(iii) import a CIE_CLEAR sky model, assigning it to a new model (model).
(iv) specify the required point as an azimuth and altitude in the point variable.
(v) compute the luminance in the model (model) and print out the result.
(vi) collect the garbage.

27

#include <sdf.h>
#include <sdfops.h>

struct _point point;
double lumin;

int match (Model template, Model model)
{
 return(1);
}

void main()
{
 template = sdfCreateModel();
 (void) sdfSetParameter(template,"site","%d%c%d%c%d",
 151,12 ,-33,54, 150);
 (void) sdfSetParameter(template,"time","%c%c%c%c%c",
 92, 7, 7, 12, 45);

 model = sdfImport(CIE_CLEAR, template, match, (FILE *)NULL);
 point.azimuth = RADIANS(0);
 point.altitude = RADIANS(45);
 lumin = sdfPointLuminance(model,&point);
 printf ("Luminance value = %f \n", lumin);

 sdfFreeModel(model);
 sdfFreeModel(template);
}

The match function, in this case, always returns true value since the required model is
always found by the sdfImport function. We will present an example later where the real
purpose of this function is demonstrated.

Program 2: To access an AEM and extract the average luminance over a patch of the sky
dome.

This program is based on the above example, just extending it to compute the average
luminance over a patch of sky. The patch is defined by a linked-list of points (each
containing the appropriate azimuth and altitude values). The function sdfAreaLuminance
also computes the area of the patch which is given as a proportion of the surface area of a
unit sphere, ie surface area of the sky dome (a hemisphere) is 2p.

28

#include <sdf.h>
#include <sdfops.h>

Model model, template;
struct _point point;
Point pointlist, pointt;
double lumin, area, totallum;
int i, ret_average;
double azlist[13] = { 0, 30, 60, 90, 120, 150, 180, 30, 60, 90,

120, 150, 0 },
 altlist[13] = { 60, 60, 60, 60, 60, 60, 60, 120, 120,

120, 120, 120, 60};

int match (Model template, Model model)
{
 return(1);
}

void main()
{
 template = sdfCreateModel();
 (void) sdfSetParameter(template,"site","%d%c%d%c%d",

151,12,-33,54, 150);
 (void) sdfSetParameter(template,"time","%c%c%c%c%c",

92, 7, 7, 12, 45);

 model = sdfImport(CIE_CLEAR, template, match, (FILE *)NULL);
 pointlist = (Point) Malloc(sizeof(struct _point));
 pointt = pointlist;
 pointt->azimuth = RADIANS(azlist[0]);
 pointt->altitude = RADIANS(altlist[0]);
 for (i =1; i<13; i++)
 {
 pointt->next = (Point) Malloc(sizeof(struct _point));
 pointt = pointt->next;
 pointt->azimuth = RADIANS(azlist[i]);
 pointt->altitude = RADIANS(altlist[i]);
 pointt->next = NULL;
 }
 totallum = sdfAreaLuminance(model, pointlist, &area);
 printf("Average lumin = %f , area = %f \n", totallum/area,area);

 sdfFreeModel(model);
 sdfFreeModel(template);
}

29

Program 3: To access an AEM, and save it in SDF together with a new parameter
containing the average luminance over the whole sky.

The third example extends the above example by inserting a new parameter ("avlum") into
the newly created sky model (model) and then saves the complete model in SDF as a file
test1.sdf. This file thus contains an SDF model with the luminance data of the selected
CIE_CLEAR sky as well as a parameter which can be retrieved (see code) as required.

#include <sdf.h>
#include <sdfops.h>

Model model, template;
struct _point point;
Point pointlist, pointt;
double lumin, area, totallum;
int i, ret_average;
FILE *output;
double azlist[13] = { 0, 30, 60, 90, 120, 150, 180, 30, 60, 90,

120, 150, 0 },
 altlist[13] = { 60, 60, 60, 60, 60, 60, 60, 120, 120,

120, 120, 120, 60};

int match (Model template, Model model)
{
 return(1);
}

void main()
{
 template = sdfCreateModel();
 (void) sdfSetParameter(template,"site","%d%c%d%c%d", 151,12,-33,54,
150);
 (void) sdfSetParameter(template,"time","%c%c%c%c%c", 92, 7, 7, 12,
45);

 model = sdfImport(CIE_CLEAR, template, match, (FILE *)NULL);
 pointlist = (Point) Malloc(sizeof(struct _point));
 pointt = pointlist;
 pointt->azimuth = RADIANS(azlist[0]);
 pointt->altitude = RADIANS(altlist[0]);
 for (i =1; i<13; i++)
 {
 pointt->next = (Point) Malloc(sizeof(struct _point));
 pointt = pointt->next;
 pointt->azimuth = RADIANS(azlist[i]);
 pointt->altitude = RADIANS(altlist[i]);
 pointt->next = NULL;
 }
 totallum = sdfAreaLuminance(model, pointlist, &area);
 printf("Average lumin = %f , area = %f \n", totallum/area,area);

 (void) sdfSetParameter(model,"avlum","%d",(int)totallum/area);
 (void) sdfGetParameter(model,"avlum","%d", &ret_average);

30

 printf("returned average = %d \n",ret_average);

 output = sdfOpenFile("test1.sdf","w");
 sdfStoreModel(model,output);
 sdfCloseFile(output);
 sdfFreeModel(model);
 sdfFreeModel(template);

}

To enable development and testing, as well as providing an operational tool to assist in sky
model development we have implemented these functions in an interactive modelling
package (SKYMAP). This package provides a full set of capabilities to manipulate and
visualize SDF models as well as generating SDF versions of a range of common AEMs.
Facilities are also provided to import data from a PRC scanner data file, as well as a text
formatted file. and create SDF models. A full description of the SKYMAP package is
described later in this report.

31

5.0 Contouring and Interpolation

5.1 The Contouring Task

Our modelling framework assumes that all forms of sky models are converted into SDF
from where we can establish, and use, a common set of manipulation and analysis functions.
Models of types AEM and MDM must therefore be first converted to SDF before they are
accessible. This conversion process requires the necessary iso-luminance contours and
edges to be defined.

AEM models provide a continuous description of the luminance distribution across the sky
dome. The transformation of an AEM therefore requires a suitable contouring process to
be applied to a sufficiently large set of points where the luminance values are calculated
from the appropriate algebraic expression. Since there are (generally) no discontinuities in
AEMs no internal edges are added, only that one around the horizon is included to facilitate
later interpolation in regions near the horizon.

The transformation of an MDM also requires a contouring analysis from the set of data
points defined in the MDM. PRC data sets contain measured luminance values at 145
uniformly spaced points across the sky dome. Other MDMs may contain less points. For
example it is perfectly feasible to have MDMs defined from a much smaller number of
recordings (perhaps from a hand held luminance meter). It is also possible to have MDMs
derived from digital CCD images which may have up to 1000x1000 pixel values. MDMs
may also contain edge information (in addition to the horizon edge). If cloud edges can be
identified in the original data, or if the horizon obstructions are in well defined locations,
then this information can be included in the contouring computation.

The contouring problem is essentially the same for both AEMs and MDMs. It is really all
to do with choosing the best set of points for contour interpolation and the associated
interpolation processes.

5.2 Constructing the Surface Model

A complete set of contours is intended to provide an approximation to the complete and
continuous surface (of luminance intensity in our case). The surface model is constructed
from a set of points at which the luminance values are known. Clearly the accuracy of the
resulting surface model will depend on the number of points. For an AEM we must choose
a sufficient number of points to provide the required accuracy. For a MDM we are limited

32

to the data supplied (eg 145 points from the PRC Krochmann scanner). It is our
experience, however, that it is not necessary to use a very large number of points from
AEMs as little increase in representational accuracy is achieved once we go beyond this
number of points (ie 145). We have thus chosen to use a regular grid of about 180 points
for representing the AEM models in SDF. This grid is based on the 145 point grid
proposed by Tregenza [Tregenza, 1987], plus a set of edge points defining the horizon
edge.

The first step in constructing a surface model is to group the discrete sample points into
neighbourhoods. This is done to determine the area of influence of each point. The
definition of a neighbourhood will be determined in part by the type of model chosen to
represent the surface. Various surface models are possible, from flat surface patches to
curved surfaces which allow higher order surface continuities to be maintained. While these
latter models may offer increased accuracy we have not considered it worthwhile at this
stage to add the extra complexity. We have thus chosen to stay with planar patches.

For the case of planar patches, the most suitable grouping is in triplets, since only three non-
linear points are needed to define a unique plane. The process of grouping the sample
points into these triplets is known as triangulation, as it results in a tessellation of triangles
that completely span the sample space. While there are any number of ways in which this
triangulation can be performed, the resultant properties of the tessellation will affect the
accuracy of the surface model. The further apart the vertices of any triangle, the less
accurate the surface patch will be. So, in order to ensure the minimum error, we need a
tessellation consisting as nearly as possible, of small equilateral triangles. This can be
achieved by using the Delaunay triangulation. The Delaunay triangulation has the constraint
that the circumcircle of every triangle is empty. That is, no circle passing through the three
vertices of a triangle will contain any other sample points. This constraint imposes several
desirable properties on the triangulation. Firstly, and most importantly, it avoids the
formation of long, thin triangles, ensuring that each datum will be close to its
neighbourhood. It fact, it has been shown by Lawson [Lawson, 1977] that the Delaunay
triangulation is locally equiangular. Also, except for a few isolated cases, the Delaunay
triangulation for a given set of points is unique.

There exists many algorithms for constructing a Delaunay triangulation for an arbitrary set
of points [eg Cline and Renka, 1984, Lawson, 1977 and Watson 1981]. Also, algorithms
which calculated the Voronoi diagram [Fortune, 1987, Green and Sibson, 1978], which is a
geometric transformation of the Delaunay triangulation, may be considered. However most
of these algorithms require that the convex hull for the set of points is calculated first. This
can be computationally expensive for large data sets and has been shown by Sloan [Sloan,

33

1991] to be unnecessary. The algorithm proposed by Sloan can also be easily extended to
include constrained edges.

The initial step requires the definition of a super-equilateral triangle which is guaranteed to
enclose all data points, like as shown in Figure 5.1. In this case the data space is shown
normalized into a unit circular space.

4321- 1- 2- 3

1

2

3

- 1

- 2

- 3

Init ial Super-t riangle

Dat a space

Figure 5.1: The Super-triangle surrounding the normalised data space

A variation of the Sloan algorithm has been implemented, and is given here in point form:

1. Construct a "super-triangle" guaranteed to contain all sample points (as in Figure
5.1).

2. Add a point to the triangulation (P*).
(a) Determine which existing triangle contains the point (as in Figure 5.2).
(b) Remove this triangle and create three new triangles by joining the new

point
to each of the vertices of the old triangle.

(c) Add these new triangles to a stack.
3. Restore the Delaunay constraint.

(a) Remove a triangle from the stack.
(b) Check that the circumcircle of this triangle is empty.
(c) If not, swap the diagonals of the quadrilateral formed by this triangle and

the

34

point within the circumcircle, and add the two newly formed triangles to the
stack.

(d) Repeat (a) - (c) until the stack is empty.
4. Repeat (2) - (3) until all points have been added.
5. Remove any external triangle, that is, any triangle which shares a vertex with the

super-triangle.

T1 T2

T3

T4

P *

P1
P2

P3

P4

P5

P6

Figure 5.2: Adding New Triangles

Each step of the algorithm deserves consideration. The super-triangle is most easily formed
by normalising the input data. This ensures that a standard triangle can be used. For our
implementation, the super-triangle is defined by the three vertices (-2, 23), (-2, -23) and
(4, 0). This is an equilateral triangle with its circumcentre at the origin (see Figure 5.1).

To add a new point to the triangulation, we need first to find which existing triangle
contains it. For a given point P, and an arbitrary triangle (ABC) from the triangulation, we
can determine whether the point lies inside the triangle or, if outside, in which direction we
need to move. This is done by calculating the barycentric co-ordinates for the point P with
respect to the triangle (ABC) as shown by the following equations.

a0 = yA − yP()xB − xP()− xA − xP()yB − yP()
a1 = yB − yP()xC − xP()− xB − xP()yC − yP()
a2 = yC − yP()xA − xP()− xC − xP()yA − yP()

Using this information, we can determine the surrounding triangle with the following
algorithm.

35

1. Choose an arbitrary triangle from the triangulation.
2. Calculate the barycentric coordinates for the point relative to the current triangle.
3. If all the coordinates are negative, then the point lies inside the current triangle.
4. Otherwise, the largest positive value indicates the direction to P (a0 -> AB, a1 ->

BC,
a2 -> AC).

5. Repeat from step 2, using the adjacent triangle which shares the edge calculated
above.

Three new triangles are formed by joining the point P to each of the vertices of the existing
triangle ∆ABC. These triangles, labelled ∆PAB, ∆PBC, and ∆PCA, are then tested against
their neighbours to ensure that their relative circumcircles are empty. If not, then the
diagonal of the quadrilateral formed by the offending triangle and its neighbour are
swapped. This swapping process continues until the Delaunay constraint is restored. When
all of the points have been included in the triangulation, the outer triangles, that is any
triangle which shares a vertex with the super-triangle, are removed from the list of triangles.

The information required by this algorithm is a list of points and triangles. The points are
given as inputs to the triangulation routine and provide 3D Cartesian coordinates, that is, a
2D location and an associated value. For each triangle we need to store the three vertices
which define it, as well as pointers to the three adjacent triangles. By this, we mean the
triangles that share a common edge and, by implication, two vertices with the current
triangle. This information is stored in the following C data structures.

 typedef struct _point {
 struct _point *next;
 double value,
 external,
 azimuth,
 altitude,
 x,y;
 } *Point;

 typedef struct _triangle {
 struct _triangle *next;
 struct _triangle *adj[3];
 Point vertex[3];
 } *Triangle;

This information can easily be updated as each new point is added to the triangulation,
provided it is done in a consistent manner. The vertices of a triangle are defined from an
arbitrary starting point and proceed counter-clockwise around the perimeter. The adjacent

36

triangles are numbered from the first edge, which lies between the first and second vertices,
and also proceed counter-clockwise.

