
APPLICATION OF THE SPARK KERNEL

Edward F. Sowell1, Michael A. Moshier2
1Department of Computer Science, California State University, Fullerton

Fullerton California, 92834 USA
sowell@fullerton.edu

2Department of Mathematics and Computer Science, Chapman University
Orange, California 92866 USA

ABSTRACT
In the mid 1980s the monolithic nature of building
energy simulation programs led to proposals for
development of so-called "kernel systems," i.e.,
software environments that would make available to
developers basic software modules and a supporting
framework that could be used to construct new
building simulation software. One of the outcomes of
the ensuing work was the Simulation Problem
Analysis and Research Kernel (SPARK). Although
the current SPARK release can be viewed as a
limited realization of the kernel idea, it falls short in
that the internal methods can only be accessed within
the context of a SPARK executive. This paper
discusses two new ways in which the SPARK
internal methods can be employed by model
developers, leading to a fuller realization of the
kernel system idea. First, a new facility called
SPARK Model Functions is described that allows the
SPARK internal methods to be used to create
subsystem models of arbitrary size and complexity
that can be called by foreign executive programs.
Second, a new feature called Multivalued Objects
allows easy and efficient integration of legacy models
written in procedural languages into SPARK models.
Together, these new features provide an Application
Programmer's Interface (API) that better exposes "the
K in SPARK" to the software developer.

BACKGROUND
In 1985 a meeting was convened at the Lawrence
Berkeley National Laboratory (The Berkeley Lab) to
consider the state of the building energy system
simulation art, with the intent of establishing a
direction toward a new generation of such software.
Proposals advanced there held that what was needed
was not development of another, all encompassing
computer program, but rather a collection of the body
of essential, software-expressed, building modeling
technology in a framework that could be used by any
software developer to easily assemble new programs
to meet both general and specific building simulation
needs. This was referred to as the Energy Kernel
System (EKS) (Clarke 1986). Subsequently the UK
sponsored development of a prototypical EKS, the
outcome of which was summarized by Clarke at the
IBPSA Building Simulation '93 Conference (Clarke

and MacRandal 1993). In the US a parallel effort,
initially called the US/EKS, resulted in a prototypical
software system called SPANK (Simulation Problem
ANalysis Kernel) (Sowell, Buhl et al. 1986).

Although both the UK EKS and SPANK emerged
from the same Energy Kernel idea, these efforts took
radically different approaches. The UK EKS can be
characterized as object oriented with the objects
typically being large procedural modules stored in a
database and assembled by the user, along with a
solver. Internally these models are expressed in
vector-matrix form and the solver incorporates sparse
techniques for efficient solution. The US approach,
which is now known as SPARK (Simulation Problem
ANalysis and Research Kernel), works at a lower
level, with objects representing individual equations
assembled into a network representing the entire
problem.1 The problem network is mapped onto a
mathematical graph internally, and graph algorithms
are used to automatically determine an efficient
solution sequence. Working directly with individual
equations has several attractions, including
accommodation of an input/output free, non-
algorithmic modeling paradigm. Input/output free
means that variables which are to be inputs and those
which are to be calculated need not be specified a
priori. Non-algorithmic (also know as declarative)
programming means that the solution sequence is
determined automatically rather than being specified
by the modeler. The progress of these two different
Kernel Systems has been reported regularly in the
IBPSA conference series and elsewhere. The most
up-to-date information on the UK project is available
at
http://www.bitd.clrc.ac.uk/Activity/ACTIVITY=EKS
while that of SPARK is available at
http://simulationresearch.lbl.gov/.

In the current release, SPARK can be described as a
stand-alone program comprising a solver engine and
a user interface for describing the physical system to
be simulated. Three choices of user interface are
available: the text based SPARK network description

1 Since its objects do not support inheritance,
SPARK is more properly called "object-based" rather
than object oriented.

