
1

Philips Technical Report, April 30, 2011.

Rapid-Prototyping Control Implementation
using the Building Controls Virtual Test Bed

Yao-Jung Wen

Philips Research North America, 345 Scarborough Road, Briarcliff Manor, NY 10510
yao-jung.wen@philips.com

Abstract

This report documents the development of a rapid-prototyping control framework based on the Building Controls
Virtual Test Bed co-simulation software. The objective of the developed framework is to establish the separation
between the control algorithm and the physical systems such that the control algorithm can be rapidly revised and
implemented without having to physically swap the controllers. The corresponding protocols and interfaces are
designed for maximal flexibility, easy generalization and straightforward implementation. An instance of such
control framework has been realized in the Advanced Windows Testing Facility at the Lawrence Berkeley National
Laboratory and is used as a case study throughout this report.

Keyword: control; closed-loop; co-simulation; Building Control Virtual Test Bed; rapid-prototyping.

1. Introduction

This document reports the development of a rapid-prototyping implementation framework for the control of building
systems and components. The framework was realized in the Advanced Windows Testing Facility at the Lawrence
Berkeley National Laboratory for testing integrated electric lighting and venetian blind control algorithms developed
under the Philips-LBNL partnership. The experiences and lessons learned are also documented in this report.

1.1. Objective

The objective of the rapid-prototyping control framework is to create a platform for testing and tuning control
algorithms on building systems or components in the most efficient and the least intrusive manner. This framework
should easily allow multiple users to implement different controls on the same hardware setup at the designated time
slot without physically plugging in or unplugging their controllers. The control algorithms can even be implemented
remotely and communicate with the systems through the Internet.

1.2. Problem description

This work was motivated by the need of using the Advanced Windows Testing Facility for evaluating the control
algorithms developed under the Philips-LBNL partnership without disturbing the well-established routines and
setups that have already been in place. Scheduled tests run in this particular facility are cycled every few days
throughout a solstice-to-solstice period. Sharing the same hardware, including electric lights, venetian blind drivers,
sensors, etc. with other test setups, it presents a challenge to physically disconnect and reconnect a customized
controller quickly and correctly every time. Moreover, reprogramming a controller in order to populate a revision or

2

correction to a control algorithm may also be tedious. Therefore, a setup for rapidly implementing and switching
control algorithms is desirable for running customized control algorithms in such testing facility.

1.3. Solution approach

The Building Controls Virtual Test Bed (BCVTB) developed by the Simulation Group at LBNL was adopted for
establishing the rapid-prototyping control platform. BCVTB is essentially a simulation tool that enables co-
simulation of multiple domain-specific programs by coordinating and synchronizing runtime data exchange. In this
particular application, the hardware setup and the corresponding drivers in the testing facility are treated as a
program that has its own input/output. For instance, the input can be the signals to set the electric light level, blind
slat angle, etc., and the output may be the task illuminances, temperatures, and so on, acquired by the sensors. In the
meantime, the control algorithm is implemented as another program, and BCVTB manages the data exchange
between the two programs to establish a complete control loop.

Section 2 of this report provides an overview of BCVTB and the basic idea of exploiting it for real-time control
purposes. Section 3 details the development of each component for establishing the BCVTB control platform,
including the protocol and interface. The realization of such control framework in the Advanced Windows Testing
Facility is described in section 4, and the challenges encountered during the implementation are documented in
section 5. Section 6 concludes the work and points out potential future applications.

In the rest of this report, there will be a few terms that are used repetitively. These terms represent very different
things although they may seem very similar. The following table lists all the terms upfront along with short
descriptions so that the readers can always refer back to this table should any confusion occur.

Table 1 Terms used in the report.

Terms Description
BCVTB control
framework

This is the core of this report. It refers to how the BCVTB co-simulation
concept is used for physical implementation.

BCVTB configuration The configuration refers to a diagram representing how the data are routed
among all the actors. See Figure 2 and Figure 15 for example.

BCVTB server This is a server built exclusively for the BCVTB control framework, which
connects to the hardware and can be accessed through the Internet. See
section 3.1 for details.

