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Abstract  

This report documents the development of a rapid-prototyping control framework based on the Building Controls 
Virtual Test Bed co-simulation software. The objective of the developed framework is to establish the separation 
between the control algorithm and the physical systems such that the control algorithm can be rapidly revised and 
implemented without having to physically swap the controllers. The corresponding protocols and interfaces are 
designed for maximal flexibility, easy generalization and straightforward implementation. An instance of such 
control framework has been realized in the Advanced Windows Testing Facility at the Lawrence Berkeley National 
Laboratory and is used as a case study throughout this report.  
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1. Introduction 
 
This document reports the development of a rapid-prototyping implementation framework for the control of building 
systems and components. The framework was realized in the Advanced Windows Testing Facility at the Lawrence 
Berkeley National Laboratory for testing integrated electric lighting and venetian blind control algorithms developed 
under the Philips-LBNL partnership. The experiences and lessons learned are also documented in this report. 
 
1.1. Objective 
 
The objective of the rapid-prototyping control framework is to create a platform for testing and tuning control 
algorithms on building systems or components in the most efficient and the least intrusive manner. This framework 
should easily allow multiple users to implement different controls on the same hardware setup at the designated time 
slot without physically plugging in or unplugging their controllers. The control algorithms can even be implemented 
remotely and communicate with the systems through the Internet. 
 
1.2. Problem description 
 
This work was motivated by the need of using the Advanced Windows Testing Facility for evaluating the control 
algorithms developed under the Philips-LBNL partnership without disturbing the well-established routines and 
setups that have already been in place. Scheduled tests run in this particular facility are cycled every few days 
throughout a solstice-to-solstice period. Sharing the same hardware, including electric lights, venetian blind drivers, 
sensors, etc. with other test setups, it presents a challenge to physically disconnect and reconnect a customized 
controller quickly and correctly every time. Moreover, reprogramming a controller in order to populate a revision or 
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correction to a control algorithm may also be tedious. Therefore, a setup for rapidly implementing and switching 
control algorithms is desirable for running customized control algorithms in such testing facility. 
 
1.3. Solution approach 
 
The Building Controls Virtual Test Bed (BCVTB) developed by the Simulation Group at LBNL was adopted for 
establishing the rapid-prototyping control platform. BCVTB is essentially a simulation tool that enables co-
simulation of multiple domain-specific programs by coordinating and synchronizing runtime data exchange. In this 
particular application, the hardware setup and the corresponding drivers in the testing facility are treated as a 
program that has its own input/output. For instance, the input can be the signals to set the electric light level, blind 
slat angle, etc., and the output may be the task illuminances, temperatures, and so on, acquired by the sensors. In the 
meantime, the control algorithm is implemented as another program, and BCVTB manages the data exchange 
between the two programs to establish a complete control loop. 
 
Section 2 of this report provides an overview of BCVTB and the basic idea of exploiting it for real-time control 
purposes. Section 3 details the development of each component for establishing the BCVTB control platform, 
including the protocol and interface. The realization of such control framework in the Advanced Windows Testing 
Facility is described in section 4, and the challenges encountered during the implementation are documented in 
section 5. Section 6 concludes the work and points out potential future applications. 

In the rest of this report, there will be a few terms that are used repetitively. These terms represent very different 
things although they may seem very similar. The following table lists all the terms upfront along with short 
descriptions so that the readers can always refer back to this table should any confusion occur.  
 

Table 1 Terms used in the report. 

Terms Description 
BCVTB control 
framework 

This is the core of this report. It refers to how the BCVTB co-simulation 
concept is used for physical implementation. 

BCVTB configuration The configuration refers to a diagram representing how the data are routed 
among all the actors. See Figure 2 and Figure 15 for example. 

BCVTB server This is a server built exclusively for the BCVTB control framework, which 
connects to the hardware and can be accessed through the Internet. See 
section 3.1 for details. 

BCVTB tag BCVTB tags are used in the protocol for communicating with the BCVTB 
server designed exclusively for the BCVTB control framework. See section 
3.3 for details and Table 2 for some sampled tags. 

BCVTB (surrogate) 
interface 

This interface is a program hosted by the Simulator actor, and is created 
exclusively for the BCVTB control framework. It establishes the connection 
between the BCVTB server and the Simulator actor. The details are 
described in section 3.4. 