1 1

http://www.bitd.clrc.ac.uk/Activity/ACTIVITY=EKS
http://simulationresearch.lbl.gov/

language, and two different graphical user interfaces,
namely Ayres Sowell Associates (ASA) WinSPARK,
and the Berkeley Lab Visual SPARK. By any of these
interfaces users can describe physical systems for
simulation with a great deal more flexibility than is
possible with monolithic, whole-building simulators,
and solve them with more sophisticated symbolic and
numerical techniques than are available in subroutine
based modular simulators such as TRNSYS (anon.
2000) or HVACSIM+ (Park, Clark et al. 1985). Thus
described, SPARK is an application program, rather
than a kernel system in the original sense.
Nonetheless, a software developer with a new notion
of how simulation models should be described can
translate that notion into a SPARK input language
file (or into an alternative, lower level problem
description file) and then use the SPARK input and
problem setup processor to generate an executable
solver. In this limited sense the release can also be
viewed as a realization of the kernel idea.

While the Kernel System idea continues to be
appealing, it is hard to argue that it has been widely
accepted. Although some of the technology
developed in the UK EKS project no doubt has found
its way into other software systems such as the ESPr
program (Clarke 2002), the EKS itself has not yet
been taken beyond the prototype stage (MacRandal
2002). And while SPARK has a small user
community one doubts that it has drawn many away
from the large communities using traditional modular
programs such as TRNSYS, and as yet has not been
integrated into any of the whole building programs as
originally hoped.2 At the same time, we continue to
see reports of new building simulation programs that
seem to start fresh in the representation and solution
of HVAC system models, apparently oblivious to the
EKS efforts. Assuming that the basic premise of
kernel system was and is correct, one cannot help but
wonder why this situation exists. It can be explained
in part by the natural creative urges on the part of
building simulation theorists and software
developers. But even so, one wonders if these
developers could not have expressed their creativity
in the overall architecture and interfaces of their new
applications, using the kernel system technology at
some (unseen and uninteresting) lower level. Since,
apparently, this has not often happened, it must be
that either the implementation of the kernel system
projects on both sides of the Atlantic were somehow
faulted, or they have been ill presented. If the former
is the case, little can be done. But if the latter is the
more correct assessment, it could be that if the EKS
and SPARK efforts had focused more on the Kernel,
and simple programmer's interfaces to it, rather than
on "all or none" software systems, other developers
might have used it to augment their own creative

projects. We believe that this is the case, and that the
problem can be corrected. That is, hope remains for
success of the energy kernel idea, not in stand-alone
programs but in Application Programmer's Interfaces
(APIs) to the underlying kernel system functionality.

2 Integration of SPARK with Energy Plus is planned
for release by The Berkeley Lab.

Thus in order to more fully realize the original
Energy Kernel System objectives, we seek to make
the SPARK internal methods directly accessible to
model developers. For one thing, we want developers
to be able to use these internal methods to create
system models, of arbitrary size and complexity,
which can be called by foreign executive programs.
This would allow SPARK models to be to be used in
the context of other simulation environments, and in
situations where the SPARK executive does not
accommodate special simulation needs. For
discussion purposes here we shall refer to this new
capability as SPARK Model Functions (SMF).

Situations also arise where a developer or analyst
wishes to use a model expressed in an algorithmic
language within a SPARK model. This comes up
where there is an existing, trusted model (sometimes
called legacy code) written in a procedural language,
e.g., FORTRAN, C, or C++, and time or other factors
argue against re-implementation as an equation-based
SPARK macro class. Or, there may be small sets of
equations within a system that are numerically
problematic for a global solver, but which can be
reliably solved simultaneously with well-known
procedural algorithms. In both of these situations
there are multiple equations being solved for multiple
variables simultaneously within the subsystem
model. This is in contrast to the normal SPARK
policy of breaking subsystems (macro objects) into
the constituent individual equations and variables to
be solved globally. To better accommodate such
subsystem models, there is a need for SPARK to
accept subsystem models that provide multiple values
back to the global solver, rather than the normal
single valued atomic objects. For discussion
purposes here we shall refer to this new capability as
Multi-Value Objects (MVOs).

