
Proc. IBPSA, Building Simulation 2001,
Rio de Janeiro, September 2001

LBNL-47975

AUTOMATIC UNIT AND PROPERTY CONVERSION IN SPARK

Edward F. Sowell
California State University, Fullerton

Fullerton 92834 USA

Michael A. Moshier
Chapman University

Orange, CA 92866 USA

Ender Erdem
Lawrence Berkeley National Laboratory

Berkeley, CA 94720

ABSTRACT.. 2
OBJECT BASED MODELING .. 2

MACRO OBJECTS AND MACRO LINKS ... 3

MACRO LINKS... 4

AUTOLINK CONCEPT... 4
FLUID PROPERTY AUTOLINKS .. 7

SPARK IMPLEMENTATIONS ... 8

PRUNING THE COMPUTATION GRAPH .. 10

CONCLUSIONS... 11
ACKNOWLEDGEMENTS .. 11

REFERENCES ... 11

May 2001

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy Office of
Building Technology, State and Community Programs, Office of Building Research and Standards. of the
U.S. Dept. of Energy, under Contract No. DE-AC03-76SF00098.

22

AUTOMATIC UNIT AND PROPERTY CONVERSION IN SPARK

Edward F. Sowell
California State University, Fullerton

Fullerton 92834

Michael A. Moshier
Chapman University
Orange, CA 92866

Ender Erdem
Lawrence Berkeley National Laboratory

Berkeley, CA 94720

ABSTRACT

In object based models, conversion becomes necessary when there is a mismatch among the representations of
same physical quantity at the ports of different objects that need to be connected. The simplest example of this is
with regard to physical units of measure, such as temperature. A more complex situation, but with the same
character, is with regard to fluid flow, where the state can be represented in terms of any pair of independent
properties, and the flow rate can be expressed volumetrically or in terms of mass. In HVAC applications, the most
common example is moist air where properties and flow rate can be represented by temperature, relative humidity
and volumetric flow, or by enthalpy, humidity ratio and mass flow rate, or other combinations. The need to connect
objects with such disparate interfaces arises whenever system model developers following different conventions
attempt to share models.

Customarily, conversion is done in an ad hoc manner, introducing conversion objects here and there in the problem,
as needed. A somewhat more structured approach is to rigidly enforce a common set of units among all classes
within a particular application-area library; this approach is recommended for the Neutral Model Format (NMF)
(Bring, Sahlin et al. 1992). With this approach one can either undertake “hard conversion” of the underlying
equations and re-implement the model, or take the easier path of “wrapping” the offending objects in new “macro
objects” with needed converters. Neither choice is very attractive. The first is labor intensive, and errors may be
introduced into sound code, while the second can lead to many unnecessary conversion, complicating the model
and compromising run-time efficiency.

In this paper we show a unified approach to automatic interface matching that does not suffer the above
disadvantages. Special automatic conversion links, or “autolinks,” are introduced for this purpose. An autolink
carries all admissible representations of one or more variables plus a set of conversion objects that represent
constraints that need to be enforced among them. Herein we show that this approach is easily implemented, makes
use of existing models with diverse units or properties at the interface, and produces optimum run-time efficiency.

The idea of autolinks has been mentioned before in the literature. Kolsaker and Sahlin make essentially the same
suggestion (Sahlin, Bring et al. 1995), but limit their discussion to “property links” only. Sowell and Moshier
independently develop the concept, discussing it in terms of unit matching as well as fluid flow and properties.
They also introduce the idea of automatic elimination of unneeded conversion objects before run-time by “pruning”
the computation graph (Sowell and Moshier 1995). In the following, we expand upon the previous work, using
examples to clarify the approach, and show the first implementation in the context of the current features of the
Simulation Problem Analysis and Research Kernel (SPARK). We then suggest future extensions to made problem
specification with autolinks more intuitive.