 

1.4. Intended audience 
 
This document is intended to be a reference for establishing a rapid-prototyping control implementation framework. 
It is for people who are interested in an alternative way of implementing and testing control algorithms. A basic 
understanding of controls may be required in order to understand the overall concepts introduced herein. This report 
provides the fundamental knowledge of building such a control platform and uses the realization in the Advanced 
Windows Testing Facility as an example. However, it is not a tutorial of BCVTB or any control program, and one 
will still need to acquire the ability of using BCVTB and possibly other script languages before being able to 
establishing the control platform. 
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2. Building controls virtual test bed 
 
The Building Controls Virtual Test Bed (BCVTB) is the key element of the rapid-prototyping control 
implementation platform. This section provides a general description of BCVTB and how it is used for constructing 
the control platform. 
 
2.1. General idea and description 
 
BCVTB is a software configuration that coordinates and synchronizes multiple simulation programs for runtime 
data exchange and co-simulation [1]. It is based on Ptolemy II, a software framework supporting actor-oriented 
design developed at UC Berkeley [2]. BCVTB creates a socket to the program it connects to such that the outputs of 
the program are sent to BCVTB by writing to the socket while the program reads from the socket to get its inputs 
from BCVTB. By creating multiple sockets, one to each program, data from the programs can be exchanged through 
BCVTB. All programs essentially send their outputs to BCVTB and get their inputs from BCVTB. Figure 1 shows 
the high-level illustration of a BCVTB co-simulation of several programs. The Simulator, a type of Actor in Ptolemy 
II, creates a socket to the simulation programs that allows them to read/write data from/to BCVTB. 
 
 

 
Figure 1 Illustration of a BCVTB co-simulation. 

 
Although the input/output values are certainly meaningful to each co-simulated program, they are treated equally as 
plain double-precision floating-point numbers in BCVTB. The BCVTB configuration determines which number is 
exchanged among which programs. Figure 2 demonstrates an example of a BCVTB configuration, where three 
programs are co-simulated. Each of the rectangles with white background is a Simulator that hosts a domain-specific 
program, i.e. creates a socket to that program. Suppose program 1 takes three inputs and generates two outputs; 
program 2 takes two inputs and generates three outputs; program 3 takes five inputs and generates five outputs. In 
this particular configuration, the outputs from programs 1 and 2 are read by program 3 as its input through BCVTB, 
and the first two outputs of program 3 are routed as the inputs of program 2 while the last three outputs are fed into 
program 1 as its inputs. The slim blue rectangles are vector assemblers and dissemblers in that the data to/from a 
Simulator must be in the form of a vector rather than a scalar. 
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Figure 2 Markup of a BCVTB configuration. 

 
At the beginning of each time step, BCVTB blocks all the co-simulated programs and performs data exchange. Each 
program sends its outputs to BCVTB and gets its inputs from BCVTB through Simulator socket writing and reading 
respectively. As soon as the data exchange process is completed, BCVTB unblocks the operation of the programs, 
and each program calculates and generates new outputs during the remaining of the time step based on the newly 
acquired inputs. The new outputs will then get exchanged at the beginning of the next time step. The same process 
repeats until the specified simulation time duration is achieved. Figure 3 illustrates the data exchange between two 
simulation programs through BCVTB. The output of one program becomes the input to the other program; for 
example, output 1 (Out 1 in red) from Program 1 at the first time step becomes the input (In 2 in red) to Program 2 
at the second time step. 
 

 
Figure 3 BCVTB data exchange at each time step. 

 

2.2. Synchronized real-time simulation 
 
As described in the previous section that data exchange in a BCVTB co-simulation takes place at the beginning of 
each time step, and the simulation programs return to their normal operation right after that. It is desirable for the 
programs to run as fast as possible in the simulated virtual world. However, for the implementation of control 
algorithms, everything must be adhered to real time in order to account for the interactions with the physical world. 
BCVTB conveniently allows the option of ‘synchronizing to real time’. It will be perfectly synchronized to real time 
if all data exchange and calculations can be finished within the specified duration of a time step. Should any delay 
longer than a time step occur due to various reasons, BCVTB will slightly speed up the following few time steps in 
an attempt to catch up with the real time. 
 
 



5 
 

2.3. BCVTB for control implementation 
 
There are quite a few different ways to use BCVTB for control implementation, and the method adopted in the 
development of the framework reported herein is to use an interface that is capable of creating a socket to the 
Simulator while connecting and communicating with the hardware. This interface is essentially a surrogate that can 
be hosted by the Simulator to form a proper BCVTB configuration. The detail of this interface will be described in 
the later section.  
 
Figure 4 shows the basic idea of using BCVTB for real-world control implementations. This approach completely 
separates the controller and the hardware. The controller can be realized in any program that can be hosted by the 
Simulator, and Matlab is used here as an example. The surrogate interface needs to be able to speak in the same 
language as the hardware in order to relay the data to/from BCVTB through the Simulator. In each time step, the 
surrogate interface gets the sensor readings in the test facility and puts them to BCVTB so that the controller can 
read in the readings and generates control decisions accordingly. In the meantime, the control commands are sent 
from the controller to BCVTB, and the surrogate interface picks up the commands and sends to the driver in the test 
facility to actuate the hardware. 
 