We begin with a brief explanation of SPARK
internals. This is followed by an overview of the
SPARK modifications needed to implement SMFs
and MVOs, along with some example usage.

SPARK INTERNAL STRUCTURE AND
OPERATION
A SPARK problem is defined in terms of linked
objects using a textual network description language,
typically saved in a probName.pr file. This
description can be hierarchical, using macro objects
and macro ports.

As shown in Figure 1, the first processing step on a
SPARK problem file is parsing. The parser reads and
parses the probName.pr file and all class object files
referred to in the problem file, descending recursively

2 2

to parse all macro objects found in that file and its
dependencies. The output of the parser is the SPARK
setup file probName.stp. This is another textual
representation of the problem, but one in which all
macro objects and links have been resolved into their
atomic parts. That is, this is a "flat" problem
description rather than hierarchical, composed
entirely of atomic objects, each representing a single
equation. Links between these atomic objects
represent individual variables. In both the original
problem description (probName.pr) and the flat
description (probName.stp) links representing
variables with user specified values are marked as
inputs, comprising the input set; other links are the
problem unknowns that must be solved for, i.e., the
output set.

The next step, carried out by the SPARK setup
program, applies a series of graph-theoretic analyses
to determine the structure of the problem graph in
terms of strongly connected components, cycle cut
sets within these components, and topological
orderings. This establishes the order in which the
graph components must be processed during
numerical solution, and the visitation order of the
nodes within each component, leading to an efficient
overall problem computation sequence. Efficiency
derives from the reduction in size of simultaneous
solution sets.

A brief description of internal problem representation
in terms of C++ objects is necessary for better
understanding the extensions needed for SMFs and
MVOs. The computation sequence, as well as data
needed to support it, is expressed as a collection of
C++ object instantiations and initializations. The
C++ source language for these instantiations and
initializations are developed by the setup program
and saved in a file named probName.cpp. The most
important object in this file is an instance of a C++
class TSPARKProblem called myProblem that
embeds the entire problem solution sequence and
data. The numerical routines operate entirely on this
object to determine the output set from the given
input set.3

An important feature of SPARK is the non-
directionality of atomic (and macro) objects. That is,
there is no a priori designation of input and output
variables when a SPARK class is defined. This is
achieved by providing every atomic class with a set
of inverse functions so that, ideally, the object
equation could be used to solve for any single

variable appearing in the class equation. As part of
the problem definition the user identifies problem
inputs, and this allows the setup program to identify a
single variable to be solved for, and the
corresponding needed inverse function, at each
object. The aforementioned computation sequence is
in fact an array of pointers to these inverse functions,
and evaluation of the entire component is a matter of
stepping through this array and executing these
functions one by one. If the component being
processed has cycles the array is traversed repeatedly
until convergence. In order for this to work the
problem solver build process must be provided with
compiled code for each of these inverse functions.
Therefore setup also provides a list of the source files
for these inverse functions.

3 In the case of time varying inputs and/or dynamic
elements in the problem, this solution is done at
discrete times over the specified solution interval.
However, if the intention is to export a SMF for use
by a foreign executive that handles time
advancement, this aspect of SPARK processing can
be ignored.

Once setup has constructed the probName.cpp file, as
well as the list of source files for the required
SPARK inverse functions, all these files can be
compiled for linkage with the SPARK solver fixed
code, producing an executable solver program. The
user executes the solver program to get numerical
answers.

Figure 1 SPARK processing diagram.