OBJECT BASED MODELING

Here we describe models in terms of interacting objects. It is assumed that these objects, and the system models
formed from them, have no presumed direction of information flow. This is sometimes called non-algorithmic or
input/output free representation. The latter designation is significant in that it means that the model itself is
independent of specified inputs or outputs. It is not until a particular input set is specified that a problem is defined
and information flow direction is established. The same model can therefore support a wide class of different
problems without reprogramming. This style of model representation has been advocated in the modeling literature
for some time because it properly places emphasis on the underlying mathematical model rather than upon a

33

particular solution algorithm (Sowell and Low 1982; Sowell, Taghavi et al. 1984; Konopasek and Jayaraman 1985;
Sowell, Buhl et al. 1986; Mattsson 1988; Sahlin 1988; Sahlin and Sowell 1989).
As a simple example, consider the equation

C F= −5 32 9() / (1)

This can be represented graphically with an object as shown in Figure 1.

Here tc labels a temperature conversion object.
Typically, such an object would be created as an
instance of a template or class, which embeds Equation
1. F and C are interface variables, or ports, of the
object. TF and TC are problem variables, which are
linked to the ports. Port labels relate to the connected
problem variable names in the same way that
parameters relate to actual arguments in conventional
programming. That is, at run time it is as if TF and TC
were substituted for F and C in Equation 1.

This single object comprises a simple system model. If
we then designated TF as the input, a problem would

F

C

TF

TC

tc

Figure 1: Input/output free model object.

thereby be defined. Solving the problem would entail solving Equation 1 for the corresponding TC . Conversely, one
could specify TC as input, forming a problem in which TF is to be solved for. There would be no change to the tc
object.

Problems with more than one object are more common. Figure 2 shows a model for system with a fan and a heater.
In the graphic for each object, the physical inlet and outlet are shown at the left and right respectively. In the
physical system, the fan outlet is connected to the
heater inlet. Consequently, we link the fan exit enthalpy
h, humidity ratio w, and mass flow rate m to the
corresponding ports of the heater inlet. However, this
does not imply directionality of information flow in the
model solution process; such directionality is not
established until an input set is specified.

Fan
hhh0

www0

mmm0

h h

w w

m m

h1 h2

w1 w2

m1 m2

P P

Figure 1: Linking objects

Problem variables are sometimes called links because they appear as labels on links among object ports.

MACRO OBJECTS AND MACRO LINKS

Modeling convenience is enhanced when model objects closely correspond to physical components. For example, if
a component in the physical system is a heater with an in-built fan, we may prefer a heaterFan model object rather
than a separate model of each. On the other hand, fan and heater model objects are also sometimes needed
separately. The concept of macro objects allows us to
have both. A macro object is an object that is
constructed from other objects like a system model, but
has external ports and otherwise looks like and behaves
like a simple “atomic” object. This is sometimes called
hierarchical modeling, and is supported by SPARK and
other recent modeling environments. Figure 3 demon-
strates this idea, creating a heaterFan macro object
from the fan and heater objects.

Fan
h hhh

w www

m mm
m

h h

w w

m m

h1 h2

w1
w2

m1
m2

PP

Figure 2: Macro object.

44

MACRO LINKS

In many physical system models the objects interact through fluid flow, so that flow and properties of a fluid at the
exit of one object apply at the entrance of another. When this is the case, model diagrams tend to have linkage
groups such as mass flow rate, humidity ratio, temperature, and pressure connecting object after object, making
model construction tedious and error prone. Figure 2 is a typical example in an HVAC context, where the
properties are enthalpy and humidity ratio, and flow rate is represented as mass per unit time. The concept of a
macro link is helpful in such models. With this idea, the links for the separate but related variables, e.g., flow and
fluid properties, are treated as a single modeling entity. This is depicted in Figure 4 for the same system
represented in Figure 2, where the macro link contains sublinks for enthalpy, humidity ration, and mass flow rate.