BCVTB tag BCVTB tags are used in the protocol for communicating with the BCVTB
server designed exclusively for the BCVTB control framework. See section
3.3 for details and Table 2 for some sampled tags.

BCVTB (surrogate)
interface

This interface is a program hosted by the Simulator actor, and is created
exclusively for the BCVTB control framework. It establishes the connection
between the BCVTB server and the Simulator actor. The details are
described in section 3.4.

1.4. Intended audience

This document is intended to be a reference for establishing a rapid-prototyping control implementation framework.
It is for people who are interested in an alternative way of implementing and testing control algorithms. A basic
understanding of controls may be required in order to understand the overall concepts introduced herein. This report
provides the fundamental knowledge of building such a control platform and uses the realization in the Advanced
Windows Testing Facility as an example. However, it is not a tutorial of BCVTB or any control program, and one
will still need to acquire the ability of using BCVTB and possibly other script languages before being able to
establishing the control platform.

3

2. Building controls virtual test bed

The Building Controls Virtual Test Bed (BCVTB) is the key element of the rapid-prototyping control
implementation platform. This section provides a general description of BCVTB and how it is used for constructing
the control platform.

2.1. General idea and description

BCVTB is a software configuration that coordinates and synchronizes multiple simulation programs for runtime
data exchange and co-simulation [1]. It is based on Ptolemy II, a software framework supporting actor-oriented
design developed at UC Berkeley [2]. BCVTB creates a socket to the program it connects to such that the outputs of
the program are sent to BCVTB by writing to the socket while the program reads from the socket to get its inputs
from BCVTB. By creating multiple sockets, one to each program, data from the programs can be exchanged through
BCVTB. All programs essentially send their outputs to BCVTB and get their inputs from BCVTB. Figure 1 shows
the high-level illustration of a BCVTB co-simulation of several programs. The Simulator, a type of Actor in Ptolemy
II, creates a socket to the simulation programs that allows them to read/write data from/to BCVTB.

Figure 1 Illustration of a BCVTB co-simulation.

Although the input/output values are certainly meaningful to each co-simulated program, they are treated equally as
plain double-precision floating-point numbers in BCVTB. The BCVTB configuration determines which number is
exchanged among which programs. Figure 2 demonstrates an example of a BCVTB configuration, where three
programs are co-simulated. Each of the rectangles with white background is a Simulator that hosts a domain-specific
program, i.e. creates a socket to that program. Suppose program 1 takes three inputs and generates two outputs;
program 2 takes two inputs and generates three outputs; program 3 takes five inputs and generates five outputs. In
this particular configuration, the outputs from programs 1 and 2 are read by program 3 as its input through BCVTB,
and the first two outputs of program 3 are routed as the inputs of program 2 while the last three outputs are fed into
program 1 as its inputs. The slim blue rectangles are vector assemblers and dissemblers in that the data to/from a
Simulator must be in the form of a vector rather than a scalar.

4

Figure 2 Markup of a BCVTB configuration.

At the beginning of each time step, BCVTB blocks all the co-simulated programs and performs data exchange. Each
program sends its outputs to BCVTB and gets its inputs from BCVTB through Simulator socket writing and reading
respectively. As soon as the data exchange process is completed, BCVTB unblocks the operation of the programs,
and each program calculates and generates new outputs during the remaining of the time step based on the newly
acquired inputs. The new outputs will then get exchanged at the beginning of the next time step. The same process
repeats until the specified simulation time duration is achieved. Figure 3 illustrates the data exchange between two
simulation programs through BCVTB. The output of one program becomes the input to the other program; for
example, output 1 (Out 1 in red) from Program 1 at the first time step becomes the input (In 2 in red) to Program 2
at the second time step.

Figure 3 BCVTB data exchange at each time step.