The main() function of solver executable is the result
of compilation of a fixed main program that has the
basic structure shown below:
int main()
{
 …
 // Initializations
 myProblem.initialSolve();
 myProblem.Solve();
 // Final cleanup etc.
 return 0;
}

3 3

The myProblem object, which completely defines the
model to be solved, is instantiated globally in the
probName.cpp file, which is separately compiled and
linked with this fixed main program. The
initialSolve() member function of the
TSPARKProblem class carries out the numerical
solution of the problem, component by component, at
the specified initial conditions and generates
requested reports. The Solve() member function does
much the same, but includes a loop in which time is
advanced for dynamic simulations. Both of these
functions call a lower level function Evaluate() that
actually carries out the previously found solution
sequence. (The principle difference between
InitialSolve() and Evaluate() is that the former does
data input prior to calling Evaluate().)

SPARK MODEL FUNCTIONS
Starting with the basic ideas explained above, there
are several ways SPARK Model Functions might be
implemented. One way, implemented and described
by Curtil (Curtil 2002), provides an API consisting of
calling conventions for the needed SPARK internal
methods. Access to these methods enables a
developer to create multiple SPARK problems (in the
meaning discussed in the previous section) within a
single SPARK executable, and to write a customized
executive routine, replacing the standard SPARK
main() function. This greatly extends flexibility in
that each problem can be considered, in effect, as a
SMF even though they are not actual functions. These
can be executed in any order and sequence, as
determined by the developer's customized executive.
However, the approach does not allow the developer
to export functions in a form that can be linked into
completely different software. That is, one can only
use Curtil's SMFs within the SPARK framework.

Another way to implement SMFs requires a few
changes to existing SPARK fixed code, but allows
automatic generation of SMFs exportable as ordinary
C++ functions. With this approach, as with Curtil's,
the SPARK input language is used to express a
model of the system for which a solver function is
wanted, say mySystem. The standard parser and a
slightly modified setup programs are executed in the
usual manner to get the probName.cpp file and list of
needed inverses. Instead of compiling and linking
with main(), however, we compile a function called
mySystemSM() (where SM stands for System Model),
also generated by setup, that initializes system model
inputs from an argument input array and returns the
results to an argument output array. For example, if
our "system" were simply a mixer blending two
moist air streams the function would be
(approximately):4

4 Typically, a SMF would be much more complex,
involving many objects rather than only one.

int mixerSM(const double * in, double*
out)
{

 // initializations
 ...
 // Set the in arguments
 myProblem.SetValue("mEnt1", in[0]);
 myProblem.SetValue("TEnt1", in[1]);
 myProblem.SetValue("wEnt1", in[2]);
 myProblem.SetValue("mEnt2", in[3]);
 myProblem.SetValue("TEnt2", in[4]);
 myProblem.SetValue("wEnt2", in[5]);

 myProblem.Evaluate(); // Solve
 // Retrieve the results
 out[0] =
myProblem.GetValue("mLvg");
 out[1] =
myProblem.GetValue("TLvg");
 out[2] =
myProblem.GetValue("wLvg");
 out[3] =
myProblem.GetValue("hLvg");
 out[4] =
myProblem.GetValue("hEnt1");
 out[5] =
myProblem.GetValue("hEnt2");
 // Clean-up etc
 ...
 return 0;
}

Note that myProblem is the name of a
TSPARKProblem object representing the system
internally. We make use of the TSPARKProblem
GetValue() and SetValue() class member functions to
transfer argument values to and from myProblem,
and use the Evaluate() member function to solve it.
This mixerSM() function can then be compiled, along
with the atomic mixer object inverse mixer.cpp and
linked into a user library. The developer's application
program can then be linked with this library, allowing
the mixerSM() function to be called as needed.
Although this is a simple example, a system of any
size and complexity could be handled in the same
manner.

The limitation of the approach as described above is
that in standard SPARK the object named myProblem
is globally defined, meaning that only one system
model can be used in a particular simulation. That is,
you could not use both a mixerSM and a collectorSM
in a single application because there can be only one
myProblem.5

To get around this limitation we must make a few
small changes to the standard SPARK probName.cpp
file. The needed changes can be made either by

5 This is because SPARK was originally designed to
solve a single problem at a time.

4 4

modifying the setup program, or by post processing
the probName.cpp file.