The most significant step in the triangulation process is the swapping test, as this ensures
the Delaunay constraint is maintained. To achieve this, we use Lawson's Swapping
Algorithm [Lawson, 1977] together with Cline and Renka's circumcircle test [Cline and
Renka, 1984] which provides better numerical stability under some conditions.

The triangulation process has also been modified to facilitate the inclusion of edges. In the
above data structure we see that the vertex (luminance) values are contained in each
triangular surface patch. This allows the values of adjacent patches to be different for the
same vertex point. We thus can represent the discontinuity within the triangulation. All
that is required is to ensure that each constrained edge corresponds to a triangle edge. This
is done by applying the swapping algorithm to remove any triangles which intersect the
edge, and then restoring the Delaunay constraint on the newly formed triangles.

5.2 Surface Approximation

Once we have constructed the Delaunay triangulation for a set of input points, we have an
approximation of the surface. The problem with this form of surface model is that it is
difficult and expensive to store in a meaningful way. To overcome this problem, we
construct a set of linear2 spaced contours from the triangulation. There are several
advantages to this approach. Firstly, it is efficient in terms of storage, as for each contour
we need only to store the single value associated with it, and a list of control points which
define its shape. The number of contours can be varied to achieve the desired level of
accuracy with an minimum amount of additional information. Another advantage to
generating these contours is that there will naturally be more information where the surface
is changing rapidly, and less where it is flat.

We can outline the algorithm as follows:

1. Find the maximum value from the sample points.
2. Determine the contour interval by dividing the maximum value by the desired

number of contours.

2Nonlinearly spaced contours have the potential to better represent surfaces with large peak values, but also

make "reading" the surface more complex. We have not taken this step.

37

3. For each contour level, starting with the lowest, determine which triangles lie
below, across or above the current level.
(a) All of the triangles that lie completely below the current level are removed

from the triangulation.
(b) All of the triangles that lie across the current level are added to a stack.
(c) All of the triangles that lie completely above the current level are ignored
(ie neither deleted nor added to the stack).

4. Determine one point (of the two) of intersection between an edge of the triangle on
the top of the stack and the current level.

5. If the triangle adjacent to the current triangle, which shares the intersecting edge,
is on the stack, remove it and determine the other point of intersection between this
triangle and the current contour level. Append this point to the current contour.

6. Repeat step (5) until the next triangle is not in the stack.
7. Repeat steps (5) & (6) in the opposite direction.
8. Repeat steps (4), (5) & (6) until the stack is empty.
9. Repeat step (3) for each contour level.

It can be seen from this algorithm that all contour control points will lie on the edge of a
triangle from the tessellation. This highlights another advantage of the Delaunay
triangulation, as the production of near equiangular triangles will reduce the number of
control points in the resulting contours. These points will generally tend closer to their
neighbours only as the curvature of the contour increases. The benefit of this result is
similar to that of using contours to store the surface, in that it reduces the amount of
information to be stored without effecting the accuracy of the data.

5.4 Reconstructing the Surface

The first stage of this process is to define what we mean by a continuous surface.
Obviously, we are not going to produce the physical surface itself, but a model with
sufficient detail to include information about every point on the surface. What we require is
the height (luminance) of the surface for any given location (azimuth and altitude). Rather
than using a single function to define the surface, we will use a series of different functions
to describe different regions of the surface.

Since our input data is in the form of a set of isoluminance contours, we will use these
contours to produce a set of planar patches to describe the surface. Since each contour is
defined by a polyline of (vertex,value) pairs it is possible to construct a triangular patched
surface to approximate the original (whether AEM or MDM). We use the same Delaunay

38

triangulation process to ensure that we end up with well conditioned (close to equilateral)
triangles as shown in Figure 5.3.

Isoluminance
Contours

Interpolation
Patches

Figure 5.3: Re-triangulation for Interpolation

Now that we are able to produce a surface composed of triangular planar patches, we need
to determine the coefficients of each planar equation. Given that on each triangle the three
points A, B and C with coordinates (xA,yA), (xB,yB) and (xC,yC), and luminance values fA,
fB and fC respectively, define a triangular patch, we can determine the unknown coefficients

of triangular plane by the solving the following set of simultaneous equations:

fA = a0 + xAa1 + yAa2

fB = a0 + xBa1 + yBa2

fC = a0 + xCa1 + yC a2

for the coefficients, a0, a1 and a2. Once the triangular surface patch in which our point is

contained is found, then it is straight forward to compute its value (luminance) for the
actual azimuth (x) and altitude (y) using a function like those shown above.

39

6.0 Modelling Operators

6.1 Using Sky Models

Once in SDF we can now define a set of operators which will allow us to manipulate and
transform sky models. It is through these functions that a user can devise and build new sky
models as well as accessing data from existing models. There are obvious questions that
can be answered by comparing two sky models, or designing a new one based on two, or
more, standard models.

Comparison of sky models can be done statistically (average, median, standard deviations,
etc of the luminance distributions), but these statistics explain little of the spatial distribution
effects of differences. For example, one model may provide higher levels of luminance in
certain regions of the sky dome, lower in other regions, but a similar level of average
luminance.

New (hybrid) models are often used in simulation computations, based on linear
combinations of clear and overcast sky models. It would seem rather useful to know what
type of sky these new models actually define. It is suspected that this analysis is not often
done due to the complications of visualising the result.

The modelling operators to be introduced here are intended to provide a suite of tools that
will allow these types (and others) of operations to be easily performed and, given an
appropriate visualisation system (eg. SKYMAP, to be discussed later), can be easily
displayed and compared.

The transformation processes included in the modelling operators are generally speaking
quite straight forward, only complicated by the fact that we are dealing with a spatially
defined data sets. It is appropriate, therefore, to formally define the desired operators so
that their meaning is clear.

6.2 Operating on SDF Models

Operations on two models are defined to be carried out on a union of the two SDF models.
In practical terms this means that for any two models (say A and B) we need to ensure that
the transformation operators are applied at a spatial resolution that reflects the information
content of the models separately and collectively. This has been achieved by creating a new
set of vertices as the union of the vertices of the polylines from both models.

40

If MA and MB represent the two models with each containing a set of polylines:

MA = {PA}

MB = {PB}

where {PA} is a set of polylines (each of which is a vector of vertices),

then union is then defined by:

{PA≈B}= {PA} ≈ {PB}

The union set will thus contain a total number of vertices (at which the transformation
operator is applied) equal to the sum of the vertices in MA and MB, as shown in Figure 6.1.

{PA} {PA }

{PA∪ B}

Figure 6.1: The Union Operation to define the set of vertices for binary operators.

41

For binary operators, {PA≈B} defines the set of vertices at which the operator is applied.
For unary operators applied to MA , then {PA} defines the set of appropriate points. The
transformation will thus not involve any significant loss of information.

The set of edges that may exist in a model is defined by {E}. Edges define regions of the
sky dome as closed polylines. Edges are used to define discontinuities in the luminance
distribution. Here we assume that {E} excludes Eo (the edge inserted around the horizon
for the purposes of interpolating luminance values near the horizon.

6.3 Standard SDF Operators

The following family of operators has been defined for use on SDF models:

(a) Addition (
) +):

The addition operator simply adds together the luminance values at each vertex in {PA≈B}.
Therefore:

 MA) + MB = Iφ, θ
A + Iφ,θ

B , ∀ φ,θ ∈{PA∪ B}

Where θ and φ refer to the azimuth and altitude angles, respectively for each vertex in
{PA≈B}, and I is the luminance value at the respective vertex.

The addition operator is used to construct a new model by adding together two model
components as is often done in forming a composite model, for example to build an average
sky by combining CIE clear and overcast models in some predefined proportions.

(b) Subtraction () −):

The subtraction operator is complementary to the addition operator and is defined by:

 MA) − MB = Iφ,θ
A − Iφ,θ

B , ∀ φ,θ ∈{PA∪ B}

This operator is useful for comparing two models where we are interested in examining the
absolute difference between two models.

42

(c) Ratio (
) ÷):

The ratio operator allows the ratio of two models to be evaluated, again a useful tool for
comparing two models. It is defined by:

MA) ÷ MB =

Iφ,θ
A

Iφ,θ
B , ∀φ,θ ∈{PA∪ B}

(d) Product (
) ×):

The product operator allows us to modify the luminance distribution according to some
distribution function (which is in effect another model). It is defined by:

 MA) × MB = Iφ,θ
A × Iφ, θ

B , ∀φ,θ∈ {PA∪ B}

This operator allows us to build a model (say MA) which contains a function which we wish
to use to scale the other model (MB). The scaling function may be derived from other
model operations, for example by taking the ratios of two models or from measured data.

(e) Normalise (ñ•):

Normalised sky models are often used for reference and comparison purposes. They are
created by scaling all luminance values so that the value at the zenith is unity. The
normalise operator is defined by:

n •M A =
Iφ,θ

A

I90,0
A , ∀φ,θ ∈{PA}

(f) Scale (f•):

The scale operator is a convenience function to enable models to be scaled by constant
factors. It is defined by;

f •MA = f × Iφ, θ
A , ∀φ,θ ∈ {PA}

A typical use of this function would be to assist in building a model from some linear
combination of CIE clear and overcast skies.

43

(g) ExtractPatch (∅):

The presence of cloud, or other obstructions, in the sky dome naturally suggests that we
would like to remove or add patches representing these obstructions. A patch is described
by an edge. Once an edge is defined (computed in some way or drawn interactively by the
user), then we can extract that bit of the sky inside the edge with the ExtractPatch operator.
If we define a set of edges by {E} each of which is actually a closed polyline across the sky
dome, then the ExtractPatch operator is define by:

 MA → {E A} = Iφ,θ
A , ∀ φ,θ ∈ {PA}I{EA}[]

(h) ExtractRest ():

The ExtractRest operator is complementary to ExtractPatch in that it extracts that part of
the sky outside the edge, {E} It is defined by:

 MA ⇒ {E A} = Iφ,θ
A , ∀ φ,θ ∈ {PA}I¬ {E A}[]

(i) Overlay ()

The overlay operation allows the contents of one model to replace the contents of another
in an overlay operation. If the first model contains no edges then the result will simply be
the first model as it will cover the second model completely. If the First model contains an
edge and no luminance values exist either inside or outside the edged, then the result will be
a combination of the first model and the second model. The luminance values of the second
model will show through where no values exist in the first model. Formally therefore:

MA ⇓ MB = MA if {EA} = ∅

 MA ⇓ MB = MA → {E A} U M B ⇒ {E A} if M A ⇒ {EA} = ∅

 MA ⇓ MB = MA ⇒ {E A} U M B → {E A} if M A → {EA}= ∅

44

6.4 Operator Function Descriptions

Each of the above operators have been implemented as a C-language function which are
summarized as follows. More complete descriptions are given in Appendix C.

ƒ13. To construct a new model which is the sum (
) +) of two models:

ModelDesc = sdfSum(ModelDesc1,ModelDesc2)

ƒ14. To construct a new model which is the difference () −) of two models:

ModelDesc = sdfDifference(ModelDesc1,ModelDesc2)

ƒ15. To construct a new model which is the ratio (
) ÷) of two models:

ModelDesc = sdfRatio(ModelDesc1,ModelDesc2)

ƒ16. To construct a new model which is the product (
) ×) of two models:

ModelDesc = sdfProduct(ModelDesc1,ModelDesc2)

ƒ17. To normalize (ñ•) a given model so that the zenith luminance is unity (1.0):

ModelDesc = sdfNormalize(ModelDesc)

ƒ18. To scale (f•) a given model by a constant factor:

ModelDesc = sdfScale(ModelDesc,ScaleFactor)

ƒ19. To construct a new model which contains only that data inside (∅) the defined
edges:

ModelDesc = sdfExtractPatch(ModelDesc)

ƒ20. To construct a new model which contains only that data outside () the defined
edges:

ModelDesc = sdfExtractRest(ModelDesc)

ƒ21. To perform an opaque overlay of one model on top of another (). Wherever the
luminance is defined in the first model, it will appear in the result, otherwise the
information from the second model will be used.

45

ModelDesc = sdfOverlay(ModelDesc1,ModelDesc2)

A programming example using these operators is given in Section 7. We will first look at
the interactive environment of SKYMAP which includes these operators and makes most of
them available for interactive use.

46

7.0 The SKYMAP Interactive Modelling Package

7.1 Functional Overview

We have implemented a complete interactive package as a vehicle for the development and
testing of the above SDF functions and operators as well as providing an operational tool to
actually view and manipulate sky models to assist in designing and building new hybrid
models. The SKYMAP system is an interactive application for the manipulation and display
of sky models of various forms.

The basic functionality of SKYMAP includes:

(a) The ability to access a number of the standard empirical models (AEMs) and to
convert these into SDF. Currently those implemented include: CIE Clear Sky,
Overcast Sky , CIE Intermediate Sky, Perez All-weather Model, Harrison Sky, the
BRE Average Sky, and the Nakamura Intermediate sky.

Since AEM models are defined from a set of algebraic equations and appropriate
coefficients, they must be hard coded. Other empirical models can be readily added,
once their respective expressions and parameters are fully defined. See an example
in Appendix E.

(b) The ability to access data (MDMs) from scanning devices (currently the PRC at
Mascot Airport, Sydney, [Hayman et al, 1993], and similarly formatted data from
other recording sites) and to convert this to SDF.

(c) The ability to input data from a simply formatted text file containing luminance data
for a set of azimuth-altitude points and convert the result into SDF.

(d) The ability to access hybrid models (HDMs) which have been previously
constructed using the system. A hybrid model is one constructed from either a
AEM or MDM, or some combination of both, with the intention of representing
some particular local conditions.

(e) The ability to display these models in either contour or fully shaded presentation
forms.

47

(f) The ability to perform the range of operations on these models and to save the
results as new HDMs for later use, or for use in other software packages.

The general structure of the complete system is shown in Figure 7.1. SKYMAP has been
built using the standard SDF libraries as described earlier. The complete SKYMAP system
provides a fully functional and highly interactive tool for the analysis and construction of
sky models. It operates within an X-windows environment running under UNIX.