The macro link concept has appeared in the HVAC
modeling context several times over the years. Sowell
et al. defined networks of HVAC component models in
which all linkage was in terms of a single 5-tuple
containing mass flow rate, enthalpy, humidity ratio,
fresh air fraction, and pressure (Sowell, Silverman et al.
1981). More recently, Sahlin, Bring and Sowell
generalized and formalized the idea with the definition

Fan
h

w

m

h

w

m

h

w

m

h2

w2

m2

f

Figure 3: Macro links.

of LINKS as an NMF modeling entity (Sahlin and Sowell 1989; Bring, Sahlin et al. 1992). The current version of at
least two equation-based simulation environments, SPARK and IDA incorporate the idea in some form (Sahlin and
Bring 1991; Sowell 1998).

It should be noted that macro links require a supporting construct at object interfaces, called macro ports. Macro
ports, i.e., a grouping of interface variables, fills this need. However, since the one implies the other, it is not
necessary to have syntax for both macro link and macro port in a language to support the concept. For example, if
the fan and heater objects in Figure 4 are defined with (h, w, m) macro ports, there is no ambiguity if f is merely
designated as a link rather that a macro link. SPARK takes advantage of this, omitting macro link as a syntactic
entity in favor of macro ports.

AUTOLINK CONCEPT

We now turn our attention to the problem of
maintaining consistent units of measure for links and
ports in models of the nature discussed above. The
fundamental ideas will be presented in terms of a
simple thermal model of a two layer wall, Figure 5. On
the left, Layer A, we have a mineral fiber insulation,
while on the right there is a layer of concrete aggregate.
We will assume that we have thermal models for each,
representing the conductivity as a nonlinear function of
the average temperature within the layer.

As a baseline case for later comparison, first suppose
that both layers are implemented in terms of SI units
and are modeled by the equations:

T T T
T T T

k T k aT bT cT

q k T T l

d

d d d

d

= +
= −

= + + +

=

() /

()

() /

1 2

1 2

0
2 3

2

 (2)

A- Insulation B- Aggregate

lA lB

Figure 4: Heat transmission through 2-layer wall

55

where

T = Average temperature [C]
Td = Temperature difference [C]
k(T) = Temperature dependent thermal conductivity [W/m-C]
a, b, c = Correlation coefficients for the material, based on measurements in SI units.
q = Heat flux [W/m2-C degree]
T1, T2 = Left and right face temperatures [C]
l = Layer thickness [m].

A model of the system can be represented as two interconnected objects, LayerA and LayerB, as shown in Fig. 6.
Each of these objects embeds an instance of Equations
2, specialized for the particular material of the layer.
Note that T , Td , and k, as well as their defining
formulas, are internal to the object, so at the level of
expression shown in Figure 2 there is a single
constraint among the interface variables q, T1, T2, and l.
Due to the assumed temperature dependency of the
material conductivity, the constraint is nonlinear.

T1 T1

T2 T2

L

q q

L lA

lB

TA

TB
TC

q

Layer A Layer B

Figure 5: Two layer wall model.

The coefficients a, b, and c are determined by the material and may be different for each layer. These coefficients
are also built into the objects, meaning that each object is an instance of a different class representing a particular
material. 1

This model can represent several different problems depending upon which variables are specified as inputs. For
this example, we choose to specify the two outer surface temperatures, TA and TB, the thickness of layer B, lB, and
the common heat flux q. Thus the problem is to determine the interface temperature TB and the thickness of the
insulation, lA. A later section discusses how solution is carried out in SPARK (See spark implementations).

We shall now modify the preceding example to create a unit mismatch between the models for the two layers.
Assume now that Layer B, the concrete aggregate material, is modeled in IP rather than SI units.

That is,

T = Average temperature [F]
Td = Temperature difference [F]
k(T) = Temperature dependent thermal conductivity [Btu/h-ft-F]
a, b, c = Correlation coefficients for the material, based on measurements in IP units.
q = Heat flux [Btu/h-ft2-F]
T1, T2 = Left and right face temperatures [F]
l = Layer thickness [ft].