The ability to have more than one instance of a
TSPARKProblem in a single simulation is achieved
with the namespace feature of C++. This feature
allows the programmer to define the scope of
identifiers. For example, suppose we write:
namespace MixerSM{
 TSPARKProblem myProblem;
…
}; // end MixerSM namespace
namespace CollectorSM{
 TSPARKProblem myProblem;
…
}; // end CollectorSM namespace

The C++ compiler can then distinguish between the
two usages of myProblem, so that two separate
objects are instantiated. The scope resolution operator
:: is used to distinguish them. The mixerSM()
function is then:
int mixerSM(const double * in, double*
out)
 ...
 actvPrb = &MixerSM::myProblem;
 actvPrb->Initialize(&MyRTControls
);
 // Set the inputs
 actvPrb->SetValue("mEnt1", in[0]);
 actvPrb->SetValue("TEnt1", in[1]);
 actvPrb->SetValue("wEnt1", in[2]);
 actvPrb->SetValue("mEnt2", in[3]);
 actvPrb->SetValue("TEnt2", in[4]);
 actvPrb->SetValue("wEnt2", in[5]);
 // Solve
 actvPrb->Evaluate();
 // Retrieve the results
 out[0] = actvPrb->GetValue("mLvg");
 out[1] = actvPrb->GetValue("TLvg");
 out[2] = actvPrb->GetValue("wLvg");
 out[3] = actvPrb->GetValue("hLvg");
 return 0;
} // end of mixerSM

Note that we assign the address of the
MixeSMr::myProblem object to a global
TSPARKProblem pointer so it can be accessed in
other SPARK internal functions as well as in the
mixerSM() function.

With this technique we can have any number of
SPARK Model Functions active in an application
program. We envision simulation software
developers using SPARK to implement component
and subsystem models in this manner, and compiling
and them into a dynamically linked library (DLL) for
use in their own over-all system models, thereby
gaining the advantages of SPARK's advanced model
description and solution techniques.

THE WINSPARK MODEL FUNCTION AND
LIBRARY GENERATORS
In this work the above idea was implemented by
modification of the SPARK setup program. The
probName.cpp file now contains the probNameSM()
function and a test driver main() that demonstrates
usage, in addition to the normal code. This code is
marked for conditional compilation so it can be
omitted when building a conventional SPARK
problem. A separate program called sparkMFG
(SPARK Model Function Generator) compiles
probName.cpp with flags set so as to produce
probNameSM.obj and the test driver
probNameSMDrv.exe. The SparkMFG program can
be executed from the command line:
C:\myProject\mixer> SparkMFG mixer <enter>

Or, the operation can be carried out within the
WinSPARK environment using the Generate model
as function choice on the Run command menu,
Figure 2.

Figure 2 WinSPARK Run menu

Also added to the Run menu is the choice Create
model library. When this is selected all system model
functions that have been generated for the current
project are compiled and linked into a Dynamic Link
Library (DLL)., which can be compiled and linked
(along with the SPARK solver DLL) into the
developer's application.

EXAMPLE USAGE
As an example of the power of the above technique
the modified WinSPARK has been used to develop a
demonstration HVAC Toolkit (Brandemuehl 1993;
Sowell and Moshier 1995) that can be used in a
Microsoft Excel worksheet, using the facility for
calling DLL functions from Visual Basic for
Application (VBA). We describe the implementation
only in outline to save space.

First, a problem is defined in a SPARK project for
each toolkit component to be included, e.g., mixer,
collector, heating coil, cooling coil, zone, etc. The
SparkMFG program (or the Generate Model as
Function menu choice) is applied to each problem
individually in order to test the functions. When all
are judged satisfactory the Create model library menu
choice is used to create a DLL containing all of the
functions.