 

 
Figure 4 BCVTB control architecture. 

  

 

3. Retrofit the testing facility for BCVTB control 
 
This section describes the design and implementation of the BCVTB framework in the Advanced Windows Testing 
Facility. Although this particular realization was specific to the testing facility, the design was meant for being 
generalized to other instances in a straightforward fashion. 
 
3.1. Design requirements 
 
The Advanced Windows Testing Facility is operated with standalone data acquisition and control infrastructures, 
both of which are established in LabVIEW environments. Dedicated LabVIEW programs in the data acquisition 
machine acquire readings from monitoring sensors and record the data on a minute by minute basis. The LabVIEW 
control programs connect to the control sensors, acquire readings, make control decisions and actuate the hardware. 
For the purpose of implementing the BCVTB framework, the following requirements were identified. 
 

• Access the sensor readings on the existing data acquisition infrastructure. 

• Inject control commands to actuate the hardware drivers on the existing control infrastructure. 

• Minimal intrusion to the routines that are already running on the infrastructures. 

• Preferably remote access to the facility. 

• Maximal flexibility on selecting specific sensors and drivers. 

• Accommodate future expansion of the data acquisition and control infrastructure. 
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In order to access the closed LabVIEW data acquisition and control environment, an additional server machine 
(designated as the ‘BCVTB server’ thereafter) along with a LabVIEW program were added for interfacing with the 
outside world through the Internet. Sensor readings are put out on the Internet for external access in response to 
specific URL requests, and control commands in an established URL format are accepted by the LabVIEW control 
programs to actuate the hardware. The following subsections describe the design of the components of the BCVTB 
framework addressing each of the requirements. 
 
3.2. Available information 
 
The information available from the original monitoring and control infrastructure in the Advanced Windows Testing 
Facility include  
 

• 16 illuminance readings at various locations in each test cell; 

• 15 temperature readings at various locations in each test cell; 

• 11 wattage-related readings of various equipment in each test cell; 

• 2 outdoor temperature readings; 

• 14 external solar-related readings; 

• 20 control-related readings for each test cell. 

 
There are also spared channels for additional sensors in the future. This is the information that can be put out on the 
Internet by the BCVTB server. 
 
For each of the test cells in the facility, there are basically two systems that can be controlled, namely dimmable 
electric lighting and window shading systems. Furthermore, the upper and lower parts of a shading system can be 
controlled separately if the shades have the capability, and thus the heights (and slat angles for venetian blinds) can 
be specified separately. In other words at most five control parameters can be specified in each test cell as follows. 
 

• Lower shade (blind) height; 

• Lower blind slat angle; 

• Upper shade (blind) height; 

• Upper blind slat angle; 

• Electric light level. 
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3.3. Protocol 
 
It was determined that getting each single reading one-by-one would be too cumbersome and could easily eat up 
network bandwidth if accessed through the Internet. Therefore, the readings are classified into a few groups and put 
out on the Internet as a string, one for each group. Each group is tagged with a 5-letter label. The clients that request 
the readings are responsible for parsing the string and extracting only the readings of interest. The tags of each group 
and their associated members are summarized in Table 2.  
 

Table 2 Sensor reading groups. 

Tag Name Members 
LuxsX The 16 illuminance readings. X represents the test cell number (A, B or C). 
TempX The 15 temperature readings and the two outdoor temperature readings. X represents 

the test cell number (A, B, or C). 
WattX The 11 wattage-related readings. X represents the test cell number (A, B or C). 
Sun__ The 14 external solar-related readings. Same for each test cell. 
CntlX The 20 control-related readings. X represents the test cell number (A, B or C). 
Xtra_ Spared channels for additional sensor readings in the future. 
All_X All the above readings. X represents the test cell number (A, B or C). 

 
To add a layer of security and ownership when accessing the sensor readings from the Internet, a 4-letter password 
is added to the protocol, and the BCVTB server only responds with the requested string of readings if the password 
matches the record on file. In short, the URL for requesting a specific string of sensor readings takes the form in 
Figure 5, where 131.243.168.15 is the IP address of the BCVTB server, which can also be a domain name if 
available; 7100 is the port number opened for the communication (if different from the conventional HTTP port 80); 
pswd is the 4-letter password, and Tag__ is one of the 5-letter tags in Table 2. 
 

http:// 131.243.168.15:7100/pswd?Tag__ 

Figure 5 Sensor reading request URL format. 