1 We acknowledge that this is not necessarily the best modeling practice. It would not be difficult to implement a single class to represent
all layers. We choose this form to exemplify the unit conversion process.

66

One approach to the difficulty this presents is to introduce four unit converters, one for each interface variable, as
shown in Figure 7. In a problem as simple as this one, this is probably the best approach. It is easy to do, leaves the
original models intact, and suffers only minor compu-
tational overhead. However, if there are many places
where this mismatch occurs, manual insertion and
connection of the converters becomes tedious and error
prone. To circumvent this, one might consider defining
a new object class that “wraps” the IP object and the
converters, as indicated by the dashed lines in Figure 7.

l

T1

T2

q

l

T1

T2

q

C F

C F

m ft

WB

lA

TA

TB

lB

TC

q

Layer A Layer B

SI IP

Figure 6 Two layer wall with unit mismatch.

The new class would offer SI ports and could be
instantiated throughout the system model as needed.
But the problem with this idea is that that there may a
third layer, also originally expressed in IP but with the
SI wrapper. We would then have the situation shown in
Figure 8.

The obvious disadvantage here is that unnecessary
conversions are being done. The common temperature
between layers B and C, TC, is converted from F to C
and back to F, even though the C units are not used at
all, and q is converted from W/m2 to Btu/h-ft2 twice.
While this may not be an intolerable inefficiency, it can
be avoided without modeling inconvenience by using
autolinks.

l

T1

T2

q

l

T1

T2

q

C F

C F

m ft

WB

lA

TA

TB

lB

TC

TD

q

Layer A Layer B

SI IP

Layer C
IP

l T2 T1 q

W
F F
C C

ft
m

lC

Figure 7 Three layer wall with mixed units.

In concept, an autolink is simply a group of related
links along with constraint equations among the
variables represented on the links. For example, a
temperature autolink has two constituent links, Celsius
(C) and Fahrenheit (F), and an object representing the
relationship in Equation 1. Figure 9 shows the
temperature autolink.

Part (a) of the figure shows the internal details, while
(b) and (c) show alternative, simplified representations
for use in model diagrams. In the detailed view, the
upper line represents the temperature in Celsius, while
the lower one represents the same temperature in
Fahrenheit. The object labeled TC contains the Celsius
to Fahrenheit conversion equation, i.e., a constraint
between F and C.

To see how the autolink concept is superior to the
conversion strategy described in the previous section,
let us consider only the TC linkage in Figure 8,
connecting the T1 port of C to the T2 port of B; both
are in Fahrenheit. Figure 10 shows this using the
detailed representation of an autolink from Figure 5.

F

F

C

C

TC

TC

(a) Detail

(b) Alternate representation

(c) Simple graphic representation

T.C

T.F

T

T

Figure 8 Temperature autolink.

77

Since both ports are in Fahrenheit, the F part of the TC
autolink, TC.F is connected to both. This leaves the C
port of the TC temperature converter unconnected.

Consequently, it can be “pruned” from the computation
graph before run-time, leaving this part of the problem
without conversion. (See pruning the computation
graph below.)

Now, let us consider the q link in Figure 8, where it
was observed that two conversions were being done
when one should do. Figure 10 shows only the q ports
from Figure 8, but connected with the autolink idea.

TC.C

TC.F T2T1C B

FC

TC

Figure 9: Using autolink for TC.

Here we see that a q autolink connecting the q ports of
A, B and C introduces a single heat flux converter, qc.
Since A is in SI units, its q port is connected to the W
(Watt) part of the q autolink, q.w, while the B (Btu/h)
part connects to the IP ports of the two IP-based
objects, C and qc. Thus we have again reduced the
number conversions in the problem.