5 5

If the intent is to use the SPARK Model Functions in
a non-C++ environment they will have to be
"wrapped" in a module for the target environment,
observing the foreign calling conventions. For
example, if we intend to use the functions in Excel,
we wrap them in VBA functions that take input
arguments from, and write results to, worksheet cells.
The one for the mixer shown below typifies these
VBA functions. Note that we simply load the
SPARK-generated mixerSM() function's input
arguments with the cell addresses where these values
reside, call the mixerSM() function, and then transfer
the function output arguments to their respective
cells:
 Sub MixerDriver()
 Dim inArgs(5) As Double, outArgs(5)
As Double
 Dim ec

SetInputs("Mixer", inArgs(0),
{"mAirEnt1","TAirEnt1","wAirEnt1","mAirEnt2
","TAirEnt2","wAirEnt2"})
ec = mixerSM(inArgs(0), outArgs(0))
 If ec = 0 Then
SetOutputs("Mixer", outArgs(0),
{"mAirLvg","TAirLvg", "wAirLvg",
"hAirLvg", "hAirEnt1", "hAirEnt2"})
 End If
 End Sub

Here, SetInputs() and SetOutputs() are VBA
functions that use look-up to find the names and set
up corresponding cell references. The function can
then be invoked as would any VBA function. For
example, an entire system can be simulated by
another VBA function that calls the individual
component models:
Sub simulate()
 Call CcsimDriver
 Call ZonePropcont
 Call DrcctrDriver
 Call ZoneDriver
 Call DivsimDriver
 Call MixerDriver
 Call EnthalpyDriverDriver
End Sub

Let us be clear that this example is probably not the
most efficient way to model HVAC systems. For one
thing, developing the VBA functions and
interconnections between the several models is a
tedious, error prone task. A more serious limitation is
lack of automatic iteration to convergence. However,
given the large community of spreadsheet analysts
(even in the building simulation field), this may be an
attractive application in spite of these limitations. If
one were to continue this line of development,
leading to a truly useful toolkit for Excel-based
HVAC simulation, the VBA functions should be
generated automatically, and the simulate() function
should embed a global solver, either using the Excel

nonlinear solver or perhaps the SPARK solver in
suitable form. Here, we present the idea primarily as
an indication of how SMFs can be used to develop
system simulations outside of the SPARK
environment.

MULTI-VALUED OBJECTS
As noted earlier, normal SPARK atomic objects
represent a single equation and therefore can produce
only a single value in a model. This is the preferred
basis for modeling in SPARK because it exposes all
equations and variables to the SPARK graph
algorithms, thus allowing optimal solving. Also, it
allows greater modeling freedom since designation of
input and output variables can be deferred until
solution time.

In spite of the advantages of equation based
modeling, sometimes users have reason to solve
certain parts of the problem with normal, algorithmic
functions. For example, one may have a complex
model implemented in a procedural language such as
C or FORTRAN, but insufficient time to extract the
underlying mathematical model and reimplement it
as a SPARK, equation based, model. Another
example is a subproblem that is not well suited for
iterative numerical solution, but can be solved
symbolically without too much difficulty. The classic
example of this in an HVAC context is zone
temperature control, which in the most basic form has
two equations, one a quadratic and the other a
piecewise linear function, Figure 3. It is well known
that iterative solution can fail if the slope of the
piecewise linear function is too steep where the two
functions intersect. However, one can easily
construct an efficient algorithm by symbolically
solving for the intersection of the quadratic with each
line of the piecewise linear function (or its
extension), then picking as the correct solution the
point that lies on a legitimate segment of the
piecewise linear function .6

Figure 3 Quadratic and piecewise linear solution

In cases like this the solution function produces more
than one output. For example, the function
solveMyModel(x, y) for the above example produces
both x and y. To use this multivalued function in a
SPARK problem you can write two atomic classes,
each having an inverse function that calls the

6 The algorithm is given in the example qpwl in the
WinSPARK documentation.

6 6

solveMyModel(x, y) function. One of these atomic
classes would be designed to return the x result of the
call to solveMyModel(), another to return y. The two
atomic classes could be wrapped in a single macro
class, providing a single modeling entity that
represents the subproblem.