 
The BCVTB server responds to a URL request with a string of sensor readings in the following format (Figure 6), 
where Tag__ is the same 5-letter tag in the request, and the readings from the N sensors in the specific group are 
delimited by commas. The last semicolon in the string signifies the end of the group of readings. As mentioned 
earlier, it is up to the requesting client to extract only the numbers of interest from the group of readings. The 
purpose of repeating the 5-letter tag in the string is to help the requesting client verify its validity and distinguish 
among the responses if more than one is expected (in the case of the All_X tag). The commas and semicolon should 
help the client to easily and correctly parse the string into N separate readings. 
 

Tag__ rdg1,rdg2,rdg3,…,rdgN,; 

Figure 6 Responding string format for a specific tag (except the All_X tag); rdg stands for “reading”. 

 
Notice that there is no mechanism in the protocol for mapping a specific sensor in a group to the order of its reading 
in the string, and this relationship must be pre-established and agreed upon between the server and client sides. 
A special tag, the All_X tag in the last row of Table 2, is created when at least one sensor reading in each group of 
sensors is needed. In this case, the client can get all the readings at once with a single request and simply look for the 
readings of interest. This, again, relieves the burden on the network and speeds up the process for acquiring 
necessary readings from the server. The responding string will not start with the tag All_X but will return the 
concatenation of all responding strings for room X as illustrated in Figure 7. 
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CntlX rdg1,…,rdgNC,;Lux_X rdg1,…,rdgNL,;TempX rdg1,…,rdgNT,;WattX rdg1,…,rdgNW,;SunX 
rdg1,…,rdgNS,;XtraX rdg1,…,rdgNX,; 

Figure 7 Responding string format for All_X tag; rdg stands for “reading”. 

 
The protocol for issuing control commands from the client side takes a similar format as the sensor readings 
requesting URL as shown in Figure 8. The tag OperX signifies that it is a command for actuating the system drivers, 
and cmd1 through cmd5 are the control commands for lower shade/blind height, lower blind tilt, upper shade/blind 
height, upper blind tilt and electric light level in the case of the particular testing facility.  
 

http:// 131.243.168.15:7100/pswd?OperXcmd1,cmd2,cmd3,cmd4,cmd5; 

Figure 8 Control command URL format; cmd stands for “command”. 

 
Upon receiving the command, the BCVTB server will echo the command part of the requesting URL back to the 
client as illustrated in Figure 9. It is up to the client to make use of the acknowledgement from the server for 
verification or other purposes. 
 

OperXcmd1,cmd2,cmd3,cmd4,cmd5; 

Figure 9 Control command acknowledgement format; cmd stands for “command”. 

 
This protocol should provide maximal flexibility for future extension or for being generalized to other projects. 
More groups of sensors can be added with different tags, more members can be assigned to the same tagging group, 
and more control commands are also allowed for actuating more systems.  
 
3.4. BCVTB interface 
 
The BCVTB interface is the surrogate interface that communicates with the BCVTB server as a client while 
connecting to BCVTB through the Simulator actor (see section 2.3). Based on the protocol developed in the 
previous section, the development objective of this BCVTB interface is to ensure maximal flexibility so that it can 
talk to any BCVTB server that complies with the protocol. In other words, the interface itself should not require any 
revision in the case of more tags, different tag names, different sensor grouping, or more control commands. 
The BCVTB interface is written in Java and packaged into an executable JAR file. The flexibility is provided 
through a separate XML configuration file. Figure 10 shows an example of the BCVTB control framework and 
illustrates where the surrogate interface and the associated configuration file fit in. The interface is thus responsible 
for performing the following three tasks. 
 

• Interpret the configuration file for operational instructions. 

• Construct and transmit URL’s to the BCVTB server based on the information from its hosting Simulator. 

• Parse the information from BCVTB server and relay to its hosting Simulator. 

In addition, a time step and start time are also required in a BCVTB configuration so that the Simulators can be 
synchronized, properly started and ended. The start time and time step must be consistent across all Simulators and 
the hosted programs in the same BCVTB configuration. These two values are specified as input arguments to the 
surrogate interface JAR file.  
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Figure 10 Example of the BCVTB framework with the surrogate interface. 

 
The configuration file is in XML (extensible markup language) format and instructs the interface how to access the 
BCVTB server, what tags are used, and which specific variables are of interest. It is this configuration file that 
makes the surrogate interface flexible work with any BCVTB server that follows the protocol described in section 
3.3. The file must be named ‘variables.cfg’ in order for the interface program to locate and interpret it correctly.  
Figure 11 shows a sample configuration file. Lines 1 and 2 are standard XML declarations and the actual 
instructions are enclosed in between the <BCVTB-variables> </BCVTB-variables> tags1 between lines 3 and 21. In 
this particular configuration file, three tags are used: Lux_C, CntlC and OperC; the former two are for acquiring 
sensor information and the last one is for sending control commands to actuate the venetian blind and electric lights. 
These are specified in the variable tag (<variable></variable>) in the XML file. 