2.2. Synchronized real-time simulation

As described in the previous section that data exchange in a BCVTB co-simulation takes place at the beginning of
each time step, and the simulation programs return to their normal operation right after that. It is desirable for the
programs to run as fast as possible in the simulated virtual world. However, for the implementation of control
algorithms, everything must be adhered to real time in order to account for the interactions with the physical world.
BCVTB conveniently allows the option of ‘synchronizing to real time’. It will be perfectly synchronized to real time
if all data exchange and calculations can be finished within the specified duration of a time step. Should any delay
longer than a time step occur due to various reasons, BCVTB will slightly speed up the following few time steps in
an attempt to catch up with the real time.

5

2.3. BCVTB for control implementation

There are quite a few different ways to use BCVTB for control implementation, and the method adopted in the
development of the framework reported herein is to use an interface that is capable of creating a socket to the
Simulator while connecting and communicating with the hardware. This interface is essentially a surrogate that can
be hosted by the Simulator to form a proper BCVTB configuration. The detail of this interface will be described in
the later section.

Figure 4 shows the basic idea of using BCVTB for real-world control implementations. This approach completely
separates the controller and the hardware. The controller can be realized in any program that can be hosted by the
Simulator, and Matlab is used here as an example. The surrogate interface needs to be able to speak in the same
language as the hardware in order to relay the data to/from BCVTB through the Simulator. In each time step, the
surrogate interface gets the sensor readings in the test facility and puts them to BCVTB so that the controller can
read in the readings and generates control decisions accordingly. In the meantime, the control commands are sent
from the controller to BCVTB, and the surrogate interface picks up the commands and sends to the driver in the test
facility to actuate the hardware.

Figure 4 BCVTB control architecture.

3. Retrofit the testing facility for BCVTB control

This section describes the design and implementation of the BCVTB framework in the Advanced Windows Testing
Facility. Although this particular realization was specific to the testing facility, the design was meant for being
generalized to other instances in a straightforward fashion.

3.1. Design requirements

The Advanced Windows Testing Facility is operated with standalone data acquisition and control infrastructures,
both of which are established in LabVIEW environments. Dedicated LabVIEW programs in the data acquisition
machine acquire readings from monitoring sensors and record the data on a minute by minute basis. The LabVIEW
control programs connect to the control sensors, acquire readings, make control decisions and actuate the hardware.
For the purpose of implementing the BCVTB framework, the following requirements were identified.

• Access the sensor readings on the existing data acquisition infrastructure.

• Inject control commands to actuate the hardware drivers on the existing control infrastructure.

• Minimal intrusion to the routines that are already running on the infrastructures.

• Preferably remote access to the facility.

• Maximal flexibility on selecting specific sensors and drivers.

• Accommodate future expansion of the data acquisition and control infrastructure.

6

In order to access the closed LabVIEW data acquisition and control environment, an additional server machine
(designated as the ‘BCVTB server’ thereafter) along with a LabVIEW program were added for interfacing with the
outside world through the Internet. Sensor readings are put out on the Internet for external access in response to
specific URL requests, and control commands in an established URL format are accepted by the LabVIEW control
programs to actuate the hardware. The following subsections describe the design of the components of the BCVTB
framework addressing each of the requirements.

3.2. Available information

The information available from the original monitoring and control infrastructure in the Advanced Windows Testing
Facility include

• 16 illuminance readings at various locations in each test cell;

• 15 temperature readings at various locations in each test cell;

• 11 wattage-related readings of various equipment in each test cell;

• 2 outdoor temperature readings;

• 14 external solar-related readings;

• 20 control-related readings for each test cell.

There are also spared channels for additional sensors in the future. This is the information that can be put out on the
Internet by the BCVTB server.

For each of the test cells in the facility, there are basically two systems that can be controlled, namely dimmable
electric lighting and window shading systems. Furthermore, the upper and lower parts of a shading system can be
controlled separately if the shades have the capability, and thus the heights (and slat angles for venetian blinds) can
be specified separately. In other words at most five control parameters can be specified in each test cell as follows.

• Lower shade (blind) height;

• Lower blind slat angle;

• Upper shade (blind) height;

• Upper blind slat angle;

• Electric light level.