SKYMAP User Interface

Model
Access

Functions

Parameter
Access

Functions

Model
Operator
Functions

User-written application

Library
Modules

Figure 7.1: Structure of SKYMAP System

7.2 Operation of the SKYMAP System

SKYMAP has been developed for the UNIX/Xwindows environment and is thus relatively
transportable within this software domain. The user interface adopts the Xwindows style
using readily available widgets to facilitate various user interface operations.

The system operates from a control panel as shown in Figure 7.2. The options included in
this control panel allow the user to:

• select the type of model to be displayed
• specify the location, date and time for the displayed model
• display the model(s)

48

• perform various operations on the displayed model(s)

Figure 7.2: SKYMAP Conrol Panel

In detail, the various items in the control panel are:

Figure 7.3: Model Selection Options

(i) Import menu: Enable the selection of the type of model to be imported to be
specified. Options include:
PRC data files (MDM)
SDF files
CIE Clear sky (AEM)
CIE Overcast sky (AEM)
CIE Intermediate (AEM)
Perez All Weather model (AEM)
Harrison model (AEM)
Nakamura Intermediate sky model (AEM)

49

Text file for simple MDMs
Photograph (digitized in PPM format)

In each case (except the photograph) the importing process converts
the source-model to SDF for display and any further manipulation.

The photograph is just displayed as a bitmap and not converted at
this stage. Its prime use is to be able to directly compare the actual
sky to the results from the scanner, or one of the AEM models. If
the photographic image was callibrated for luminance then it could
also be converted to SDF.

Photographs are static images and cannot be edited in SKYMAP,
other standard Xwindows utilities (eg. xv) can be used for this
purpose.

The text file option is intended for use by users who need to create
their own data formats for MDMs. The format for this model type is
given in Appendix D.

(ii) File field: This field specifies the name (and location) of the file to be read. The
name is typed directly into this field. By clicking on the Directory
button the user can select the required file from a directory listing
and, as necessary, change to the required directory location.

(iii) Import button: Initiates the import process. Depending on model type various fields
in the model parameter section (see below) may also have to be
correctly filled out. If the import is successful, the sky model appears
in a model window, as seen in Figure 7.4 The details and operations
of these model windows is discussed later.

(iv) Quit button: Terminates SKYMAP.

The parameter section contains a number of editable fields which should be set before
importing a new model. In each case the required value can be typed directly into the field,
or by clicking on the up an down arrow buttons to increase or decrease the value by a unit
value (see Figure 7.5).

50

Figure 7.4: Example Model Window Display

Figure 7.5: Parameter Specification Options

51

(v) Month field: Sets the month as a number in the range 1 to 12

(vi) Day field: Sets the day number in the month (1 to 28, 29, 30 or 31 depending
on the month).

(vii) Hours field: Sets the hour value for the time (24 hour clock)

(viii) Minutes: Sets the minutes value for the time (0 to 59).

(ix) Longitude: Sets the longitude (degrees) of the location. East of Greenwich is
positive.

(x) Long. Min: Sets the longitude minutes value (0 to 59).

(xi) Latitude: Sets the latitude (degrees) of the location. South of the equator is
negative.

(xii) Lat. Min: Sets the latitude minutes value (0 to 59)

(xiii) Ref. Long: Sets the reference longitude for the local time zone for normal clock
time. No allowance for summer time is included.

(xiv) Cloud (octa): Cloud cover in octas. This required for Harrison model only

(xv) Contours: Number of contour intervals to be defined for SDF models. The
default is 16. Experience has shown that little improvement in
accuracy is obtained by increasing this number. The contour intervals
are equally spaced over the expected range of luminance values (see
shading profile below)

(xvi) Scale: This is a scale factor which is used by the Scale Up and Scale Down
operations described below.

(xvii) Filter switch: These buttons (Figure 7.6) are used when importing PRC data files
where the PRC scanner has recorded luminance values through three
filters. Clear button refers to a neutral filter with V(λ) matching
characteristics. The Blue and Red buttons refer to filters with blue
and red transmission characteristics which are normally recorded

52

immediately following the initial scan. Choosing the relevant button
selects the data with the required filter.

Figure 7.6: Filter Selection and Shading Controls

The Ratio button is not currently in operation.

(xviii) Colour This button enable the user to set (and modify) the shading
characteristics that will be used for shading sky models. Clicking this
button brings up the shading control panel as in Figure 7.7)

Figure 7.7: The Shading Control Panel

This control panel sets the range and profile of luminance values for
shading purposes. This is necessary since the visual perception of a
shaded luminance distribution may not be best represented by a
simple linear density map.

The slider (top left) sets the range for the shading. Any luminance
values above this range will be shaded at the highest level (typically
white).

53

Within this range the relationship between luminance and display
density (grey level) is defined by the set of vertical sliders (16 in
number). The default (as displayed above) has a linear profile set in
the range 0 to 255 (ie black to white). The user is free to adjust the
slider levels to give some required profile which might be used to
give a higher discrimination in certain ranges of luminance and a
lower discrimination in other ranges.

If the shading control panel is adjusted after displaying a model with
shading, the model must be re-shaded to reflect the new profile.

The operator section (Figure 7.8) of the control panel allows most of the SDF operators to
be performed interactively.

Figure 7.8: SDF Operations Buttons

(xix) Sum button:
(xx) Difference button
(xxi) Product button:
(xxii) Ratio button: These buttons perform the respective operations on two models.

Both models must first be displayed on the screen. Following
selecting the required button, the two models are selected by clicking
in each of their windows (an audible click is given with each model
selection). The resulting new model is displayed in a new window.

In case where the order of the operation is significant, it is
determined by the order of selection of the two models.

(xxiii) Scale Up:
(xxiv) Scale Down: These buttons scale a single model (up or down) by the Scale factor

set in the parameter section of the control panel. The model to be

54

scaled must be first displayed, then selected by clicking in its window
after selecting the required button. A new model is created.

(xxv) Normalize: This button produces a new model by normalizing the luminance in a
selected model so that the luminance value at the zenith is 1.0.

(xxvi) Extract Inside:
(xxvii) Extract Outside:

These two options are used when there is one or more edges (in
addition to the horizon edge) include in the model. The operation
results in a new model which contains only that part of the model
inside, or outside, the edges in the model.

(xxviii) Overlay: This button allows one model to be overlayed on top of another. The
top model (first one selected) masks out the bottom model where the
top model contains data. If the top model has empty areas, then the
bottom model shows through.

7.3 Model Displays

The display of luminance distribution in sky models is by means of a contour map, or a fully
shaded display. Figure 7.9 shows a typical display. Several displays of this type can be up
concurrently, only limited by computer memory. The projection used is equiangular.

There are two basic display options, shaded as in Figure 7.9, and the contour map as shown
earlier in Figure 7.4. The small control panel at the top of the window contains a number of
options as shown in Figures 7.10 and 7.11.

(i) Grid: This button toggles on and off the display of the 30° x 30° polar grid.

(ii) Save: The Save button saves this model to a file: A file name dialogue is
presented to allow the user to enter a suitable file name.

(iii) Import: Import provides the function to import a model using the edges
defined in the current window. These edges are then built into a new
SDF model and thus impacts on the contouring process. The new
model appears in a new window.

55

(iv) Contour: Requests the display to be given as a contour map.

(v) Shade: Requests the display to be given as a shaded display.

Figure 7.9: Typical Model Display Window

Figure 7.10: Model Control Options

56

Figure 7.11: Window Actions

The Select and Insert operations in Figure 7.10 are designed to allow the user to draw an
edge in the current window or to sample points for luminance from within the displayed
model.

(vi) Insert button: Selecting Insert enables the mouse buttons as follows:

left button: mark the vertices of an edge in sequence.
middle button: terminate, and close, the edge.
right button: delete the edge (before closing the edge).

Several edges may be drawn and included in the model. Once drawn,
there is currently no way of editing an edge

(vii) Select button: Choosing this option enables the mouse to select and sample any
point in the model to display its position (azimuth and altitude) and
luminance value.

This display (as shown in Figure 7.11) includes a compass orientation showing that the
display is orientated with north upwards, and east to the left. This orientation is therefore
what is seen by lying on one's back, looking upwards with the head pointing towards the
north.

SKYMAP allows the user to create and display several models for concurrent display and
manipulation. Each model is displayed in its own window which can be moved and sized to
suit the users requirements. An example screen display is shown in Figure 7.12.

57

Figure 7.12 Example Screen Display

7.4 Example Displays

To demonstrate some of the flexibility of the SKYMAP package we include here some
example displays. In each case the model type is selected and the necessary location and
time parameters defined. The SDF model is then constructed and displayed. Figures 7.13
to 7.16 show a small selection of results.

58

Figure 7.13: CIE Clear Sky (Sydney, 7th July, 12.45 hours):

Figure 7.14: Perez All Weather Sky (Sydney, 7th July, 12.45 hours):

59

Figure 7.15: PRC scanner data sky (Sydney, 7th July 1992, 12.45 hours):

Figure 7.16: Nakamura Intermediate Sky (Fukuoka, Japan, 20th Dec, 10.00 hours)

60

8.0 Example Use of SDF Operators

8.1 Operator Use

In this section we will demonstrate a selection of the SDF operators using the SKYMAP
package. All these operators are available in the SDF libraries and can be readily built into
user-written software. The implementations within SKYMAP allow us to easily perform
the operations and visualize the results. It is thus a convenient way of understanding the
results obtained.

The whole purpose of these operators is to define a set of operations on skies that allow a
range of manipulation tasks to be defined and made available to the user. While the
concepts are quite straight forward, the characterization of the results is often rather
simplistic - perhaps relying on simple uni-dimensional statistical measures (means, standard
deviations, and so on). The value of some operation (ie the information content) is very
much tied up with the 2-D spatial characteristics, ie the distribution over the sky dome.
These characteristics are most easily seen by suitable graphical displays as provided by
SKYMAP.

8.2 An Intermediate Sky

Intermediate skies are commonly used in daylighting simulations and computations. Their
use is justified on the basis that partially cloudy skies are neither clear nor fully overcast and
the intermediate sky provide some sort of average conditions. The intermediate sky is
typically a simple weighted sum of CIE Clear and CIE Overcast skies.

The proportion of each depends on the cloud coverage if known, or estimated from
measured solar radiation conditions. If we assume that we wish to build an intermediate sky
from a composition of 30% clear sky and 70% overcast sky then we can define an
intermediate sky from to following sequence of operations:

Firstly, we take the actual sky models and scale them:

MA = 0.7 ⋅MOvercast

MB = 0.3⋅MClear

to produce two scaled models MA and MB as shown in Figures 8.1 and 8.2 as displayed by
SKYMAP.

61

Figure 8.1: The Scaled CIE Clear Sky

Figure 8.2: The Scaled CIE Overcast Sky

62

The next step is to sum the two scaled models together to produce the intermediate sky:

 M inter = M A) + MB

Figure 8.3 shows the result of this operation for location: latitude -33°54', longitude 151°12'
and reference longitude 150° (ie Sydney), on date 7th July at time 12:45.

Figure 8.3: Example Intermediate Sky

Note that in Figures 8.1, 8.2 and 8.3 the same shading profile has been used, so they are
directly comparable.

8.3 A Localised Clear Sky

The localised sky is a derived model based on some local data, and the presumption that the
general character will be something like the CIE Clear model for clear sky conditions.

A simple approach might be to simply measure the zenith luminance at the site and assume
that (for clear sky conditions) the CIE Clear Sky model provides the best estimate of the
luminance distribution after it has been scaled to match the measured zenith luminance
values. Formally this could be defined by:

63

ML = f •MClear

where f is the ratio of zenith luminances of the CIE Clear and locally measured values for
the appropriate time and day.

If we have available more measured data, say measurements every 45° of azimuth and
altitude, then we can construct a much better local model. For each of these points we can
compute the ratio of the measured value to that of the CIE Clear sky at the corresponding
points. An example set of ratios is given in Figure 8.4.

Azimuth Altitude

Ratio:
Measured

CIE Clear

0 0 1.2
0 45 1.3
0 90 1.1
0 135 0.9
0 180 0.8
45 0 1.1
45 45 1.3
45 135 0.7
45 180 0.6
90 0 0.5
90 45 0.6
90 135 0.9
90 180 0.8

135 0 1.1
135 45 1.2
135 135 1.3
135 180 1.4

Figure 8.4: Example ratios of CIE Clear to Local Measurements

This ratio data can now be input to build a "model" (MRatio), ie a model of the distribution
of ratios over the sky dome, as shown in Figure 8.5. This model defines a surface matching
(with interpolations) the measured data from Figure 8.4. If we multiply this model with the
CIE Clear model (like as shown in Figure 8.1, but unscaled) then we will have a new model
where the luminance values at the measured points match, but in between we have a surface
like the CIE Clear model. Formally we have:

 ML = MClear) × MRatio

64

where MClear is the CIE Clear sky model. Note that MRatio is a complete surface as defined
by the SDF interpolation scheme. The results of this operation are shown in Figure 8.6.

Figure 8.5: Example model of ratios

Figure 8.6: The Localised Sky

65

8.4 Ratio of Two Skies

To compare two sky models the ratio operator provides a useful tool. Here we can easily
see the spatial variance characteristics. In this example we will take the ratio of the
Harrison and CIE Clear skies. This operation is defined by:

 M ratio = MHarrison) ÷ MClear

The results are shown in Figure 8.7.

Figure 8.7: Ratio of Harrison and CIE Clear Skies

66

9.0 Macro Programming

Macro programming involves writing a program in the C-language, using the various
functions (model access, parameter access and model operator) described earlier in this
report and in detail in the Appendix C. The program which must be written is quite simple,
providing the correct header files are included and libraries linked. We have already given
some simple examples, but in this section we will provide a more complete example with a
fuller explanation of its various components.

The example task will be to combine a series of CIE Clear and overcast skies for the 7th
July 1992 at 15 minute intervals between 0800 and 1645 hours for the location: longitude
151°12' and latitude -33°54', with a reference Longitude of 150° (ie. Sydney).