                                                           
1A markup construct enclosed in a pair of angle brackets, e.g. <label> or </label>, is referred to as a tag in XML, 
which should not be confused with the ‘tag’ introduced in section 3.3. Therefore, ‘BCVTB tag’, instead of just  
‘tag’, will be used wherever possible when referring to the tags used in the BCVTB protocol.  
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Figure 11 Sample configuration file (variable.cfg). 

 
Starting from line 4, the access tag contains the information about the BCVTB server. The url attribute specifies the 
IP address and port number (if different from standard HTTP port 80) for establishing the connection to the BCVTB 
server. The password attribute stores the password required to access the BCVTB server. Lines 5 to 8 specify how 
the BCVTB tag Lux_C should be used. The type attribute in the variable tag indicates whether the value in the name 
attribute is a BCVTB tag for acquiring sensor readings or for sending control command. Only two values are 
recognized as the type: sensor for sensor readings or control for control commands. The total attribute must be equal 
to the total number of readings/commands attached to the BCVTB tag. In this case, Lux_C is a BCVTB tag for 
acquiring light sensor readings, and there are 16 sensor readings attached to this particular BCVTB tag, i.e. N=16 in 
Figure 6. However, in this example, not all 16 readings are needed for the application, but only the 13th and 14th 
readings are of interest. This is specified in the use tag in lines 6 and 7. The order attribute indicates the order of the 
variable of interest in the readings string following the BCVTB tag. The definition attribute is not actually 
interpreted by the surrogate interface but is there for users’ convenience to note the name or purpose of the particular 
reading. Lines 9 to 13, similar to lines 5 to 8, contain information on how the BCVTB tag CntlC should be used.  
Lines 14 to 19 are also very similar to that just described, but this section is for sending control commands as the 
value in the type attribute suggests. A critical difference is that for a control type, the values attached to the 
corresponding BCVTB tag cannot be selectively omitted like the case of sensor type. In other words, the number of 
use tags must be equal to the value in the total attribute. This is because there is no way for the surrogate interface to 
anticipate a missing control command and still assemble a correct command string to send to the BCVTB server. It 
should become clear by now that the BCVTB tag and the number of readings attached to it can be quite arbitrary as 
long as they are correctly specified in the configuration file, and the BCVTB tags mentioned in Table 2 are merely a 
sample instantiation. 
 
Another important functionality of the surrogate BCVTB interface is to create a socket to the Simulator so that the 
data can be exchanged through Ptolemy II, the core of BCVTB. This is realized following the message format 
specified by the Simulator [1]. 
 
Using the information in the configuration file, the surrogate interface assembles the HTTP requests in the form of 
Figure 5 and sends it to the BCVTB server for acquiring sensor readings. In the example in Figure 11, two URLs 
will be assembled and sent as shown in the first two rows in  
Figure 12. The BCVTB server will in turn respond with two reading strings corresponding to the Lux_C and CntlC 
tags back to the interface like the ones in the 3rd and 4th row in  
Figure 12. Upon receiving the two responses, the interface parses and extracts only the readings of interest and 
assembles them into a string in the message format as illustrated in the 5th row in  
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Figure 12, where the first five numbers are the designated header for the message string. The string is then written to 
the socket established between the interface and the Simulator. The Simulator subsequently transforms the received 
string message into an array of double precision floating-point numbers, as shown in the 6th row in  
Figure 12, and puts them to Ptolemy II. These values are then routed to other co-simulated programs according to 
the BCVTB configuration such as the one in Figure 2 for making control decisions.  
 
The control decisions generated by other co-simulated programs are routed back to the Simulator in the BCVTB 
configuration as an array of double precision floating-point numbers (7th row in  
Figure 12). The Simulator transforms the numbers in the array into a string message with a prescribed header as 
illustrated in the 8th row in  
Figure 12. The surrogate interface reads the string message from the established socket. A control URL, last row in  
Figure 12, is then assembled by the interface based on the information contained in the configuration file and sent to 
the BCVTB server to actuate the hardware. 
 

http:// 131.243.168.15:7100/PSWD?Lux_C HTTP requests from the surrogate 
interface to the BCVTB server 

http:// 131.243.168.15:7100/PSWD?CntlC 

Lux_C rdgL1,rdgL2,rdgL3,…,rdgL16,; HTTP responses from the BCVTB 
server to the surrogate interface 

CntlC rdgC1,rdgC2,rdgC3,…,rdgC30,; 