7

3.3. Protocol

It was determined that getting each single reading one-by-one would be too cumbersome and could easily eat up
network bandwidth if accessed through the Internet. Therefore, the readings are classified into a few groups and put
out on the Internet as a string, one for each group. Each group is tagged with a 5-letter label. The clients that request
the readings are responsible for parsing the string and extracting only the readings of interest. The tags of each group
and their associated members are summarized in Table 2.

Table 2 Sensor reading groups.

Tag Name Members
LuxsX The 16 illuminance readings. X represents the test cell number (A, B or C).
TempX The 15 temperature readings and the two outdoor temperature readings. X represents

the test cell number (A, B, or C).
WattX The 11 wattage-related readings. X represents the test cell number (A, B or C).
Sun__ The 14 external solar-related readings. Same for each test cell.
CntlX The 20 control-related readings. X represents the test cell number (A, B or C).
Xtra_ Spared channels for additional sensor readings in the future.
All_X All the above readings. X represents the test cell number (A, B or C).

To add a layer of security and ownership when accessing the sensor readings from the Internet, a 4-letter password
is added to the protocol, and the BCVTB server only responds with the requested string of readings if the password
matches the record on file. In short, the URL for requesting a specific string of sensor readings takes the form in
Figure 5, where 131.243.168.15 is the IP address of the BCVTB server, which can also be a domain name if
available; 7100 is the port number opened for the communication (if different from the conventional HTTP port 80);
pswd is the 4-letter password, and Tag__ is one of the 5-letter tags in Table 2.

http:// 131.243.168.15:7100/pswd?Tag__

Figure 5 Sensor reading request URL format.

The BCVTB server responds to a URL request with a string of sensor readings in the following format (Figure 6),
where Tag__ is the same 5-letter tag in the request, and the readings from the N sensors in the specific group are
delimited by commas. The last semicolon in the string signifies the end of the group of readings. As mentioned
earlier, it is up to the requesting client to extract only the numbers of interest from the group of readings. The
purpose of repeating the 5-letter tag in the string is to help the requesting client verify its validity and distinguish
among the responses if more than one is expected (in the case of the All_X tag). The commas and semicolon should
help the client to easily and correctly parse the string into N separate readings.

Tag__ rdg1,rdg2,rdg3,…,rdgN,;

Figure 6 Responding string format for a specific tag (except the All_X tag); rdg stands for “reading”.

Notice that there is no mechanism in the protocol for mapping a specific sensor in a group to the order of its reading
in the string, and this relationship must be pre-established and agreed upon between the server and client sides.
A special tag, the All_X tag in the last row of Table 2, is created when at least one sensor reading in each group of
sensors is needed. In this case, the client can get all the readings at once with a single request and simply look for the
readings of interest. This, again, relieves the burden on the network and speeds up the process for acquiring
necessary readings from the server. The responding string will not start with the tag All_X but will return the
concatenation of all responding strings for room X as illustrated in Figure 7.

8

CntlX rdg1,…,rdgNC,;Lux_X rdg1,…,rdgNL,;TempX rdg1,…,rdgNT,;WattX rdg1,…,rdgNW,;SunX
rdg1,…,rdgNS,;XtraX rdg1,…,rdgNX,;

Figure 7 Responding string format for All_X tag; rdg stands for “reading”.

The protocol for issuing control commands from the client side takes a similar format as the sensor readings
requesting URL as shown in Figure 8. The tag OperX signifies that it is a command for actuating the system drivers,
and cmd1 through cmd5 are the control commands for lower shade/blind height, lower blind tilt, upper shade/blind
height, upper blind tilt and electric light level in the case of the particular testing facility.

http:// 131.243.168.15:7100/pswd?OperXcmd1,cmd2,cmd3,cmd4,cmd5;

Figure 8 Control command URL format; cmd stands for “command”.

Upon receiving the command, the BCVTB server will echo the command part of the requesting URL back to the
client as illustrated in Figure 9. It is up to the client to make use of the acknowledgement from the server for
verification or other purposes.

OperXcmd1,cmd2,cmd3,cmd4,cmd5;

Figure 9 Control command acknowledgement format; cmd stands for “command”.