 The following program uses the standard functions defined for the SDF. Note that the line
numbers have been added here to aid the explanation and do not form part of the actual
program.

In this example, the new sky is assumed to be the summation of 30% of a clear sky and
70% of an overcast sky.

[1] #include <sdf.h>
[2] #include <sdfops.h>

[3] /*-- *
[4] * match checks a model (model) against the given template *
[5] * model (template) and returns whether or not they match. *
[6] *-- */

[7] static int match(
[8] Model template,
[9] Model model)
[10] {
[11] int year_t,month_t,day_t,
[12] hours_t,minutes_t,
[13] year_m,month_m,day_m,
[14] hours_m,minutes_m;

[15] (void)sdfGetParameter(template,"time","%c%c%c%c%c",
 &year_t,&month_t,&day_t,&hours_t,&minutes_t);
[16] (void)sdfGetParameter(model,"time","%c%c%c%c%c",
 &year_m,&month_m,&day_m,&hours_m,&minutes_m);
[17] if (year_t && year_t != year_m)
 return(0);
[18] if (month_t && month_t != month_m)
 return(0);
[19] if (day_t && day_t != day_m)
 return(0);
[20] if (hours_t && hours_t != hours_m)
 return(0);
[21] if (minutes_t && minutes_t != minutes_m)

67

 return(0);

[22] (void)sdfSetParameter(model,"time","%c%c%c%c%c",
 year_m,month_m,day_m,hours_m,minutes_m);
[23] return(1);
[24] }

[25] int main(
[26] int argc,
[27] char **argv)
[28] {
[29] FILE *fp;
[30] Model clear,
[31] overcast,
[32] model, temp1, temp2;
[33] int hours,
[34] minutes;

[35] fp = sdfOpenFile("07Jul92.sdf","w");
[36] for (hours = 8 , minutes = 0 ; hours < 17 ; minutes += 15) {
[37] if (minutes == 60) {
[38] hours ++;
[39] minutes = 0;
[40] }
[41] model = sdfCreateModel();
[42] (void)sdfSetParameter(model,"site","%d%c%d%c%d",151,12,
 -33,54,150);
[43] (void)sdfSetParameter(model,"time","%c%c%c%c%c",92,7,7,
 hours,minutes);
[44] clear = sdfImport(CIE_CLEAR,model,match,fp);
[45] overcast = sdfImport(CIE_OVERCAST,model,match,fp);
[46] temp1 = sdfScale(clear,0.3);
[47] temp2 = sdfScale(overcast,0.7);
[48] model = sdfSum(temp1,temp2);
[49] sdfStoreModel(model,fp);
[50] sdfFreeModel(clear);
[51] sdfFreeModel(overcast);
[52] sdfFreeModel(model);
[53] sdfFreeModel(temp1);
[54] sdfFreeModel(temp2);
[55] }
[56] sdfCloseFile(fp);
[57] return(0);
[58] }

Some notes of explanation about this small program follow:

Lines 1 and 2: these include the header files for the SDF library of functions.

Line 7: the match function facilitates matching the required model to the
specified template of parameters, typically time and location
parameters.

Note how the match function operates. Since we assume (generally)
that the required model is to be imported from a file, which may

68

contain several SDF models in sequence, we need to ensure that the
correct model is loaded. The match function sets the required
matching criteria. The import function then keeps searching forward
in the input file until the correct (matching) model is found.

Lines 15 and 16: these get the parameter values from the template, and the model.

Lines 17 to 21: these perform the match, if the respective parameters were defined in
the template.

Line 22: establishes the full set of parameters in new model.

Line 25: this is the start of the main program.

Lines 29 to 34: various declarations, note the models are of the type Model..

Line 35: opens file for saving results in write enabled mode.

Lines 36 to 40: sets up a loop to create a new model for each required time.

Line 41: creates a new model called model.

Lines 42 and 43: sets the template parameters into model.

Line 44: import a CIE clear model to be named clear.

Line 45: import a CIE overcast model to be named overcast.

Line 46: scales the clear sky by 0.3.

Line 47: scales the overcast sky by 0.7

Line 48: adds together the resulting two CIE models.

Line 49: saves the new model.

Lines 50 to 54: removes the models and frees associated data storage in memory.

Line 55: end of for loop.

69

Line 56: close output file will all models saved.

Line 57: terminates main program.

The match function in this example does little since the sdfImport function (lines 44 and 45)
will always import the correct CIE models. Where the import operation is extracting
models from an SDF file, then we may have to keep reading forward in the file until the
correct model is found. The match function ensures the match and will return a true (1)
value if the correct model has been loaded, other wise it returns a false (0) value. In such a
case the sdfImport function will continue to search forward in the file until the correct
model is found. Providing the match function is set up correctly the user does not have to
be concerned with this process , it happens automatically.

70

10.0 Practical Validation of SDF Models

10.1 Daylight Study Comparisons

To evaluate the efficacy of the SDF models we have undertaken testing and evaluation of
some sample models along side the standard CIE models. We have used the DOE-2
building energy simulation package as developed by the Simulation Research Group at
Lawrence Berkeley Laboratory [Winkelmann and Selkowitz, 1985, Winkelmann et al,
1993]. This package has a capability to compute interior daylighting levels. The intention
of this study was to demonstrate the viability of the SDF models and to examine the
differences between the CIE models and the real sky condition as measured on two days at
the Sydney Airport.

We have established a test environment for this work, based on a rectangular room with a
single window, and the computation of the illuminance levels at a fixed control point. The
room is orientated with the window facing north, east, south and west for the different sky
conditions. The proportions and dimensions of the test room are shown in Figure 10.1.

6.1m

9.2m

3.0m3.0m
3.0m

0.9m

1.2m

0.8m

Control point

Window

Figure 10.1 The test room

The room is empty and has no internal obstructions. The interior surfaces have reflectances
of: 0.3 - floor, 0.5 - walls and 0.7 - ceiling. The window is single glazed with a
transmittance at normal incidence of 100% (a rather ideal assumption, as a typical clear
glass has a transmittance of around 85% at normal incidence).

Our interest is to study the behaviour of SDF models, so we have eliminated the direct
beam component from the analysis. We have also assumed no reflectance from the ground.
While these assumptions may not make the computed luminance values very meaningful,
they give us a good deal of control over the various influencing factors, by eliminating those
that would otherwise be assumed the same for both conventional DOE-2 modelling and the
SDF approach.

71

The computations give us the average luminance values (lux) at the control point for each
hour period, 0800-0900 hours, 0900-1000 hours, up to 1700 hours (labelled as 9, 10... 17
hours in the results in Figures containing the results).

Two days in July 1992 were chosen for study. The first day (20th July) is considered to a
fully overcast day with heavy cloud (though not of uniform density) present all day. The
second day (23rd July) is considered to be a fully clear day, with no detectable cloud
present all day.

These two extreme days were chosen as they gave us the best chance to make sensible
comparisons with the standard CIE Clear and Overcast models.

Four sets of SDF models were developed for the tests:

(i) SDF models derived from the CIE Overcast sky model for 20th July.

(ii) SDF models derived from the measured sky conditions for 20th July.

(iii) SDF models derived from the CIE Clear sky model for 23rd July.

(iv) SDF models derived from measured sky conditions for 23rd July.

In each case a sequence of models was developed for the hours 9, 10 to 17 hours. The
measured data was derived from a sky scanner located at Mascot Airport, Sydney [Hayman
et al, 1993].

The analyses were therefore aimed at:

(i) Verifying that the results from DOE-2 using its own standard sky models were
comparable with the results using SDF models based on CIE Clear and Overcast sky
models. We would expect a good match.

(ii) Examining the difference between the results obtained using an SDF model of the
actual sky conditions as compared with the standard models in DOE-2. DOE-2 uses a
linear combination of CIE Clear and Overcast models based on the measured radiance
data. In this case the differences may be explained by the "non-standard"
characteristics of the skies on the two chosen days. The two days were chosen
specifically as examples of virtually fully clear and overcast skies.

72

The above test environment was used to build a room model for DOE-2, and the DOE-2
program was modified to accept SDF sky models through use of the SDF library functions.
These provide access to each sky model, as well as the necessary interpolations to give the
sky luminance at a specified azimuth and altitude angles. In all other respects the DOE-2
computations are identical for each experimental run.

10.2 Adding SDF Functionality to DOE-2

The DOE-2 program was modified to accept the SDF models. This is a relatively straight
forward step even though DOE-2 is written primarily in FORTRAN. First we defined a
small set of C-FORTRAN interface functions which are callable as FORTRAN procedures
or functions:

sdfopen_ to open the files containing SDF models.

sdfload_ to load CIE Clear and Overcast models in SDF from the file.

sdflum_ to return the luminance at the specified azimuth and altitude of the average
sky

according to the two coefficients.

sdfclose_ to close the SDF files.

sdffree_ to free the memory allocated to the loaded models

The implementation is given as follows:

#include <sdf.h>

/* global declarations */

Model modelclear,
modelocast;

FILE *fpclear,
*fpocast;

/* opens files */

void sdfopen_()
{
 fpclear = sdfOpenFile("23Jul92.clear","r");
 fpocast = sdfOpenFile("23Jul92.overcast","r");
 if ((fpclear == (FILE *)NULL) || (fpocast == (FILE *)NULL)) {
 fprintf(stderr,"sdfdoe: Unable to open data files\n");

73

 exit(-1);
 }
}

static int match(model,yearW,monthW,dayW,hourW,minW)
Model model;
int yearW, monthW, dayW, hourW, minW;
{
 int year, month, day, hour, min;

 sdfGetParameter(model,"time","%c%c%c%c%c", &year, &month, &day, &hour,
&min);
 if (year != yearW) return(0);
 if (month != monthW) return(0);
 if (day != dayW) return(0);
 if (hour != hourW) return(0);
 if (min != minW) return(0);
 return (1);
}

/* get next matching model */

void sdfload_(yearW,monthW,dayW,hourW,minW)
int *yearW, *monthW, *dayW, *hourW, *minW;
{
 modelclear = sdfCreateModel();
 while (sdfLoadModel(modelclear,fpclear)) {
 if (match(modelclear,*yearW,*monthW,*dayW,*hourW,*minW))
 break;
 sdfFreeModel(modelclear);
 modelclear = sdfCreateModel();
 }
 modelocast = sdfCreateModel();
 while (sdfLoadModel(modelocast,fpocast)) {
 if (match(modelocast,*yearW,*monthW,*dayW,*hourW,*minW))
 break;
 sdfFreeModel(modelocast);
 modelocast = sdfCreateModel();
 }
 if ((modelclear == (Model)NULL) || (modelocast == (Model)NULL)) {
 fprintf(stderr,"sdfdoe: Unable to load models\n");
 exit(-1);
 }
}

/* computes average luminance at ax, alt */

float sdflum_(az, alt, c1, c2)
float *az, *alt, *c1, *c2;
{
 float lumclear, lumocast, average;
 struct _point point;

 point.azimuth = *az;
 point.altitude = *alt;
 lumclear = sdfPointLuminance(modelclear,&point);
 lumocast = sdfPointLuminance(modelocast,&point);
 average = *c1 * lumclear + *c2 * lumocast;
 return(average);
}

/* closes files */

void sdfclose_()

74

{
 sdfCloseFile(fpclear);
 sdfCloseFile(fpocast);
}

/* free a model */

void sdffree_()
{
 sdfFreeModel(modelocast);
 sdfFreeModel(modelclear);
}

We can construct a simple sample FORTRAN program which uses these functions and
displays some results.

 PROGRAM Example

 INTEGER year,month,day,hours,minutes
 REAL phi,theta,c1,c2,val

 CALL sdfopen

 year = 92
 month = 7
 day = 23
 hours = 12
 minutes = 0
 CALL sdfload(year,month,day,hours,minutes)

 phi = 0.0
 theta = 1.57
 c1 = 0.5
 c2 = 0.5
 val = sdflum(phi,theta,c1,c2)

 write(*,"(3F8.2)") phi,theta,val

 CALL sdfclose
 CALL sdffree

 END

DOE-2 was modified to use these FORTRAN routines and to link with the SDF library
functions. This enabled the required SDF models to be loaded and used in the DOE-2
simulations, just replacing the standard DOE-2 sky modelling strategy.

10.3 The Results - Overcast Sky

The 20th July 1992 is considered to be a fully overcast sky for all the day. Figure 10.2 is a
photograph of the sky at 1515 hours and is typical of the sky throughout the day.

75

Figure 10.2: The Overcast Sky at 1515 hours on 20/7/92

Figures 10.3(a)-(d) show the results for this day (20/7/92) for each orientation of the test
room. The average illuminance (lux) at the control point in the room is plotted against
time. The value at 9 is the average over the hour 0800 to 0900 hours.

The first thing to note is the close match between the DOE-2 Overcast sky prediction and
the SDF Overcast sky models. This was expected and confirms that the SDF function
primitives are providing essentially the same results as those produced from the values
computed directly for the CIE Overcast model equations as integrated into DOE-2.
Remember that DOE-2 also uses the CIE Overcast model, but computes the luminance
values directly from the empirical expression. The SDF luminance values are obtained from
the appropriate SDF function which estimates the luminance from a computation
(interpolation) on the SDF iso-luminance contour map. This was created originally from
the CIE Overcast model expression.

It is clear from these graphs that the actual sky conditions vary considerably from the
idealised CIE model. This is also expected as we know that the CIE Overcast sky
represents dark overcast skies with stratus type clouds. Such skies are not typical of the
bright overcast skies experienced in Australia. In these skies the influence of the solar
component can be seen.

The actual sky conditions are reflected in the SDF measured model results. The MDMs for
the days studies were converted into SDF and then read directly into DOE-2 for the
simulation.