A string of readings from the 
surrogate interface to the Simulator  1  0  5  0  0  rdgL13  rdgL14  rdgC4  rdgC6  rdgC21 

An array of double values from the 
Simulator to Ptolemy II [rdgL13  rdgL14  rdgC4  rdgC6  rdgC21] 

An array of double values from 
Ptolemy II to the Simulator  [cmd1  cmd2  cmd3  cmd4  cmd5] 

A string of readings from the 
simulator to the surrogate interface 1  0  5  0  0  cmd1  cmd2  cmd3  cmd4  cmd5 

HTTP request from the surrogate 
interface to the BCVTB server http:// 131.243.168.15:7100/PSWD?OperCcmd1,cmd2,cmd3,cmd4,cmd5; 

 

Figure 12 Sample data processing in the surrogate interface. 

 
Since the communication between the interface and the BCVTB server is through the Internet, the computer running 
BCVTB and the corresponding co-simulated programs does not need to physically be in the testing facility or in the 
same place as the BCVTB server. This also fulfills one of the design requirements identified in section 3.1. 
Special attention should be given to the BCVTB tag All_X as an exception has been implemented should this 
specific tag be used for the reason explained in section 3.3. Figure 13 shows a slightly different configuration file 
compared to that in  
Figure 12 but with the same functionality. Notice that the All_C tag is specified in line 5 with a value of 0 for the 
total attribute. When the surrogate interface sees this line, it will only generate a single HTTP request using the 
All_C tag to acquire all sensor readings from the BCVTB server. The interface subsequently uses the rest of the 
information in the configuration file to process the returned readings in a similar manner as described before.  
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Figure 13 Sample configuration file (variables.cfg) including the All_C tag. 

 
4. Control algorithm implementation 
 
Based on the development in section 3, this section describes a specific instantiation of such a BCVTB control 
application that has been implemented and tested in the Advanced Windows Testing Facility.  
 
4.1. BCVTB configuration and setup 
 
The main objective for the implemented application was to regulate a constant task illuminance in the testing room 
with a combined control of electric light and venetian blind, hence daylight. The task illuminance certainly should 
not be too low so as to impair the performance of visual tasks. On the other hand, glare and unnecessary energy 
consumption may also accompany excessive levels of task illuminance. In particular, the control algorithm was 
designed to maintain the task illuminance at 500 lux2. 
 
The dimmable electric lights that have originally been in place were utilized as the source of artificial light. An 
interior venetian blind with 2-inch slat and matte white color was connected to the blind driver for regulating 
admitted daylight. The block diagram in Figure 14 shows the actual setup of the BCVTB control framework in the 
Advanced Windows Testing Facility. Blue arrows in the diagram indicate the sensor data flow, while red arrows 
represent the flow of control commands. Blocks enclosed in the green dashed box are the delicate monitoring and 
control infrastructure that has already been in place for various tests conducted in the facility prior to this 
implementation. A dedicated LabVIEW program interfaces the newly created BCVTB server with the existing 
infrastructure. As mentioned before, several sensors that are not originally deployed in the existing infrastructure 
were added to an extra channel, tagged Xtra_, and the BCVTB server directly acquires those sensor readings without 
going through the data acquisition machine. This is for the purpose of not disturbing the original data acquisition 
setup in the facility. 

                                                           
2 The task illuminance in this test was referred to and assessed against the two photometers at desk height (30 inches) 
close to the two desks, one of which was as against the west wall and the other was against the east wall. 
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Figure 14 BCVTB control setup in the testing facility. 

 
In this particular setup, the control and extra data (sensor data attached to the CntlC and Xtra_ tags in Table 2) are 
updated every 12 seconds, and the corresponding data strings stored on the BCVTB server are updated accordingly. 
In the mean time, the latest control commands from the BCVTB surrogate interface will only be sent to the control 
machine for execution at the multiple of 12 seconds according to the server’s clock no matter when they were 
actually received. The other monitoring sensor data (sensor readings attached to other tags in Table 2) are acquired 
every 60 seconds by a dedicated data acquisition machine as established before the BCVTB framework was 
implemented, and the corresponding data strings on the BCVTB server are then updated in accordance. 
In addition, a database was commissioned, as shown in Figure 14, to store all the control and sensor data for future 
analysis. A standalone Java program, also packaged into a JAR file, was created to query the BCVTB server for 
sensor data in the same way as the BCVTB interface, i.e. using the URL in Figure 5 with the All_X tag, and store the 
data into the database.  
 