The preceding examples demonstrate the value of auto-
links in reduction of model complexity and run time

BW

qc

q.W

q.B
q

q
A B

q

C

Figure 10: Using autolink for q.

efficiency. However, the true utility of the concept depends somewhat on how convenient it is for the model
developer to use. It develops that the macro objects and link ideas make it possible to implement autolinks
conveniently.

In Figure 12 we show the two layer wall model from Figure 6 using macro objects and macro links.
Here we have embedded the A (SI) and B (IP) objects
in macro objects A’ and B’, each with appropriate SI-IP
macro ports. As can be seen, the thickness, tempera-
ture, and heat flux macro ports have subports (m, ft),
(C,F) and (W,B) respectively. In each, the SI subport is
listed first, and the equivalent IP subport second. Since
A has an SI interface, there are links to the SI subports
in the A’ macro object. Conversely, there are links to
the IP subports in the B’ macro object.

T1 T1

T2 T2

L

q q

L lA
lB

TA

TB TC

q

m
ft
C
F
C
F
W
B

m
ft
C
F
C
F
W
B

A B

Figure 11: Two layer wallmodel with autolinks
and macro ports.

Externally, the macro ports of the two macro objects are connected with autolinks. We use the simple graphic
representation for the autolinks, but as can be seen in Figure 9 each is really nothing more than a macro link with an
incorporated conversion object.

Thus we see that if the modeling language supports macro objects and macro links, it also supports the autolink
concept. In a later section we show syntax for expressing autolinks in SPARK. But first, we show that exactly the
same concept serves as fluid property links.

FLUID PROPERTY AUTOLINKS

A fluid property autolink, as described by Sahlin et al. (Sahlin, Bring et al. 1995) is a modeling entity the links ports
of fluid flow components carrying fluid flow rate and all relevant properties, plus necessary constraint equations
among the properties. Constraint equations derive from fluid physics and are necessary whenever the link is
specified to carry more fluid properties than necessary to uniquely describe the thermodynamic state of the fluid.

88

The macro link in Figure 4 is a simple example of a fluid link, but one in which no constraint equations are
necessary, because enthalpy and humidity ratio uniquely determine the state of moist air. However, if a third,
redundant property is added to the link, e.g., dry bulb temperature, the psychrometric constraint equation
h f T w= (,) must be added. The need to add redundant properties arises whenever the model employs fluid flow
models that use disparate property ports. For example, both enthalpy and temperature are needed if one model has a
dry bulb temperature port while another has enthalpy. This is exactly the same situation as we encountered when
linking models with different units at the ports. The only difference is the constraint equations for fluid links are
usually complex thermodynamic relationships rather than simple linear conversion equations.

Figure 13 shows an autolink for moist air using the same graphic representations as in Figure 9. Many commonly
needed psychrometric properties are included, as well as flow rate expressed as both volumetric and mass flow rate,
making eight sublinks in all. Additionally, there are four psychrometric constraint equations (See Psychrometrics
chapter (ASHRAE 1993)):

SpecVol: Relationship between dry bulb temperature,
humidity ratio, specific volume, and
pressure.

RelHum: Relationship between dry bulb temperature,
humidity ratio, relative humidity, and
pressure.

Enthalpy: Relationship between dry bulb temperature,
humidity ratio, and enthalpy.

Product: Relationship between mass flow rate, volu-
metric flow rate, and specific volume.

The detailed representation in the figure, part (a), shows
links among the objects representing these relationships.
Part (b) shows how this can be implemented with a
macro object containing the four psychrometric objects
and having a Moist Air Flow (MAF) macro port. Any
number of other objects with MAF macro ports could be
linked with a moist air link. Moreover, each linked
object could use whatever subports of the link were
needed in that particular object. We demonstrate this in a
SPARK context below.

T h w

Enth.

Enth.

v

v

.

.

.