76

0

200

400

600

800

1000

1200

1400

1600

1800

2000

9 10 11 12 13 14 15 16 17

SDF Measured

DOE2 CIE
Overcast

SDF Overcast

North Facing Room

Hour

Figure 10.3(a): Overcast Sky - North Facing Window

0

200

400

600

800

1000

1200

1400

1600

1800

2000

9 10 11 12 13 14 15 16 17

SDF Measured

DOE2 CIE
Overcast

SDF Overcast

East Facing Room

Hour

Figure 10.3(b): Overcast Sky - East Facing Window

77

0

200

400

600

800

1000

1200

1400

1600

1800

2000

9 10 11 12 13 14 15 16 17

SDF Measured

DOE2 CIE
Overcast

SDF Overcast

South Facing Room

Hour

Figure 10.3(c): Overcast Sky - South Facing Window

0

200

400

600

800

1000

1200

1400

1600

1800

2000

9 10 11 12 13 14 15 16 17

SDF Measured

DOE2 CIE
Overcast

SDF Overcast

West Facing Room

Hour

Figure 10.3(d): Overcast Sky - West Facing Window

78

10.4 The Results - Clear Sky

The 23rd July, in contrast, had virtually totally clear conditions all day. Figure 10.4 shows a
photograph at 1115 hours and is typical of the conditions during the day.

Figure 10.4: The Clear Sky at 1115 hours on 23/7/92

The clear sky conditions provide more variance than noted in the Overcast sky
comparisons. The DOE-2 and SDF clear sky models are relatively close but not identical as
shown in Figures 10.5(a) to (d). This is probably explained by the fact that the variation of
sky luminance is much greater depending on the solar altitude. This places much more
significance on the interpolation schemes for estimating intermediate luminance values.
DOE-2 computes the luminance for 20 different sun positions and intermediate points are
linearly interpolated. The SDF models use a more complex interpolation scheme in which
the number of (effective) points use depends on the rates of change of the luminance in each
part of the sky dome.

In both cases the same atmospheric conditions were assumed (atmospheric moisture of
1.21cm, and a turbidity of 0.12). These are typical for Sydney clear skies.

It is also of note that the illuminance results for actual sky conditions are not too far from
these standard models. The differences are not uniform, which probably indicates that the
actual luminance distribution across the sky dome does not match the standard CIE models.
It might still be concluded that the CIE Clear model seems to have a reasonable predictive

79

value, at least for this particular day. Some of the differences might also be explained by
the assumed, and possibly, varying atmospheric conditions (turbidity and moisture content).

10.5 Summary

The purpose of these comparison studies was to prove the feasibility of integrating the SDF
functions into a standard simulation package, like DOE-2. This has been successful in the
sense that the results obtained above indicate that both the SDF model and the normal
DOE-2 sky models give essentially the same results.

One issue which surfaced during the experiment concerned that fact that DOE-2 prepares
its sky data one day in advance before beginning the hourly simulation for each day. To
enable an efficient use of the SDF models, all models for a day should be loaded
concurrently so that repeated file accesses are avoided. At the end the day all models
should then be removed and the memory recovered, ready for the next day's simulation.

0

500

1000

1500

2000

2500

3000

3500

9 10 11 12 13 14 15 16 17

SDF measured

DOE2 Clear

SDF Clear

North Facing Room

Hour

Figure 10.5(a): Clear Sky - North Facing Window

80

0

500

1000

1500

2000

2500

3000

3500

9 10 11 12 13 14 15 16 17

SDF measured

DOE2 Clear

SDF Clear

East Facing Room

Hour

Figure 10.5(b): Clear Sky - East Facing Window

0

500

1000

1500

2000

2500

3000

3500

9 10 11 12 13 14 15 16 17

SDF measured

DOE2 Clear

SDF Clear

South Facing Room

Hour

Figure 10.5(c): Clear Sky - South Facing Window

81

0

500

1000

1500

2000

2500

3000

3500

9 10 11 12 13 14 15 16 17

SDF measured

DOE2 Clear

SDF Clear

West Facing Room

Hour

Figure 10.5(d): Clear Sky - West Facing Window

82

11.0 Conclusions

The research of the ARC project "The development and verification of sky models which
represent the predominant skies in Australia for the prediction of daylight in buildings" has
been widened to include sky conditions world-wide. Measured data from Australia, Japan,
the UK and the USA have been used to develop universal luminance models demonstrating
that the adopted sky modelling strategies can be applied world-wide. These measured data
have been used to develop the Standard Digital Form (SDF) for representing sky luminance
(and the SKYMAP system) which has been applied and tested in internationally used
software. The results will be utilized in the development of integrated software packages
such as ADELINE in the International Energy Agency's new Task 21: Daylight in
Buildings.

Modelling the luminance distribution of the sky is a complex problem. While there have
been a wide range of proposals for empirical models, none are universally reliable. The
extremes of clear and fully overcast skies are better modelled, but partly cloudy skies are
more problematical. Modern scanners allow good quality data to be collected to capture
real sky conditions which can be used for further modelling or analysis tasks. Such data
are, however, expensive to obtain and a lot of data must be collected to capture the variety
of conditions necessary to obtain the required representative skies for analysis.

This project has been concerned with proposing some new modelling strategies which can
facilitate further development of sky models. The SDF models provide a number of new
features which will help in the development of luminance models. In particular there is now
a modelling framework which:

(a) Provides a scheme for integrating data from different sources (eg empirical models
and measured data) into a consistent framework.

(b) Allows different models of the sky luminance to be compared and manipulated using
a common set of basic operators which are accessible from user written software.

(c) Allows an explicit inclusion of luminance discontinuities and other edge effects.

(d) Allows sequences of SDF models to be built and accessed by standard simulation
software packages.

83

Models in SDF can be manipulated with a standard set of operators which allow model
builders to design and construct models for new locations based on known reference
models, local data and sky conditions. We are now better able to consider the development
of models of real skies in localities where there is no detailed scanner data, or where it is
known that the reference models do not well represent the local conditions.

The outcomes from the project are embodied in a set of C-language functions which define
the data structures and basic operations that can be performed on SDF models. These are
built into libraries which can be accessed by user-written software or integrated into other
simulation packages which can access SDF sky models. The operation of these facilities has
been demonstrated in this report. To show the capabilities of these SDF operators and
functions the SKYMAP system has been implemented. This system provides a
demonstration of an interactive program incorporating most of the SDF operators and
functions.

A series of C-language functions are available for inclusion in user-written software systems
which will allow a user to readily adopt the proposed SDF modelling standard and to
effectively use it with a minimum of programming effort. The libraries of functions are
available to researchers for testing, validation and use in non-commercial software free of
cost. For commercial use there may well be the need to negotiate a royalty arrangement.

The methodology used has pin-pointed the following:

(i) The differences in sky luminance patterns at various latitudes and particularly the
inadequacy of the CIE fully overcast sky to represent the fully overcast sky
condition in latitudes between 50° South and 50° North where most of Australia is
located. This research has validated the conclusions in the previous ARC project.

(ii) Highlighted the importance of determining cloud cover as a description. Filtered
(blue and red) sky scanner measurements to indicate total cloud amount have been
inconclusive and manually tracing edges of clouds from photographs has proved
onerous. It is evident that for research purposes as well as for meteorological
observations, automatic filtering methods to isolate cloud components need
investigating. These are now being assessed in a new ARC project "Automated sky
luminance and cloud cover estimation for improved sky modelling in different
climate zones".

84

References

Cline, A. K. and Renka, R. L., 1984, A Storage Efficient Methods for Constructions of a
Theissen Triangulation, Rocky Mountain Journal of Mathematics, vol 14, pp119-139.

Commission Internationale de L'Eclairage, (CIE) 1973, Standardisation of luminance
distribution on clear skies, CIE Publ. 22, Paris, Bureau Central CIE.

Commission Internationale de L'Eclairage, (CIE) 1990, ISO/CIE: Standard overcast and
clear sky, 3rd. draft, Div 3, CIE.

Commission Internationale de L'Eclairage, (CIE), Standardisation of luminance
distribution on clear skies, CIE Publ. 22, Paris, Bureau Central CIE, 1973.

Carruthers D, Uloth C and Roy G. G., 1990, An Evaluation of Formulae for Solar
Declination and the Equation of Time, Research Report No RR17, School of Architecture,
the University of Western Australia, Jan.

Davies, G. B., Griggs, D. J. and Sullivan, G. D., 1992, Automated Estimation of Cloud
Amount Using Computer Vision, Journ. of Atmospheric and Oceanic Technology, Vol 9,
Feb, pp81-85.

Fortune, S., 1987, A Sweepline Algorithm for Voronoi Diagrams, Algorithmica, Vol 2,
pp153-174.

Green, P. J. and Sibson, R., 1978, Computing Dirichlet Tessellations in the Plane, The
Computer Journal, vol 21, pp167-173.

Harrison, A., 1991, Directional Luminance versus cloud cover and solar position, Solar
Energy, vol 46, pp13-20.

Hayman, S. and Stevens G.,1992, Sky Luminance Models, ANZAAS, Perth.

Hayman, S., 1994, Appropriate Sky Models, Proceedings of the International Workshop on
Daylight in Buildings, University of Sydney, Nov 18-19.

85

Hayman, S., Prasad, T., Ruck, N. and Julian. W., 1993, International Daylight
Measurement Programmes in Australia: Sky Luminance Research, Proc. 7th European
Lighting Conference, Edinburgh, pp795-798.

Kittler, R., 1985, Luminance distribution characteristics of homogeneous skies: a
measurement and prediction stratagy, Lighting Research & Technology, vol 17. No. 4,
pp183-188.

Kittler, R., 1987, Homogeneous intermediate skies as simulating models for unsteady state
daylight climates, Proceedings 21st CIE Session, Venice, La Scientifica.

Krockmann, E, 1991, Sky Scanner: photometer for sky luminance distribution
measurement manual, PRC Krockmann GMBH, Berlin., PRC Krockmann GMBH, Berlin.

Lawson, C., 1977, Software for C1 Surface Interpolation, in Rice J. R. (ed), Mathematical
Software III, Academic press, NY, pp161-194.

Littlefair, P, 1981, The Luminance Distribution of an Average Sky, Lighting Research and
Technology, vol 13, no 4, pp192-198.

Marland, B., 1991, The daylighting climate of Zambia: a bias for daylighting design in
tropical regions, Proceedings 22nd CIE Session, Melbourne, Australia.

Matsuura, K., 1987, Luminance distributions of various reference skies, CIE Committee
TC 3-09, Draft Report.

Nakamura, H. and Oki, M. and Iwata, T., 1987, Mathematical Description of the
Intermediate Sky, Proceedings 21st CIE Session, Venice, La Scientifica, pp230-31.

Nakamura, H. and Oki, M., 1986, The mean sky composed taking into account the relative
sunshine duration, International Daylighting Conference, Long Beach, Ca, ASHRAE,
Atlanta.

Navvab, M., Karayel., Ne'eman, E. and Selkowitz, S., 1984, Analysis of turbidity for
daylight calculations, Energy and Buildings, vol 6, pp293-303.

Perez, R., Michalsky, J. J. and Seals, R., 1991, Evaluation of algorithms for sky luminance
distribution: prospects for performance improvements, proceedings ISES World Congress,
Denver.

86

Perez, R., Seals, R. and Michalasky, J., 1992, An All-weather model for sky luminance
distribution, Proc. of ASES Annual Meeting, Cocoa Beach Florida, and Solar Energy (in
press).

Perez, R., Seals, R., Michalasky, J. and Ineichen P., 1992, Geostatistical properties and
Modelling of Random Cloud Patterns for Real Skies, (Submitted to Solar Energy).

Reid, G. B., Roy, G. G. and Ruck, N., 1992, Modelling the Sky: A Proposed Standard
Form, Proceedings Annual Research Conference, Department of Computer Science, The
University of Western Australia.

Ruck, N., Roy G. G. and Reid G. 1993, Modelling the Sky - A Standard Digital Form,
Proceedings, 3rd International Conference, International Building Performance Association,
Adelaide, 16th-18th Aug, pp525-531

Scartezzini J-L, 1994, Recent Progress in Daylighting, Proceedings of the International
Workshop on Daylight in Buildings, University of Sydney, Nov 18-19.

Sloan, S. W.,, 1991, A Fast Algorithm for Generating Constrained Delaunay
Triangulations, Research Report, No 065.07.1991, University of Newcastle, July.

Tregenza, P., 1987, Subdivision of the Sky Hemisphere for Luminance Measurements,
Lighting Research and Technology, Vol 19, pp13-14.

Watson, D. F., 1981, Computing the n-Dimensional Delaunay Triangulation with
Application to Voronoi Polytypes, The Computer Journal, vol 24, pp167-172.

Wegner, J., 1975, Berechnung der mittleren Beleuch- tungsstarke durch Tageslicht in
Innenraumen auf der Grundlage der mittleren Leuchtdichteverteilung des Himmels,
Dissertaion Technical University, Berlin.

Winkelmann, F. C. and Selkowitz, S., 1985, Daylighing Simulation in the DOE-2 Building
Energy Analysis Program, Energy and Buildings, vol 8, pp271-286.

Winkelmann, F. C., Birdsall, B. E., Buhl, W. F., Ellington, K. L., Erdam, A. E., Hirsch, J. J.
and Gates S., 1993, DOE-2 Supplement, Version 2.1E, Lawrence Berkeley Laboratory,
Report No. LBL-34947.

87

Publications from the Project

Ruck, N., Roy G. G. and Reid G., 1993, Modelling the Sky - A Standard Digital Form,
Proceedings, 3rd International Conference, International Building Performance Association,
Adelaide, 16th-18th Aug, pp525-531.

Roy, G. G., Ruck, N., Reid, G. and Julian, W., 1995, Modelling the Sky for Luminance,
Lighting Research and Technology (forthcoming).

Roy, G. G., Ruck, N. and Winkelmann, F, 1995, New Modelling Technologies for Sky
Luminance, Proceedings 23rd CIE Session, New Delhi (forthcoming).

Roy, G. G., Ruck, N. and Winkelmann, F., 1994, A Digital Modelling Strategy for Sky
Luminance, Proceedings International Workshop on Daylighting in Buildings, University of
Sydney, Nov.

Reid, G., 1995, Contouring and Representation of Discontinuous Surface Models, MSc
Thesis, The University of Western Australia (forthcoming).

88

Appendix A. Various Formulae

This section contains a summary of the various key formulae used in the SDF functions.
Please note that not all computational situations are reflected here, for example where
altitude angles are in the range π/2 to π . Also, the distinction between angles measured in
degrees and radians is not always made explicit.