Figure 15 shows the actual BCVTB configuration for this implementation that realizes the BCVTB configuration 
block in Figure 14. Two Simulator actors are used for co-simulation of Matlab and the BCVTB surrogate interface. 
The Matlab block is a Simulator hosting Matlab, which runs the control algorithm script. The other Simulator, the 
LabVIEW block, hosts the BCVTB interface that communicates with the BCVTB server for sensor readings and 
hardware actuation commands.  The time step of this configuration is set to be 12 seconds, same as the minimal data 
update rate at the BCVTB server. For the convenience of runtime visualization, the sensor readings output from the 
BCVTB interface are displayed in a separate window using a Display actor (the sensor readings block). Similarly, 
the control decisions calculated by the Matlab script are also shown in a separate window by another Display actor 
(the Control Values block). The blocks at the bottom of Figure 15 show two time information; the ‘Time in 
Simulation’ block carries the theoretical time passed since the program starts, i.e. number of complete time steps 
multiplied by the duration of a time step (12 seconds), and the ‘Execution Time’ block shows the actual time that 
has elapsed. Notice that the ‘Execution Time’ should always be greater or equal to the ‘Time in Simulation’ due to 
real-world delays caused by computation, network, etc. 
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Figure 15 BCVTB configuration for actual implementation in the facility. 

 

4.2. Closed-loop control 
 
The control system realized using the BCVTB framework was implemented in a closed-loop fashion. The benefits 
of closed-loop control are two-fold: the control decisions can be made based on the outcomes of previous decisions, 
and the requirements on hardware resolution and precision can be relieved. Take venetian blinds for instance, it will 
be extremely difficult, if not impossible, to tilt the slats to the exact desired angle due to the difference in motor, 
tilting mechanism, etc., intrinsic to each individual blind. Furthermore, it can be even more challenging or 
computationally expensive to figure out the exact amount of daylight that will be admitted into the space at a given 
slat angle. 
 
The most important feedback information was the ceiling-mounted control photosensor readings. Based on the 
readings from the particular sensor, the control algorithm in Matlab determined how to actuate the electric lights and 
the venetian blind slats to maintain the 500 lux task illuminance. The exterior global and direct illuminance readings 
were also incorporated to help the control algorithm make decisions on deploying/retracting the blind. 
Other than the above functional feedback, several operational feedbacks were also found to be crucial in order for a 
successful feedback lighting control system with short time step, such as a time step less than one minute. There will 
always be discrepancies between the time when the control commands were sent to the BCVTB server and the time 
when the commands were actually executed. The delay, as will be discussed in depth in the next section, could span 
the duration of several time steps in the worst-case scenario. Therefore, blindly making control decisions without 
knowing that the previous commands have been in effect could easily cause the system to oscillate or even become 
unstable. Therefore, the dimming ballast voltage and the venetian blind slat angle on the control sensor channel (data 
with CntlC tag) were used as the operational feedbacks. The Matlab control algorithm will keep track of the 
previous commands, compare to the operational feedback data, and only calculate and issue new commands after the 
previous ones have been executed. 
 

 

5. Potential challenges 
 
Several potential challenges have been identified during the process of implementing the BCVTB control 
framework at the Advanced Windows Testing Facility. This section will discuss the challenges in detail and 
recommend possible improvements. 
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5.1. Latency 
 
Latency can be an issue when the BCVTB time step is too close to the data acquiring/updating frequency. As hinted 
in the previous section, there are several sources of delays: the delay caused by the BCVTB server implementing 
commands, unsynchronized/staggered timing for sensor data acquisition and network delay. In this particular 
implementation, the BCVTB server only executes the commands every 12 seconds according to its own clock. In 
other words, control commands received at any time in between will not be in effect until next multiple of 12 
seconds. For example, a command received by the server at the 13th second will be executed at the 24th second, 
which then results in a delay of 11 seconds. 
 
The unsynchronized/staggered timing for sensor data acquisition may also cause latency. It is a very practical and 
inevitable problem since each single data acquisition process requires a little amount of time, and thus it is 
impossible to acquire all sensor data simultaneously. It is potentially more challenging to synchronize the data 
acquisition time with the control command execution cycle. For both the functional and operational feedback 
described in section 4.2, the control algorithm may still see the old sensor data from the BCVTB server if an updated 
reading has not been acquired even though the control command has been executed. In this case, a new control 
decision can only be made at the next time step, causing at least one time step delay (12 seconds) on top of other 
latencies. 
 
Network delay can be the most unpredictable source of delay, especially when the data/commands have to go 
through several routers between the control machine and the BCVTB server. During the testing period, a delay of 
several seconds was commonly observed. Notice that these delays actually happened even though both machines 
were on the LBNL Ethernet without many intermediate routers in between.  
 