.

m

m

v

T w PΦ

Φ

RelHum

RelHum

T w v P

SpecVol

SpecVol

prod.

prod.

v
P

h
w

T

(a) Detailed view

(b) Implementation with macro object

MAF

(c) Simplified graphic representation

Figure 12: Moist air autolink.
SPARK IMPLEMENTATIONS

Currently, SPARK does not have special syntax for autolinks. Instead, the concept is implemented using the
macro port feature together with conversion object classes. To demonstrate, consider the system with a diverter, fan
and heater shown diagrammatically in Figure 14.

The leftmost object, div, is a diverter that splits the inlet
moist air stream 1 so that the fraction f1 leaves through
the first branch af2, with the remainder going through
the second, af3. All three of these stream ports are
moist air macro ports having all eight properties shown
in Figure 13. The fan and heater objects also have inlet
and outlet the macro ports of the same structure.
Additionally, these objects have various parameters at
normal ports.

f1

div

P

Htr.

dP PowdP η

eff

Phtr

Pfan

Fan

af1
af2

af3

af4

af5

f1

Figure 13: System with moist air links

99

A SPARK problem file based on Figure 14 is shown below:

// Example: moist air autolinks
// Conversion macros
declare airlinkMP aL1, aL2 aL3, aL4, aL5;
declare fanMP f;// Simple fan
declare divMP d; // Diverter
declare heaterMP ht; // Heater
// Inputs
link effFan "Fan eff." f.eff input [fraction] ;
link deltaPFan "Fan pressure rise" f.deltaP input [Pa];
link powHtr "Heater power" ht.power input [W];
link f1 "Fraction of input stream diverted to fan" d.f1;
link af1 "Air flow 1" d.AirEnt, aL1.Air input(.TDb),input(.m),input(.w);
// Diverter to fan and heater links
link af2 "Div. to fan Air flow" div.AirLvg1, f.AirEnt [MoistAirFlow];
link af3 "Div. to heater" div.AirLvg2, ht.AirEnt [MoistAirFlow];
// Some reoprts
link powerTot "Fan Power consumption" f.powerTot [W] report;
link af4 "Fan lvg " f.AirLvg, aL4.Air report(.mAir),report(.TDb), report(.rh);
link af5 "Heater lvg" ht.AirLvg,aL5.Air report(.TDb) report(.QAir) report(.w);

The declare statements instantiate an airLinkMP object for each of the five air streams, aL1 through aL5, as well as
each component object. The first four link statements, with the input keyword, provide parameters to the
component models. The notation f.eff means the eff port of the f object. The next link statement is slightly different
since it provides inputs that apply to subports of macro links. This statement means that AirEnt macro port of d and
the Air macro port of aL1 are linked, and that the subports .TDb, .mAir, and .w are all obtained from input.

The link statements for the streams between the diverter and the fan and heater come next. Observe here that a
single statement connects all subports. This is a convenience afforded by macro link concept.2 More important to
the theme of this paper, however, is to observe that the diverter model is based on mass flow, temperature, and
humidity ratio, while the fan is based on volumetric flow rate, temperature, and humidity ratio, and the heater needs
mass flow, enthalpy, and humidity ratio. The presence of the airlinkMP objects aL2 and aL3 in these linkages
provides for automatic conversion to the needed interface variables at each object. This demonstrates the
convenience of the macro links plus conversion macro objects, which in SPARK provide us with autolinks.

In a more complete system model, the fan and heater would probably be connected to other components. In the
interest of brevity, here we truncate the model after these components. The last three link statements are included
merely to allow reporting of some of the properties in the two outlet air streams. Note in particular that we choose
to report different properties and flow measures at each object. For example, we report mass flow rate and relative
humidity at the fan exit, while reporting volumetric flow and humidity ratio at he heater exit.