This protocol should provide maximal flexibility for future extension or for being generalized to other projects.
More groups of sensors can be added with different tags, more members can be assigned to the same tagging group,
and more control commands are also allowed for actuating more systems.

3.4. BCVTB interface

The BCVTB interface is the surrogate interface that communicates with the BCVTB server as a client while
connecting to BCVTB through the Simulator actor (see section 2.3). Based on the protocol developed in the
previous section, the development objective of this BCVTB interface is to ensure maximal flexibility so that it can
talk to any BCVTB server that complies with the protocol. In other words, the interface itself should not require any
revision in the case of more tags, different tag names, different sensor grouping, or more control commands.
The BCVTB interface is written in Java and packaged into an executable JAR file. The flexibility is provided
through a separate XML configuration file. Figure 10 shows an example of the BCVTB control framework and
illustrates where the surrogate interface and the associated configuration file fit in. The interface is thus responsible
for performing the following three tasks.

• Interpret the configuration file for operational instructions.

• Construct and transmit URL’s to the BCVTB server based on the information from its hosting Simulator.

• Parse the information from BCVTB server and relay to its hosting Simulator.

In addition, a time step and start time are also required in a BCVTB configuration so that the Simulators can be
synchronized, properly started and ended. The start time and time step must be consistent across all Simulators and
the hosted programs in the same BCVTB configuration. These two values are specified as input arguments to the
surrogate interface JAR file.

9

Figure 10 Example of the BCVTB framework with the surrogate interface.

The configuration file is in XML (extensible markup language) format and instructs the interface how to access the
BCVTB server, what tags are used, and which specific variables are of interest. It is this configuration file that
makes the surrogate interface flexible work with any BCVTB server that follows the protocol described in section
3.3. The file must be named ‘variables.cfg’ in order for the interface program to locate and interpret it correctly.
Figure 11 shows a sample configuration file. Lines 1 and 2 are standard XML declarations and the actual
instructions are enclosed in between the <BCVTB-variables> </BCVTB-variables> tags1 between lines 3 and 21. In
this particular configuration file, three tags are used: Lux_C, CntlC and OperC; the former two are for acquiring
sensor information and the last one is for sending control commands to actuate the venetian blind and electric lights.
These are specified in the variable tag (<variable></variable>) in the XML file.

1A markup construct enclosed in a pair of angle brackets, e.g. <label> or </label>, is referred to as a tag in XML,
which should not be confused with the ‘tag’ introduced in section 3.3. Therefore, ‘BCVTB tag’, instead of just
‘tag’, will be used wherever possible when referring to the tags used in the BCVTB protocol.

10

Figure 11 Sample configuration file (variable.cfg).

Starting from line 4, the access tag contains the information about the BCVTB server. The url attribute specifies the
IP address and port number (if different from standard HTTP port 80) for establishing the connection to the BCVTB
server. The password attribute stores the password required to access the BCVTB server. Lines 5 to 8 specify how
the BCVTB tag Lux_C should be used. The type attribute in the variable tag indicates whether the value in the name
attribute is a BCVTB tag for acquiring sensor readings or for sending control command. Only two values are
recognized as the type: sensor for sensor readings or control for control commands. The total attribute must be equal
to the total number of readings/commands attached to the BCVTB tag. In this case, Lux_C is a BCVTB tag for
acquiring light sensor readings, and there are 16 sensor readings attached to this particular BCVTB tag, i.e. N=16 in
Figure 6. However, in this example, not all 16 readings are needed for the application, but only the 13th and 14th
readings are of interest. This is specified in the use tag in lines 6 and 7. The order attribute indicates the order of the
variable of interest in the readings string following the BCVTB tag. The definition attribute is not actually
interpreted by the surrogate interface but is there for users’ convenience to note the name or purpose of the particular
reading. Lines 9 to 13, similar to lines 5 to 8, contain information on how the BCVTB tag CntlC should be used.
Lines 14 to 19 are also very similar to that just described, but this section is for sending control commands as the
value in the type attribute suggests. A critical difference is that for a control type, the values attached to the
corresponding BCVTB tag cannot be selectively omitted like the case of sensor type. In other words, the number of
use tags must be equal to the value in the total attribute. This is because there is no way for the surrogate interface to
anticipate a missing control command and still assemble a correct command string to send to the BCVTB server. It
should become clear by now that the BCVTB tag and the number of readings attached to it can be quite arbitrary as
long as they are correctly specified in the configuration file, and the BCVTB tags mentioned in Table 2 are merely a
sample instantiation.