Sun Position

In order to calculate the position of the sun, we need the time and date, as well as the
latitude, longitude and reference longitude of the location.

Solar declination is the altitude angle between the sun position and the equatorial plane. the
equation of time represents the difference (in seconds) between clock time and solar time
due to purtibations in the earth's orbit around the sun. The formulae for solar declination
and the equation of time is as proposed by Carruthers, Uloth and Roy [Carruthers et al,
1990] are given by:

δs = 0.322003 − 22.9711cos t + 3.94638sint

− 0.357898cos 2t + 0.019334sin 2t
− 0.143980 cos3t + 0.059280sin3t

where:

t = 2π⋅J
366

and

ET = 5.0323 − 430.847cos t + 12.5024cos2t + 18.25cos3t

− 100.976sint + 595.275sin2t + 3.6858sin3t
− 12.47sin 4t

where:

t = 2π⋅J
366

+ 4.8718

The hour angle (ξ) is the azimuth angle between the sun position and the solar noon.

89

TST = (LTh − 12) ⋅60 + LTm + ET
60

ξ = TST
4

+ λ− λTZ

The position of the sun can now be calculated from:

sin(γs) = sin(δs)⋅sin(ϕ) + cos(δs) ⋅cos(ϕ) ⋅cos(ξ)

cos(α s) = sin(δs)⋅cos(ϕ) − cos(δs) ⋅sin(ϕ) ⋅cos(ξ)
cos(δs)

where α is the azimuth angle (measured from north towards the east), and γ is the altitude
angle (measured up from the horizon).

The angle between the sun and any point on the sky dome is given by:

θ = sinγ⋅sinγs + cosα ⋅cosαs ⋅cos(α − α s)

Normal Incident Extraterrestrial Irradiance

Eesh = 1367 1 + 0.0334 cos(n − 3.5) + 0.000721cos(2n − 6.9) − 0.000023cos(3n − 10.15)()

where

n = 360J
365

CIE Standard Overcast Sky (CIE, 1990)

The luminance at the point (α,γ) by the formula:

Lγ= LZ (1 + 2sin γ)
3

and with

LZ =123 + 8600sin γ

90

CIE Standard Clear Sky (CIE, 1973)

The luminance at the point (α,γ) by the formula:

L(α , γ) = LZ (1 − e − 0.32 sec γ)⋅(0.91 + 10e − 3θ + 0.45cos 2 θ)
(1 − e − 0.32)⋅(0.91+ 10e − 3εs + 0.45cos2 εs)

where:

L(α,γ) is the luminance at (α,γ)

θ is the angle between the point at (α,γ) and the sun

εs is the zenith angle of the sun

and with

b = γ+ 85
39.5e − ω + 47.4

+ 0.1 + (16 + 0.22ω) ⋅T

LZ = (1340b − 3460)⋅tan γ+ 100b + 900

where:
ω is the atmospheric moisture content (taken as 1.21 cm)

T is the turbidity (taken as 0.12)

CIE Intermediate Sky

The luminance at the point (θ,φ) is given by the formula:

L(α , γ) = AeBθ

LZ

with

91

A = 0.43 γ+ 4.799 + 1.35(sin(3.59γ− 0.009) + 2.31()⋅sin(2.6γ+ 0.316))

B = − 0.563 (γ+ 1.059)⋅(γ− 0.008) + 0.812()

and

LZ = 0.988 sin(2.60γ+ 0.316) + 2.772)()⋅e
1. 481(γ+ 0.301)⋅(γ− π

2
)

Perez All-Weather Model (Perez, et al, 1992)

The luminance at the point (α,γ) by the formula:

L(α , γ) = LZ (1 + AeBsec γ)⋅(1 + CeDθ + E cos2 θ)
(1 + AeB)⋅(1 + CeDεs + Ecos 2 εs)

where:

L(α,γ) is the luminance at (α,γ)

θ is the angle between the point at (α,γ) and the sun

εs is the zenith angle of the sun

A,B,C,
D & E are the insolation coefficients as described below:

The Perez All-Weather model consists of a generalization of the CIE Standard Clear Sky
with several adjustable coefficients, whose values represent the insolation conditions of the
sky. The effect of each coefficient on the sky luminance distribution is outlined below.

Coefficient a determines the amount of darkening (>0) or brightening (<0) of the horizon
with respect to the zenith. The magnitude of the horizon-zenith gradient is proportional to
the value of A

Coefficient B controls the luminance gradient near the horizon. The larger the negative
value of B the thicker the area of the horizon effected by E will be.

The relative intensity of the circumsolar region is proportional to the magnitude of A

92

The width of the circumsolar region is determined by D The larger the negative value of D
the thinner the circumsolar region affected by Cwill be.

Coefficient e accounts for the relative intensity of backscattered light received.

The CIE Standard Clear Sky can be obtained by assigning:

A = -1
B = -0.32
C = 10
D = -3
E = 0.45

In order to calculate the insolation coefficients we need to know the sky clearness (η) and
brightness (∆) and the solar zenith angle (Z).

η =

Eed + Ees

Eed

+ 1.041εs
3



 




1 + 1.041εs
3()

∆ = mEed

Ees0

where:

Eed is the horizontal diffuse irradiance
Ees is the normal incident direct irradiance
Ees0 is the normal incident extraterrestrial irradiance

m is the optical air mass

The coefficients can then be calculated from the following tables using the following
formulae:

X = X1(η) + X2(η)εs + ∆ X3(η) + X4 (η)εs()

There are two exceptions to this formula for coefficients C and D in the first ε interval:

93

C = e ∆(C1ε s + C2)()C3

− C4

D = − e∆(D1εs + D2) + D3 + ∆D4

∆ 1.000 1.065 1.230 1.500 1.950 2.800 4.500 6.200

A1 1.3525 -1.2219 -1.1000 -0.5484 -0.6000 -1.0156 -1.0000 -1.0500

A2 -0.2576 -0.7730 -0.2515 -0.6654 -0.3566 -0.3670 0.0211 0.0289

A3 -0.2690 1.4148 0.8952 -0.2672 -2.5000 1.0078 0.5025 0.4260

A4 -1.4366 1.1016 0.0156 0.7117 2.3250 1.4051 -0.5119 0.3590

B1 -0.7670 -0.2054 0.2782 0.7234 0.2937 0.2875 -0.3000 -0.3250

B2 0.0007 0.0367 -0.1812 -0.6219 0.0496 -0.5328 0.1922 0.1156

B3 1.2734 -3.9128 -4.5000 -5.6812 -5.6812 -3.8500 0.7023 0.7781

B4 -0.1233 0.9156 1.1766 2.6297 1.8415 3.3750 -1.6317 0.0025

C1 2.8000 6.9750 24.7219 33.3389 21.0000 14.0000 19.0000 31.0625

C2 0.6004 0.1774 -13.0812 -18.3000 -4.7656 -0.9999 -5.0000 -14.5000

C3 1.2375 6.4477 -37.7000 -62.2500 -21.5906 -7.1406 1.2438 -46.1148

C4 1.0000 -0.1239 34.8438 52.0781 7.2492 7.5469 -1.9094 55.3750

D1 1.8734 -1.5798 -5.0000 -3.5000 -3.5000 -3.4000 -4.0000 -7.2312

D2 0.6297 -0.5081 1.5218 0.0016 -0.1554 -0.1078 0.0250 0.4050

D3 0.9738 -1.7812 3.9229 1.1477 1.4062 -1.0750 0.3844 13.3500

D4 0.2809 0.1080 -2.6204 0.1062 0.3988 1.5702 0.2656 0.6234

E1 0.0356 0.2624 -0.0156 0.4659 0.0032 -0.0672 1.0468 1.5000

E2 -0.1246 0.0672 0.1597 -0.3296 0.0766 0.4016 -0.3788 -0.6426

E3 -0.5718 -0.2190 0.4199 -0.0876 -0.0656 0.3017 -2.4517 1.8564

E4 0.9938 -0.4285 -0.5562 -0.0329 -0.1294 -0.4844 1.4656 0.5636

Harrison Sky Model (Harrison, 1991)

The luminance at the point (α,γ) by the formula:

L(α , γ) = LZ ⋅C 0.40 + 0.21(90 − γ) + 0.27cosγc + 1.45e − 2. 41θ()

+ (1 − C) (1.28 + 147e − 11.1θ + 4.28cos 2θ ⋅cos(90 − γ))⋅ 1 − e
− 0.42
cosγc




 


 ⋅ 1 − e

− 0.67
cos γc




 














where

94

C is the cloud cover (octas)
T is the turbidity (= 3.2)

and

LZ = (1340T − 3460) ⋅tanγ+ 100T + 900

γc = π
2

− γ

BRE Average Sky Model (Littlefair, 1981)

The luminance at the point (θ,φ) by the formula:

L(α , γ) = Ae
− 2θπ

9 + B
5 − 2sin γ

3

with

A = 100 + 420γ− 700sin(7.2γ)

B = 9
11π

(300 + 434γ− 4.2γ2)

Nakamura Intermediate Sky Model (Nakamura et al, 1987)

The relative luminance at the point (α,γ) is given by:

Lrin γs ,γ,θ() =
L γs ,γ,θ()

L γs , π
2 , π

2 − γs()
where

L γ, γ,θ() = AeBθ

A = 0.43 γ+ 1.4799 + 1.35 sin(3.59γ− 0.009()+ 2.31()⋅sin 2.60γs + 0.316())
B = − 0.563 γ+ 1.059()γs − 0.008()+ 0.812()
L(γs , π

2 , π
2 − γs) = 0.988 sin 2.60γs + 3.16()+ 2.772()()⋅e 1.481γs + 0.301()γs − 1.571()

where γs is the solar altitude.

95

Appendix B. Commonly Used SDF Parameter Types

Parameter Description Items included Name Format

Source of data text description "src" "%s"

Site description long°, long', lat°, lat',ref_long° "site" "%d%c%d%c%d
"

Time specification year, month, day, hour, minute "time" "%c%c%c%c%c"

Number of contour intervals number of contours "num" "%c"

Cloud coverage cloud coverage in octas "octa" "%c"

Sun position az°, az', alt°, alt' "sun" "%c%c%c%c"

Iso-luminance contour set of polylines "iso" "%p"

Discontinutity edge set of polygons "edge" "%e"

The format symbols are:

%c a single byte value

%d a two byte value

%s a null terminated string of characters

%p iso-luminance contour (internal use only)

%e edge (internal use only)

96

Appendix C. Descriptions of SDF Functions

Included in Library sdf

SDF(3) C Library Functions SDF(3)

NAME
 sdf - standard digital form file format

DESCRIPTION
 The standard digital form is used as a means of representing
 models of the luminance of the sky from a variety of
 sources. A file is a (possibly empty) collection of sky
 models, where each model consists of a 2 byte quantity
 specifying the number of parameters in the model, followed
 by the parameters themselves.

 Each parameter is defined as follows:

 - A 2 byte quantity specifying the size of the parameter.

 - size bytes containing a unique key used to identify the
 parameter, and the parameter data.

 It is the responsibility of the user to know the exact for-
 mat of each parameter. However, a number of standard param-
 eters are already defined:

 <site> ::= site <longitude> <latitude> <reference longitude>

 <longitude> ::= <degrees> <minutes>

 <latitude> ::= <degrees> <minutes>

 <source> ::= src <source>

 <time stamp> ::= time <date> <time>

 <date> ::= <year> <month> <day>

 <time> ::= <hours> <minutes>

 <sun position> ::= sun <azmiuth> <altitude>

 <azimuth> ::= <degrees> <minutes>

 <altitude> ::= <degrees> <minutes>

 <contour list> ::= iso <size> { <contour> }

 <contour> ::= <level> <size> { <point> }

 <point> ::= <azimuth> <altitude>

 <edge list> ::= edge <size> { <edge> }

 <edge> ::= <level> <size> { <point> }

97

 <point> ::= <internal> <external> <azimuth> <altitude>

SEE ALSO
 sdfOpenFile(3), sdfCloseFile(3), sdfLoadModel(3),
 sdfStoreModel(3)

AUTHOR
 Graeme Reid <graemer@cs.murdoch.edu.au>

98

SDF(3) C Library Functions SDF(3)

NAME
 sdfCreateModel, sdfFreeModel, sdfFreeIsoline - create, or
 free a standard digital model

SYNOPSIS
 #include <sdf.h>

 cc [flag ...] file ... -lsdf -lm [library ...]

 Model sdfCreateModel()

 void sdfFreeModel(model)
 Model model;

 void sdfFreeIsoline(isoline)
 Isoline isoline;

DESCRIPTION
 sdfCreateModel() creates a new (empty) model and returns a
 pointer to be used to identify the model in subsequent
 operations.

 sdfFreeModel() releases the memory occupied by each of the
 parameters in the named model using free(). The contents of
 this model are then lost.

 sdfFreeIsoline() releases the memory occupied by an isoline
 parameter using free().

SEE ALSO
 free(3X), sdfGetParameter(3)

AUTHOR
 Graeme Reid <graemer@cs.murdoch.edu.au>

99

SDF(3) C Library Functions SDF(3)

NAME
 sdfLoadModel, sdfStoreModel - load or store a standard digi-
 tal model

SYNOPSIS
 #include <sdf.h>

 cc [flag ...] file ... -lsdf -lm [library ...]

 int sdfLoadModel(model,stream)
 Model model;
 FILE *stream;

 int sdfStoreModel(model,stream)
 Model model;
 FILE *stream;

DESCRIPTION
 sdfLoadModel() loads the parameters of the next standard
 digital model from the named stream in the named model.

 sdfStoreModel() stores a standard digital model to the named
 stream.

 Both sdfLoadModel() and sdfStoreModel() return 1 on success
 and 0 on failure.

SEE ALSO
 free(3X), sdfOpenFile(3), sdfCloseFile(3)

AUTHOR
 Graeme Reid <graemer@cs.murdoch.edu.au>

100

SDF(3) C Library Functions SDF(3)

NAME
 sdfOpenFile, sdfCloseFile - open or close a standard digital
 form data file

SYNOPSIS
 #include <sdf.h>

 cc [flags ...] file ... -lsdf -lm [library ...]