As noted, this example uses four different macro classes. The macro class definition for airlinkMP is as follows:

// Moist air flow autolink
// Using macro ports
// airlinkMP.cm
//
port Air "Moist air flow" [MoistAirFlow];
 .h "Enthalpy" noerr [J/kg_dryAir] init = 25194.2 min = -50300.0 max = 398412.5 ;
 .TDb "Dry bulb temperature" noerr [deg_C] init = 20.0 min = - 50.0 max = 95.0 ;

2 Note that SPARK infers macro links from linkage to macro ports. There is no explicit macro link syntax.

1010

 .w "Humidity ratio" noerr [kg_water/kg_dryAir] init = .002 min = 0 max = 0.1 ;
 .Patm "Atmospheric pressure" [Pa]

default = 101325;
 .v "Specific volume" noerr [m^3/kg_dryAir] ;
 .rh "Relative humudity" noerr [fraction]

init = 0.5 min = 0 max = 0.9 ;
 .mAir "Air mass flowrate" noerr [kg_dryAir/s];
 .Qair "Air volumetric flow" noerr [m^3/s] ;
declare relhum RH;
declare specvol sv;
declare enthalpy e;
declare safprod sp;

link .Air.QAir sp.c;
link .Air.mAir sp.a;
link .Air.v sp.b, sv.v;
link .Air.h e.h ;
link .Air.TDb e.TDb, sv.TDb, RH.TDb;
link .Air.w e.w, sv.w, RH.w;
link .Air.PAtm sv.PAtm, RH.PAtm ;
link .Air.rh RH.rh;

The four declare objects are from the global and HVAC libraries that come with SPARK (Sowell and Moshier
1995). They are linked together as indicated in Figure 13, with the wanted properties elevated to subports of the
port named Air. The other macro object classes are omitted for brevity, but they have macro ports with the same
subports as in airlinkMP.

Thus we see that autolinks for property conversions can be implemented with current SPARK syntax. However, we
recognize a deficiency in modeling clarity, inasmuch as an autolink is not syntactically explicit. We are considering
minor alterations in the modeling language to address this issue. For example, an autoconversion link could be
declared as:

link AirFlow1 A.Air, B.Air conversion=airlink ;

This compact syntax is possible since an instance of an autolink can appear only in a single statement; hence, there
is no need to instantiate it at a higher level. With either of these ideas it is should be clear to a human reader of the
code that the macro class airlink is playing a conversion role in the link, thus improving clarity.

PRUNING THE COMPUTATION GRAPH

In implementing the autolink concept care must be taken to avoid unnecessary conversions at run-time. We have
already noted this problem, citing it as a reason for associating the conversion object with the link rather than the
ports of connected objects (see Figure 8). However, a potentially greater inefficiency can arise due to needlessly
executing all conversion objects associated with the link. This is of special concern if some of the conversions are
complex, and there are many subports in the link, with few of them actually needed. This is often the case with
moist air links, for example.

In SPARK, all unnecessary conversion calculations are avoided due to the normal graph-theoretic pre-processing.
To see how this works, let us return to the example of Figure 12. After the problem description is parsed, a
matching is done between problem variables and objects. After the matching, a “computation graph” is constructed.
This is a directed graph in which each vertex represents an equation object, inverted to be a formula for the
particular variable selected in the matching step, and its incoming edges represent the variables upon which the
formula depends.

1111

The computation graph will clearly show which, if any, of the converted quantities are not used in subsequent
calculation, because there will be no leaving edges from their nodes. Therefore there is no need to calculate them
and they can be eliminated (pruned) from the computation graph. To discover such nodes one simply traverses the
graph backward from vertices specified to be reported. Vertices left unvisited in this traversal are elided. This is
routinely done in SPARK processing prior to the solution step. In Figure 12 example, two unnecessary conversions
are eliminated by this pruning. A more dramatic example is when both layer models are formulated in SI units, but
nonetheless connected with autolinks. While one would perhaps not do this intentionally, the use of libraries to
solve diverse problems with a consistent modeling discipline often produces such connections. However, the
pruning done in SPARK will simply leave all the conversion objects behind, so at solution time it is as if every
model were custom built to interface with its neighbors.