The above strategy has been available and usefully
employed from the earliest days of SPARK.
However, the obvious disadvantage is that at run time
the solveMyModel(x, y) function gets executed twice:
once to return x, and once to return y. For some
situations this may not be a terrible loss, but if the
algorithm is time consuming and the number of
outputs is large the problem run time may suffer
significantly.

Recently, ASA has extended SPARK to offer a more
efficient way to handle multivalued objects like this.
The approach used is very similar to that described
above. In fact, MVOs are modeled exactly as
described above, but at run time the solution process
is monitored so that all calls but the first to the
multivalued function can be skipped. For example, if
y is the first needed result when the problem is
solved, solveMyModel(x, y) is called when the object
producing y is calculated, but not when x is needed.
(This approach was first described by Buhl and
Sowell (Buhl, Erdem et al. 1993).) To use this new
MVO facility a MVO class, the multivalued function,
and the atomic class inverse function must follow a
special protocol described in the WinSPARK
documentation (Sowell 2001). Much of the code in a
MVO inverse function is fixed, meaning that you can
easily construct them with a "cut and paste" process.
Or, you can use the MVO choice on the WinSPARK
Symbolic menu to construct your MVO class
automatically once you have created the multivalued
solve function. Examples, including the one shown in
Figure 3, are included in the WinSPARK
documentation. These examples have solve functions
written in C/C++, but in principle they could be
expressed in any language for which you have a
compiler that produces object-level compatibility
with Microsoft Visual C/C++.

DISCUSSION
The two extensions to SPARK described herein, SMF
and MVO, are currently available in WinSPARK and
may be included in some form in later SPARK
releases from The Berkeley Lab. Taken together, they
provide a useful Application Programmer's Interface
(API) that makes the SPARK methodology available
to simulation system developers that choose to work
in non-SPARK environments. Examples might
include:

(1) Porting existing model libraries into
spreadsheet functions, thus providing high
quality models to analysts who prefer that
environment,

(2) Providing user-defined secondary and
primary systems for whole-building
programs such as DOE-2 and Energy Plus,

(3) Generating models for component-based
programs such as TRNSYS and
HVACSIM+; and

(4) Providing equipment manufacturers a
straightforward means for developing high
quality models of their products for use in
in-house simulation tools.

We believe that this new capability represents a more
complete and useful realization of the original Energy
Kernel concept. At the same time, it must be
recognized that in both SMF and MVO we are
departing from the pure, equation based, non-
procedural basis of the SPARK methodology, and
this means that some of the SPARK advantages will
not be realized. For example, if two parts of a system
are modeled as separate SMFs and brought back
together in a different modeling environment the
overall solution may not be as efficient as could have
been realized if both parts were modeled together as a
single SPARK problem. Moreover, a SMF always
represents a single input/output combination, while
many such input/output combinations are possible for
the underlying SPARK problem. That is, the
input/output free nature is lost in the process of
generating the SMF.7 These disadvantages are most
evident in the Excel HVAC toolkit example, where
the SMFs are individual SPARK component models,
e.g., mixers, collectors and cooling coils. In many
cases these models are so small that little runtime
speed advantage is being gained by the graph-
theoretic analysis, yet the overhead of doing it
remains. Therefore this particular usage must be
justified entirely by the convenience of modeling in
the spreadsheet environment. In general, it is likely
true that the best usage will be characterized by
placing as much of the problem as possible on "the
SPARK side," so to speak, when these new features
are used to integrate SPARK into other applications.
That said, we nonetheless encourage software
developers to take advantage of this facility as they
see fit, believing that they will gain some of the
advantages of the advanced modeling and solving
techniques built into SPARK, while at the same time
retaining overall control of the architecture of their
own applications.

CONCLUSIONS
We have attempted to review the state of the Energy
Kernel System idea as represented in the UK EKS
project and the Berkeley Lab/ Ayres Sowell SPARK
project. The full benefit of the kernel idea appears not

7 However, this disadvantage is not severely limiting
because it is an easy matter to change the input
designations in the SPARK model and regenerate the
SMF.