 FILE *sdfOpenFile(filename,mode)
 char *filename,*mode;

 void sdfCloseFile(stream)
 FILE *stream;

DESCRIPTION
 sdfOpenFile() opens the file named by filename using fopen()
 and associates a stream with it. If the open succeeds,
 sdfOpenFile() returns a pointer to be used to identify the
 stream in subsequent operations.

 sdfCloseFile() closes the named stream using fclose().

SEE ALSO
 fopen(3S), fclose(3S), sdfLoadModel(3), sdfStoreModel(3)

AUTHOR
 Graeme Reid <graemer@cs.murdoch.edu.au>

101

SDF(3) C Library Functions SDF(3)

NAME
 sdfPointLuminance, sdfAreaLuminance - calculate the sky
 luminance for a point or region on the sky dome

SYNOPSIS
 #include <sdf.h>

 cc [flags ...] file ... -lsdf -lm [library ...]

 int sdfPointLuminance(model,point)
 Model model;
 Point point;

 double sdfAreaLuminance(model,region,area)
 Model model;
 Point region;
 double *area;

DESCRIPTION
 sdfPointLuminance() returns the interpolated luminance at
 the specified point, for the given model.

 sdfAreaLuminance() returns the interpolated total luminance
 of the specified region, for the given model. The area
 parameter is set to the area of the specified region.

AUTHOR
 Graeme Reid <graemer@cs.murdoch.edu.au>

102

SDF(3) C Library Functions SDF(3)

NAME
 sdfSetParameter, sdfGetParameter, sdfDeleteParameter - set,
 get or delete a parameter from a standard digital model

SYNOPSIS
 #include <sdf.h>

 cc [flags ...] file ... -lsdf -lm [library ...]

 sdfSetParameter(model,key,format,...)
 Model model;
 char *key,*format;

 sdfGetParameter(model,key,format,...)
 Model model;
 char *key,*format;

 int sdfDeleteParameter(model,key)
 Model model;
 char *key;

DESCRIPTION
 sdfSetParameter() adds a parameter, identified by the key,
 to the named model. sdfSetParameter() converts and saves its
 args under control of the format. The format is a character
 string which contains two types of objects: plain charac-
 ters, which are simply saved to the parameter, and conver-
 sion specifications, each of which causes conversion and
 saving of zero of more args. The results are undefined if
 there are insufficient args for the format. If the format
 is exhausted while args remain, the excess args are simply
 ignored.

 Each conversion specification is introduced by a % charac-
 ter, followed by a conversion character. The meanings of
 the various conversion characters are defined as follows:

 c - Treat the argument as a (1 byte) character.

 d - Treat the argument as an (2 byte) integer.

 s - Treat the argument as a NULL terminated string.

 p - Treat the argument as a point list.

 e - Treat the argument as an edge list.

 % - Save a % character: no argument is converted.

 sdfGetParameter() retrieves a parameter, identified by the
 key, from the named model. The contents of the parameter are
 converted under the control of the format string, and the
 variables in the args list set accordingly.

 sdfDeleteParameter() deletes a parameter, identified by the
 key, from the named model.

 sdfSetParameter(), sdfGetParameter() and sdfDeleteParame-
 ter() return 1 if the named parameter existed before the
 operation, and 0 otherwise.

103

SEE ALSO
 sdfCreateModel(3), sdfLoadModel(3), sdfStoreModel(3)

AUTHOR
 Graeme Reid <graemer@cs.murdoch.edu.au>

104

SDF(3) C Library Functions SDF(3)

NAME
 sdfExtractInside, sdfExtractOutside - extract regions from a
 model

SYNOPSIS
 cc [flag ...] file ... -lsdfops -lsdf -lm [library ...]

 #include <sdf.h>
 #include <sdfops.h>

 Model sdfExtractInside(model)
 Model model;

 Model sdfExtractOutside(model)
 Model model;

DESCRIPTION
 sdfExtractInside() creates a new model from the given model
 containing only the regions inside a defined edge.

 sdfExtractOutside() creates a new model from the given model
 containing only the regions outside a defined edge.

 A region is defined to be any area of the sky enclosed by an
 edge. If the sky contains no edge information (other than
 the edge which defines the boundary of the sky dome) it is
 considered to be one region. Note that edges must be simple
 closed polygons.

SEE ALSO
 sdfOverlay(3)

AUTHOR
 Graeme Reid <graemer@cs.murdoch.edu.au>

105

SDF(3) C Library Functions SDF(3)

NAME
 sdfImport - import a measured or empirical model

SYNOPSIS
 cc [flag ...] file ... -lsdfops -lsdf -lm [library ...]

 #include <sdf.h>
 #include <sdfops.h>

 Model sdfImport(type,template,match,fp)
 int type;
 Model template;
 int *match();
 FILE *fp;

DESCRIPTION
 sdfImport() converts a measured or empirical model to stan-
 dard digital form and returns a pointer to the new model.
 type determines how the conversion is done. Currently sup-
 ported types are : Currently supported types are:

 STANDARD_DIGITAL_FORM - use sdfLoadModel to load a model in
 standard digital form.

 TEXT_FILE - convert a generic text file as defined below.

 PRC_SCANNER - convert a text output file from the PRC Kroch-
 man Scanner in Sydney.

 PEREZ_ALL_WEATHER - calculate the Perez All Weather sky
 based on the given weather file.

 CIE_CLEAR - calculate the CIE Clear sky.

 CIE_OVERCAST - calculate the CIE Overcast sky.

 HARRISON - calculate the Harrison sky.

 NAKAMURA - caluculate the Namkamura Intermediate sky.

SEE ALSO
 sdfCreateModel(3) sdfLoadModel(3)

AUTHOR
 Graeme Reid <graemer@cs.murdoch.edu.au>

106

Included in Library sdfops

SDF(3) C Library Functions SDF(3)

NAME
 sdfNormalise, sdfScale - scale the luminance values of a
 model

SYNOPSIS
 cc [flag ...] file ... -lsdfops -lsdf -lm [library ...]

 #include <sdf.h>
 #include <sdfops.h>

 Model sdfNormalise(model)
 Model model;

 Model sdfScale(model,scale)
 Model model;
 double scale;

DESCRIPTION
 sdfNormalise() creates a new model by scaling the given
 model in such a way that the zenith luminance is one. The
 zenith luminance is calculated by sdfPointLuminance() and
 then inverted and passed to sdfScale() along with the given
 model.

 sdfScale() creates a new model from the given model by scal-
 ing the luminance by the specified scale factor. This is
 equivalent to calling sdfProduct() with the given model and
 a uniform sky.

SEE ALSO
 sdfPointLuminance(3) sdfProduct(3)

AUTHOR
 Graeme Reid <graemer@cs.murdoch.edu.au>

107

SDF(3) C Library Functions SDF(3)

NAME
 sdfOverlay - place one model on top of another

SYNOPSIS
 cc [flag ...] file ... -lsdfops -lsdf -lm [library ...]

 #include <sdf.h>
 #include <sdfops.h>

 Model sdfOverlay(model1,model2)
 Model model1,model2;

DESCRIPTION
 sdfOverlay() combines two models by super-imposing the first
 model on top of the second in an opaque fashion. Any param-
 eters which occur in both the first and second models take
 on the value of the first model, with the exception of lumi-
 nance data. Where a region defined in the first model has
 luminance information, it will be used, but if there are
 regions which have no luminance data, they will be treated
 as transparent and replaced with data from the second model.
 This function is primarily designed to facilitate adding a
 region of cloud to an otherwise clear sky.

 A region is defined to be any area of the sky enclosed by an
 edge. If the sky contains no edge information (other than
 the edge which defines the boundary of the sky dome) it is
 considered to be one region. Note that edges must be simple
 closed polygons.

SEE ALSO
 sdfSum(3) sdfDifference(3) sdfProduct(3) sdfRatio(3)

AUTHOR
 Graeme Reid <graemer@cs.murdoch.edu.au>

108

SDF(3) C Library Functions SDF(3)

NAME
 sdfSum, sdfDifference, sdfProduct, sdfRatio - combine two
 models arithmetically

SYNOPSIS
 cc [flag ...] file ... -lsdfops -lsdf -lm [library ...]

 #include <sdf.h>
 #include <sdfops.h>

 Model sdfSum(model1,model2)
 Model model1,model2;

 Model sdfDifference(model1,model2)
 Model model1,model2;

 Model sdfProduct(model1,model2)
 Model model1,model2;

 Model sdfRatio(model1,model2)
 Model model1,model2;

DESCRIPTION
 These functions combine two models by performing an arith-
 metic calculation on the luminance data. As for the
 sdfOverlay() function, any parameters which occur in both
 the first and second models take on the value of the first
 model, with the exception of luminance data. This is com-
 bined arithmetically to produce the new luminance informa-
 tion. The operations used should be obvious from the name
 of each function. sdfRatio() avoids dividing by zero by
 first checking the luminance values. If no luminance value
 is defined for a region in the second model, the resulting
 luminance will also be undefined for this region.

SEE ALSO
 sdfOverlay(3)

AUTHOR
 Graeme Reid <graemer@cs.murdoch.edu.au>

109

Appendix D. Format for Text File Model Input

The Krockmann PRC sky scanner is a relatively common instrument so we have encoded its
particular data format into the SDF function library. Other scanners will undoubtably have
different data formats and would have to be encoded to suit each case. There is, however, a
general purpose formatting process which allows data from any source to be directly input
and then converted to SDF.

This is achieved via the text file input option which has the following format:

site 151 12 -33 54 150
time 92 7 7 12 0
iso 17
 0 0 1200
 0 45 1300
 0 90 1100
 0 135 900
 45 0 1100
 45 45 1300
 45 180 2500
 90 0 500
 90 45 600
 90 135 2500
 90 180 3000
135 0 700
135 45 800
135 45 800
135 135 2300
135 180 2800

The text file should contain at least:

• a site parameter description, ie longitude (deg), longitude (min), latitude (deg)
latitude (min) and reference longitude (deg).

• a time parameter description, ie year, month, day, hour, minute

• a isoline parameter, with the number of following lines. Each isoline point is defined
by azimuth and altitude angles (deg), and luminance value.

Optionally the text file can also include an edge which is used to either better define the
horizon boundary or to include a cloud/obstruction edge. In this case the edge must be a
closed polygon defined by pairs of azimuth-altitude values together with the inside and
outside luminance values. For the horizon edge the outside values are set as zero, eg.

110

site 151 12 -33 54 150
time 92 7 7 12 0
iso 17
 0 0 1200
 0 45 1300
 0 90 1100
 0 135 900
 45 0 1100
 45 45 1300
 45 180 2500
 90 0 500
 90 45 600
 90 135 2500
 90 180 3000
135 0 700
135 45 800
135 45 800
135 135 2300
135 180 2800
edge 0 9
 0 0 1200 0
 45 0 1100 0
 90 0 900 0
135 0 700 0
180 0 1000 0
 45 180 2500 0
 90 180 3000 0
135 180 2800 0
 0 0 1200 0

In this case the edge is of type 0 (ie the horizon edge) and contains 9 vertices (counting first
and last - which are the same point). An edge to define a discontinuity in the sky luminance
would be declared as a type 1 edge. Several type 1 edges may be included, but only one
type 0 edge.

To demonstrate this type of model development, we have been able to take data provided
the Nakamura Laboratory (Kyushu University) from scanner records on the 9th Jan 1994 at
Fukuoka, Japan (Latitude: 33° 31' N, Lat: 130° 29' E) at 0900 hours. The data was
prepared in the format described above, then imported into SKYMAP using the text file
option. The resulting SDF model is then built, and displayed as in Figure D.1.

111

Figure D.1: The SDF model formed from data from the Nakamura Laboratory

112

Appendix E. Programming AEM Models

Below is an example of the function required to implement a new AEM in the SDF
framework. The function must include an explicit description of the luminance model
(Harrison in this case). The program constructs the iso-luminance contours based on the
Tregenza grid of 145 points. The program also adds an horizon edge into the model to
facilitate interpolation near the horizon.

The required parameters (site, time, sun, and octa) are set before this function is called and
are passed in the sky model (model) included as the argument to the function. The new
parameters (iso and edge) are set in this function before the updates model is returned.