Another issue arises when autolinks are used within macro objects in hierarchical modeling. In this situation an
internal autolink introduces a conversion object. If the internal autolink is linked to a macro port of the macro class,
and another autolink is connected to this macro port externally, a second conversion be object is introduced. The
second conversion object is redundant, over-determining the problem. The problem can be detected as two identical
objects with identical links. Such connections can serve no legitimate purpose, so the extra conversion object can be
omitted at the parsing stage, or deleted during the graph theoretic analysis. The former is currently done in SPARK.

CONCLUSIONS

In this paper we have presented a view of the automatic conversion linkage concept which we call autolinks. We
have shown that this concept is a natural adjunct to the macro object and macro link concepts often used in object
based, hierarchical modeling. Indeed, with the SPARK implementation of the latter, no additional syntax is
required. That is, autolinks can be expressed entirely in terms of macro objects and macro links. Additionally, it has
been shown that the autolinks concept serves equally well for unit conversion and property conversions, such as
needed for moist air. We have demonstrated that when used with the normal SPARK solution strategy the autolink
concept introduces only the minimum number of conversions at run time. This means that the model developer can
use autolinks consistently throughout the problem, mixing models expressed in various units and property sets,
while avoiding unneeded convesrion computations.

ACKNOWLEDGEMENTS

This work was sponsored in part by the Assistant Secretary for Conservation and Renewable Energy, Office of
Building Technologies, Building Systems and Material Division of the U. S. Department of Energy.

REFERENCES

ASHRAE (1993). Handbook of Fundamentals. Atlanta, Am. Soc. of Heating, Refrigerating, and Air-conditioning
Engineers.

Bring, A., P. Sahlin, et al. (1992). The Neutral Model Format for Building Simulation, Royal Institute of
Technology, Dept. of Building Services Engineering, Stockholm.

Konopasek, M. and S. Jayaraman (1985). “Constraint and Declarative Languages for Engineering Applications:
The TK! Solver Contribution.” Proc. IEEE 73(12): 1791-1806.

Mattsson, S. E. (1988). On Model Structuring Concepts. Proceedings of the 4th IFAC Symposium on Computer-
aided Design in Control Systems (CADCS), Lund.

Sahlin, P. (1988). MODSIM: A Program for Dynamical Modeling and Simulation of Continuous Systems, Swedish
Institute for Applied Mathematics, Stockholm.

Sahlin, P. and A. Bring (1991). IDA Solver- A Tool for Building and Energy System Simulation. Building
Simulation '91, Nice, France, International Building Performance Simulation Association.

1212

Sahlin, P., A. Bring, et al. (1995). Future Trends of the Neutral Model Format (NMF). Building Simulation '95,
Madison, WI, IBPSA.

Sahlin, P. and E. F. Sowell (1989). A Neutral Format for Building Simulation Models. Proceedings of Building
Simulation '89, Vancouver, BC, International Building Performance Simulation Association.

Sowell, E. F. (1998). SPARK Users' Manual. Placentia, CA 92871, Ayres Sowell Associates, Inc.

Sowell, E. F., W. F. Buhl, et al. (1986). A Prototype Object-based System for HVAC Simulation. Proceedings of
the Second International Conference on System Simulation in Buildings, Liege, Belgium, Univ. of Liege.

Sowell, E. F. and D. W. Low (1982). ENET: A PC-based Building Energy Simulation System. Proceedings of the
IBM Energy Programs Conference, Austin, TX, IBM Real Estate and Construction Division.

Sowell, E. F. and M. A. Moshier (1995). HVAC Component Model Libraries for Equation-based Solvers. Building
Simulation '95, Madison, WI, International Building Performance Simulation Association.

Sowell, E. F., G. Silverman, et al. (1981). “Modeling and Optimization of HVAC Systems Using Network
Concepts.” ASHRAE Trans. 87.

Sowell, E. F., K. Taghavi, et al. (1984). “Generation of Building Energy System Models.” ASHRAE Trans. 90
(Pt. 1): 573-86.