7 7

to have been realized, as we continue to see building
energy tools being developed without taking
advantage of the EKS or SPARK technology. We
believe that this is due in part to the lack of suitable
Application Programmers Interfaces. Addressing this
issue, we presented an implementation of a two-part
API for WinSPARK. One part allows simulation
software developers to automatically generate
SPARK Model Functions, which are C++ functions
representing SPARK problems. Since these are
callable from any compatible language, e.g., VBA or
FORTRAN, this feature means that developers can
take advantage of SPARK's advanced modeling and
solution methods within the context of their own
applications. The second part of the API, called
Multivalue Objects goes in the opposite direction,
i.e., it allows foreign code to be efficiently
incorporated in SPARK models. This provides a
migration path for developers with a significant body
of legacy code to rapidly port their models to the
SPARK environment. We believe that features of this
nature will encourage the flow of kernel technology
into mainstream building simulation.

ACKNOWLEDGEMENTS
This work has been sponsored in part by the
Assistant Secretary for Conservation and Renewable
Energy, Office of Building Technologies, Building
Systems and Material Division of the U. S.
Department of Energy.

REFERENCES
anon. (2000). TRNSYS 15: A Transient System
Simulation Program. Madison, WI, Solar Energy
Laboratory, University of Wisconsin-Madison

Brandemuehl, M. J. (1993). HVAC 2 Toolkit: A
Toolkit for Secondary HVAC System Energy
Calculations. Boulder, Colorado, Joint Center for
Energy Management, University of Colorado

Buhl, W. F., A. E. Erdem, et al. (1993). Recent
Improvements in SPARK: Strong Component
Decomposition, Multivalued Objects, and Graphical
Interface. Building Simulation '93, Adelaide,
International Building Performance Simulation
Association. 283-90.

Clarke, J. A. (1986). The Energy Kernel System: A
Technical Overview. Proceedings of Second
International Conference on System Simulation in
Buildings, Liege, Belgium, Univ. of Liege,
Thermodynamics Laboratory.

Clarke, J. A. (2002). ESP-r, Strathclyde University.
2003 http://www.esru.strath.ac.uk/Programs/ESP-
r.htm

Clarke, J. A. and D. F. MacRandal (1993). The
Energy Kernel System: Form and Content. Building
Simulation '93, Adelaide, International Building
Performance Simulation Association. 307-315.

Curtil, D. (2002). SPARK Problem Driver API.
Berkeley, Simulation Research Group, Lawrence
Berkeley National Laboratory
http://simulationresearch.lbl.gov/

MacRandal, D. (2002). The Energy Kernel System.
2003
http://www.bitd.clrc.ac.uk/Activity/ACTIVITY=EKS

Park, C., D. R. Clark, et al. (1985). An Overview of
HVACSIM+, a Dynamic Building/HVAC Control
Systems Simulation Program. Proceedings of the
First Building Energy Simulation Conference, Dec.
3-6., Seattle, WA, International Building
Performance Simulation Association.

Sowell, E. F. (2001). Multivalued Objects in SPARK,
Ayres Sowell Associates, Inc. 2003
http://www.ayressowell.com/WinSPARK/readmeMV
O.txt

Sowell, E. F., W. F. Buhl, et al. (1986). A Prototype
Object-based System for HVAC Simulation.
Proceedings of the Second International Conference
on System Simulation in Buildings, Liege, Belgium,
Univ. of Liege.

Sowell, E. F. and M. A. Moshier (1995). HVAC
Component Model Libraries for Equation-based
Solvers. Building Simulation '95, Madison, WI,
International Building Performance Simulation
Association.

8 8

	Abstract
	Background
	SPARK Internal Structure and Operation
	SPARK Model Functions
	The WinSPARK Model Function And Library Generators
	Example Usage
	Multi-Valued Objects
	Discussion
	Conclusions
	Acknowledgements
	References