#include "sdfopsP.h"
#include "import.h"

/* -- *
 * harrison calculates a Harrison Sky for the site and *
 * time specified in the given model (template). *
 * -- */

Model harrison(
 Model template)
{
 Model model;
 Isoline isoline,

edge,
iso;

 Point point;
 int azi,azi_min,

alt,alt_min,
octa;

 double cloud,
alpha,
turbidity,
zenith,
cospsi,
vo,vc;

 isoline = grid();
 edge = (Isoline)Malloc(sizeof(struct _isoline));
 edge->value = (double)0;
 edge->point = border();
 edge->next = (Isoline)NULL;
 (void)sdfGetParameter(template,"edge","%e",&edge->next);
 model = sdfCreateModel();
 _combine_models(template,model);
 _sun_position(model);
 (void)sdfSetParameter(model,"src","%s","Harrison");

(void)sdfGetParameter(model,"sun","%c%c%c%c",&azi,&azi_min,&alt,&alt_min)
;
 (void)sdfGetParameter(model,"octa","%c",&octa);
 cloud = (double)octa / 8;
 turbidity = 3.2;
 zenith = (1340 * turbidity - 3460) * abs(tan(RADIANS(alt)))

113

+ 100 * turbidity + 900;
 for (iso = isoline ; iso != (Isoline)NULL ; iso = next(iso)) {

cospsi = sin(altitude(iso->point)) * sin(RADIANS(alt))
+ cos(altitude(iso->point)) * cos(RADIANS(alt))
* cos(azimuth(iso->point) - RADIANS(azi));

alpha = abs(M_PI / 2 - altitude(iso->point));
vo = 0.40 + 0.21 * RADIANS(abs(90 - alt))

+ 0.27 * cos(alpha) + 1.45 * exp(-2.41 * acos(cospsi));
vc = (1.28 + 147 * exp(-11.1 * acos(cospsi))

+ 4.28 * cospsi * cospsi * cos(RADIANS(abs(90 - alt))))
* (1 - exp(-0.42 / cos(alpha)))
* (1 - exp(-0.67 / cos(RADIANS(abs(90 - alt)))));

iso->value = zenith * (cloud * vo + (1 - cloud) * vc);
 }
 (void)sdfSetParameter(template,"iso","%p",isoline);
 sdfFreeIsoline(isoline);
 for (point = edge->point ; point != (Point)NULL ; point =
next(point)) {

cospsi = sin(altitude(point)) * sin(RADIANS(alt))
+ cos(altitude(point)) * cos(RADIANS(alt))
* cos(azimuth(point) - RADIANS(azi));

alpha = abs(M_PI / 2 - altitude(point));
vo = 0.40 + 0.21 * RADIANS(abs(90 - alt))

+ 0.27 * cos(alpha) + 1.45 * exp(-2.41 * acos(cospsi));
vc = (1.28 + 147 * exp(-11.1 * acos(cospsi))

+ 4.28 * cospsi * cospsi * cos(RADIANS(abs(90 - alt))))
* (1 - exp(-0.42 / cos(alpha)))
* (1 - exp(-0.67 / cos(RADIANS(abs(90 - alt)))));

point->value = zenith * (cloud * vo + (1 - cloud) * vc);
point->external = (double)0;

 }
 for (iso = edge ; next(iso) != (Isoline)NULL ; iso = next(iso)) {

if (iso->next->value == 0) {
 isoline = next(iso);
 iso->next = next(isoline);
 isoline->next = (Isoline)NULL;
 sdfFreeIsoline(isoline);
 break;
}

 }
 (void)sdfSetParameter(template,"edge","%e",edge);
 sdfFreeIsoline(edge);
 return(model);
}

114

Appendix F. CIE Terminology

Definitions of all terms and symbols commonly used in the study and practice of
illumination can be found in the International Lighting Vocabulary, 4th Edition., C.I.E.,
Pub. No. 17.4, 1987.

Solar Radiation

Electromagnetic radiation from the Sun.

Extraterrestrial Solar Radiation

Solar radiation incident at the outer limit of the Earth's atmosphere.

Solar Constant

Irradiance of extraterrestrial solar radiation perpendicular to the Sun's rays at mean Sun-
Earth distance: Eeo = 1367 W/m2

Direct Solar Radiation

That part of extraterrestrial solar radiation which as a single collimated beam reaches the
Earth's surface after selective attenuation by the atmosphere. If not stated otherwise, direct
beam radiation refers to radiation incident on a plane normal to the direction of incidence.

Diffuse Sky Radiation

Solar radiation which reaches the Earth as a result of being scattered by the air molecules,
aerosol particles, cloud and other particles of the atmosphere. If not stated otherwise,
diffuse sky radiation refers to radiation received on a horizontal plane from the whole
hemisphere.

Global Solar Radiation

Sum of direct beam radiation and diffuse sky radiation. If not stated otherwise global
radiation refers to radiation incident on a horizontal plane.

Reflected Solar Radiation

Global solar radiation reflected from the surface of the Earth and by any surface
intercepting that radiation.

Turbidity Factor (according to Linke)

Ratio of the vertical optical thickness of a turbid atmosphere to the vertical optical thickness
of a clean and dry atmosphere (Rayleigh atmosphere), as related to the whole solar
spectrum:

T L = δ
δR

= δR + δA + δZ + δW

δR

where

δR = optical thickness with respect to Rayleigh scattering and absorption of the aerosol
particles.

115

δA = optical thickness with respect to Mie scattering and absorption of the aerosol
particles.

δZ = optical thickness with respect to ozone absorption.

δW = optical thickness of the atmosphere with respect to water vapour absorption..

Optical thickness of the atmosphere

Quantity defined by the formula

δ(ε) = -ln (φ'e/φe)

where φe is the radiant flux of a collimated beam entering the upper limit layers of the
atmosphere at an angle ε to the vertical and φ'e the attenuated radiant flux of that beam
reaching the surface of the Earth.

Relative Optical Air Mass

Ratio of the slant optical thickness to the vertical optical thickness of the atmosphere:

m = δ(ε)
δ(o)

where: ε = zenith angle, and o = in zenith

Daylight

Visible part of global solar radiation. Daylight is the sum of sunlight and skylight.

Sunlight

Visible part of direct solar radiation.

Skylight

Visible part of diffuse sky radiation.

Global Illuminance

Illuminance from the sun and sky received on a horizontal plane from the whole hemisphere
unless stated otherwise.

Diffuse Illuminance

Illuminance from the sky received on a horizontal plane from the whole hemisphere unless
stated otherwise.

CIE Standard Overcast Sky

Completely overcast sky for which the ratio of its luminance Lγ at an angle of elevation γ
above the horizon to the luminance Lz at the zenith is assumed to be given by the relation :

116

Lγ= LZ (1 + 2sin γ)
3

CIE Standard Clear Sky

Cloudless sky for which the relative luminance distribution is described in Publication CIE
No. 22 (TC.4.2) 1973.

Total Cloud Amount

Ratio of the summated solid angles subtended by clouds to the solid angle 2π steradians of
the whole sky.

Sunshine Duration

The sum of time intervals within a given time period (hour, day, month, year) during which
the irradiance from direct solar radiation on a plane normal to the sun direction is equal to
or greater than 120 W/m2 (about 18,000 lx).

Note: This irradiance is the minimum required to produce a burned trace on the
standardized card of International Reference Sunshine Recorder (IRSR) of the World
Meteorological Organization (WMO).

Astronomical Sunshine Duration

The sum of time intervals within a given time period during which the sun is above an even,
unobscured horizon.

Possible Sunshine Duration

The sum of time intervals within a given time period during which the sun is above the real
horizon which may be obscured by mountains, buildings, trees etc.

Relative Sunshine Duration

Ratio of sunshine duration to possible sunshine duration within the same time period.

Window Factor

Ratio of the average vertical illuminance on the window plane from the sky and the ground
to the total outdoor illuminance on a horizontal plane.

Daylight Factor

Ratio of the illuminance at a point on a given plane due to the light received directly or
indirectly from a sky of assumed or known luminance distribution, to the illuminance on a
horizontal plane due to an unobstructed hemisphere of this sky. Direct sunlight is excluded
in both illuminances.

Note: When calculating the lighting of interiors, the contribution of direct sunlight must be
considered separately.

Sky Component of the Daylight Factor

Ratio of that part of the illuminance at a point on a given plane which is received directly
from a sky of assumed or known luminance distribution, to the illuminance on a horizontal

117

plane due to an unobstructed hemisphere of this sky. Direct sunlight to both illuminances is
excluded.

Externally Reflected Component of the Daylight Factor

Ratio of that part of the illuminance at a point on a given plane in an interior which is
received directly from external reflecting surfaces, illuminated directly or indirectly by a sky
of assumed or known luminance distribution, to the illuminance on a horizontal plane due to
an unobstructed hemisphere of this sky. Direct sunlight to both illuminances is excluded.

Internally Reflected Component of the Daylight Factor

Ratio of that part of the illuminance at a point on a given plane which is received directly
from internal reflecting surfaces, illuminated directly or indirectly by a sky of assumed or
known luminance distribution, to the illuminance on a horizontal plane due to an
unobstructed hemisphere of this sky. Direct sunlight to both illuminances is excluded.

Obstruction

Surfaces outside the building which obstruct the direct view of the sky from the reference
point.

Daylight Opening

Area (glazed or unglazed) which is capable of admitting daylight to an interior.

Window

Daylight opening on a vertical or nearly vertical area of a room envelope.

Rooflight

Daylight opening on a roof or on a horizontal surface of the building.

Shading device

Device to obstruct, reduce or diffuse the penetration of solar radiation.

Total Transmittance of Glazing Material

Sum of radiant transmittance (τe) of the glazing and secondary heat gain (qi) of the
glazing to the interior by long wave IR radiation of the absorbed energy and by convection.

g = τe + qi

118

Appendix G. CIE Standard Symbols

The following subscripts should be used for sun, skylight or radiation

Radiant quantities - e
Luminous quantitites - v
Direct sun - s
Extraterrestrial - o
Global - g
Diffuse - d
Clear sky - cl
Overcast sky - oc
Average sky - av
Partly cloudy sky - pc
A tilted surface - (αk, γk)
A horizontal surface (γk = 0o) - h
A vertical surface (γk = 90o) - v
_
aR - Mean extinction coefficient for dry and clean air (Rayleigh scattering)

aD - Extinction coefficient for aerosol

a'D - Decadic extinction coefficient for aerosol

α - Azimuth angle (deg) (Note: specify how it is
measured)

αk - Azimuth angle of the normal to a surface (deg)
(Note: specify how it is measured)

B - Decadic turbidity coefficient (according to Schuepp)

β - Turbidity coefficient (according to Angstrom)

γ - Altitude above the horizon (deg)

γk - Angle of slope of a surface from the horizon (deg)

γs - Altitude of the sun above the horizon (deg)

δ - Optical thickness of the atmosphere

δs - Angle of the solar declination (deg)

D - Daylight factor

Ds - Sky component of the daylight factor

De - Externally reflected component of the daylight factor

Di - Internally reflected component of the daylight factor

Ee - Irradiance (W/m2)

Eeav - Irradiance from an unobstructed average sky
on a given surface (W/m2)

119

Eecl - Irradiance from an unobstructed clear sky
on a given surface (W/m2)

Eesh - Irradiance from direct sun radiation on a horizontal surface (W/m2)
Eesv - Irradiance from direct sun radiation on a vertical surface (W/m2)

Eeg - Global irradiance (W/m2)

Eeo - Solar constant for the mean distance of the earth from the sun
(1367 W/m2)

Eeo - Extraterrestrial irradiance (W/m)2

Eeoc - Irradiance from an unobstructed overcast sky on a given surface
 (W/m2)

Ees - Irradiance from direct sun radiation on a given surface (W/m2)

Ees(αk,γk) - Irradiance from direct sun radiation on a tilted surface (W/m2)

Ev - Illuminance (lx)

Evav - Illuminance from an unobstructed average sky
on a given surface (lx)

Evcl - Illuminance from an unobstructed clear sky on a given surface (lx)

Evd - Diffuse illuminance on a given surface (lx)

Evdh - Diffuse illuminance on a horizontal surface (1x)

Evg - Global illuminance on a given surface (lx)

Evo - Sunlight constant (klx)

Evoc - Illuminance from an unobstructed overcast sky
on a given surface (lx)

Evs - Illuminance from direct sunlight
on a given surface (lx)

Evsh - Illuminance from direct sunlight on a horizontal surface (lx)

Evs(αk,γk) - Illuminance from direct sunlight on a tilted surface (lx)

Evr - Reflected illuminance (lx)

ET - Equation of time

ε - Angular distance from the zenith (deg)

εs - Angular distance of the sun from the zenith (deg)

f - Window factor

ϕ - Geographical latitude of a station (deg)
(positive north of the equator, negative south of the equator)

120

λ - Geographical longitude of a station (deg(h))
(negative value east of Greenwich, positive value west of Greenwich)

λTZ - Geographical longitude of standard meridian for
time zone (TZ)(deg(h))(negative value east of Greenwich,
positive value west of Greenwich)

GMT - Greenwich mean time (TU) (h)

z - Height of station above sea level (m)

He - Radiant exposure (Wh/m2)

J - Day of year (1=January 1. 365 = December 31)

Ko - Luminous efficacy of extraterrestrial radiation (lm/W)

Kcl - Luminous efficacy of clear-sky radiation (lm/W)

Kg - Luminous efficacy of global radiation (lm/W)

Koc - Luminous efficacy of overcast sky radiation (lm/W)

Ks - Luminous efficacy of direct solar radiation at ground level (lm/W)

LCT - Local clock time (h), LCT = LT + summer time correction

Le - Radiance (Wsr-1 m-2)

Le (ε,α) - Radiance of a sky element at angle ε and azimuth α (W sr-1,m-2)

Lez - Radiance of the sky at the zenith (W/sr,m2)

Lv - Luminance of the sky (cd/m2)

Lv(ε,α) - Luminance of a sky element at angle ε from the zenith
and azimuth α (cd/m2)

Lvz - Luminance of the sky at the zenith (cd/m2)

LT - Local time (h,min) LT = GMT + TZ

LTh - Local time (hours)

LTm - Local time (minutes)

m - Relative optical air mass

md - Relative aerosol mass

ρ - Reflectance (of the ground) (%)

R - Actual distance of the earth from the sun (km)
_
R - Annual average distance of the earth from the sun (km)

Recl - Irradiance ratio for a clear sky (%)
Recl = Eecl(αk,γk)/Eeclh

121

Reoc - Irradiance ratio for an overcast sky (%),
Reoc = Eeoc(αk,γk)/Eeoch

Rvcl - Illuminance ratio for a clear sky (%),
Rvcl = Evcl(αk,γk)/Evclh

Rvoc - Illuminance ratio for an overcast sky (%)
Rvoc = Evoc (αk,γk)/Evoch

σrel - Relative sunshine duration (%), s = S/So

σd - Monthly mean daily relative sunshine duration (%)

σh - Monthly mean hourly relative sunshine duration (%)

σm - Monthly mean relative sunshine duration (%)

S - Actual sunshine duration (h,min)

Sd - Monthly mean daily sunshine duration (h,min)

Sh - Monthly mean hourly sunshine duration (min)

Sdm - Monthly mean sunshine duration (h,min)

So - Length of the day (Astronomical sunshine duration (h,min)

Tc - Correlated color temperature (K)

TL - Turbidity factor (according to Linke)

Til - Illuminance turbidity factor

tsr - Time of sunrise (h,min)

tss - Time of sunset (h,min)

TLT - True local time (h,min)

TST - True solar time (h,min) TST = LT + λ + ET

TZ - Time zone (h,min)

ξ - Solar hour angle

τ - Transmittance (%)

θ - Angle between a sky element and the sun (deg)

w - Water vapor content of the atmosphere (cm)