It is recommended that the 12-second updating cycle of the BCVTB server be reduced, if possible, in order to 
respond to control commands more promptly. One possible way to mitigate the delay caused by unsynchronized 
sensor data acquisition timing could be to make the control sensor data acquisitions follow the execution of control 
commands. In other words, the BCVTB server should acquire the control sensor data immediately after it executes 
the latest control commands (or with a slight delay to allow the hardware to settle). 
 
5.2. Control acknowledgement 
 
This issue is closely related to the latency issue discussed above. The acknowledgement from the BCVTB server 
upon receiving control commands does not imply that the commands have been executed. In the current setup, when 
a control command is issued from the BCVTB interface (Figure 8), the BCVTB server echoes back the command 
string (Figure 9) immediately as a means for acknowledging a successful network communication. This mechanism, 
however, does not give the client any information about whether the commands have been in effect. As a result, a 
separately operational feedback as described in section 4.2 has to be in place so as to indicate the timing and 
successfulness of executing the control commands. 
 
For future implementation, the BCVTB server acknowledgement mechanism should include both network 
communication and command execution. The most straightforward way would be for the BCVTB server to only 
echo back the received commands or send back any indicative message after the commands have been executed. 
This approach could, however, result in hanging of the BCVTB operation waiting for the acknowledgement from 
the server, and the duration of hanging depends on the execution cycle as discussed in previous subsection.   
 
5.3. Constrained time step 
 
The time step of the BCVTB control framework is constrained by the updating and execution cycle of the BCVTB 
server. In the particular implementation in the Advanced Windows Testing Facility, the time step cannot be smaller 
than the 12-second BCVTB server updating/execution cycle. This constraint should not be an issue for systems that 
do not need to be actuated frequently, such as the venetian blinds. However, for the electric lights to perform 
daylight dimming, it is desirable to dim the light continuously and smoothly in response to available daylight. A 
smooth dimming could not be achieved with a minimum interval of 12 seconds although the electric lighting system 
does possess such capability and resolution. As a result, electric lighting dimming was divided into 20 steps with a 
5% change in light output each step increment/decrement. Therefore, the response of electric light to daylight 
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variation was slow, especially when the latencies mentioned in section 5.1 were added on top of the relatively large 
time step. 
 
5.4. Restart with prescribed initial condition 
 
An initial condition has to be prescribed in each co-simulated program for BCVTB to start the first data exchange at 
time step 0. The state of final simulation results do not carry over to a new BCVTB simulation. When a BCVTB 
configuration is used for pure simulation, it makes perfect sense to start with certain initial condition since each 
simulation instance will be a complete run and the effects of initial conditions can eventually be negligible. For the 
BCVTB control framework, this requirement could pose a potential inconvenience. During a day-long control 
performance testing, many things can go wrong unexpectedly and force the tests to be temporarily stopped, 
including loss/interruption of network connection, flaws in the control algorithm, problems with hardware and 
computers, etc. While most of the issues can be corrected within minutes, BCVTB control always has to be restarted 
with the prescribed initial condition (electric lights off and blind retracted in this particular implementation) instead 
of being resumed from where it was stopped. 
 
One possible solution would be to add a mechanism in the control algorithm, the Matlab script in this particular case, 
to record the last status. The control algorithm can create and update a separate file every time new sensor readings 
are received and new control commands are sent. This static file will last even when the control script is stopped or 
closed. When a new BCVTB run is started, the control algorithm will then have the option to initialize itself with the 
last state by reading the status file. 
 

 

6. Conclusions 
 
A control framework built on the Building Controls Virtual Test Bed has been established and implemented in the 
Advanced Windows Testing Facility at the Lawrence Berkeley National Laboratory. The BCVTB, originally 
developed for co-simulation of domain-specific programs, was utilized as a means for rapid-prototyping control 
design and testing with physical systems. The corresponding protocol and interface developed makes this framework 
flexible for easy implementation. A 6-month test of an integrated electric lighting and venetian blind control 
algorithm has been successfully realized and tested in the facility leveraging this framework, and a detailed data 
analysis assessing the control performance is documented in a separate report. 
 
During the testing and implementation of this BCVTB control framework, several potential challenges have also 
been identified, including latency, insufficient acknowledging mechanism, constrained time step and fixed initial 
conditions. These challenges serve as considerations for further improvements in the future. 
 
While Matlab was the only co-simulated program running the control algorithm in the Advanced Windows Testing 
Facility implementation, other domain-specific program can potentially be used with this BCVTB control 
framework for more versatile building energy management. For example, EnergyPlus can be added for co-
simulation under the control framework. The sensor readings from the facility may be used to real-time calibrate the 
EnergyPlus building model. On the other hand, the control commands can simultaneously go into both the facility 
and a calibrated EnergyPlus model, and the resulting condition in the real and the virtual buildings can be compared 
for fault detection and other continuous commissioning purposes. 
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