Another important functionality of the surrogate BCVTB interface is to create a socket to the Simulator so that the
data can be exchanged through Ptolemy II, the core of BCVTB. This is realized following the message format
specified by the Simulator [1].

Using the information in the configuration file, the surrogate interface assembles the HTTP requests in the form of
Figure 5 and sends it to the BCVTB server for acquiring sensor readings. In the example in Figure 11, two URLs
will be assembled and sent as shown in the first two rows in
Figure 12. The BCVTB server will in turn respond with two reading strings corresponding to the Lux_C and CntlC
tags back to the interface like the ones in the 3rd and 4th row in
Figure 12. Upon receiving the two responses, the interface parses and extracts only the readings of interest and
assembles them into a string in the message format as illustrated in the 5th row in

11

Figure 12, where the first five numbers are the designated header for the message string. The string is then written to
the socket established between the interface and the Simulator. The Simulator subsequently transforms the received
string message into an array of double precision floating-point numbers, as shown in the 6th row in
Figure 12, and puts them to Ptolemy II. These values are then routed to other co-simulated programs according to
the BCVTB configuration such as the one in Figure 2 for making control decisions.

The control decisions generated by other co-simulated programs are routed back to the Simulator in the BCVTB
configuration as an array of double precision floating-point numbers (7th row in
Figure 12). The Simulator transforms the numbers in the array into a string message with a prescribed header as
illustrated in the 8th row in
Figure 12. The surrogate interface reads the string message from the established socket. A control URL, last row in
Figure 12, is then assembled by the interface based on the information contained in the configuration file and sent to
the BCVTB server to actuate the hardware.

http:// 131.243.168.15:7100/PSWD?Lux_C HTTP requests from the surrogate
interface to the BCVTB server

http:// 131.243.168.15:7100/PSWD?CntlC

Lux_C rdgL1,rdgL2,rdgL3,…,rdgL16,; HTTP responses from the BCVTB
server to the surrogate interface

CntlC rdgC1,rdgC2,rdgC3,…,rdgC30,;

A string of readings from the
surrogate interface to the Simulator 1 0 5 0 0 rdgL13 rdgL14 rdgC4 rdgC6 rdgC21

An array of double values from the
Simulator to Ptolemy II [rdgL13 rdgL14 rdgC4 rdgC6 rdgC21]

An array of double values from
Ptolemy II to the Simulator [cmd1 cmd2 cmd3 cmd4 cmd5]

A string of readings from the
simulator to the surrogate interface 1 0 5 0 0 cmd1 cmd2 cmd3 cmd4 cmd5

HTTP request from the surrogate
interface to the BCVTB server http:// 131.243.168.15:7100/PSWD?OperCcmd1,cmd2,cmd3,cmd4,cmd5;

Figure 12 Sample data processing in the surrogate interface.

Since the communication between the interface and the BCVTB server is through the Internet, the computer running
BCVTB and the corresponding co-simulated programs does not need to physically be in the testing facility or in the
same place as the BCVTB server. This also fulfills one of the design requirements identified in section 3.1.
Special attention should be given to the BCVTB tag All_X as an exception has been implemented should this
specific tag be used for the reason explained in section 3.3. Figure 13 shows a slightly different configuration file
compared to that in
Figure 12 but with the same functionality. Notice that the All_C tag is specified in line 5 with a value of 0 for the
total attribute. When the surrogate interface sees this line, it will only generate a single HTTP request using the
All_C tag to acquire all sensor readings from the BCVTB server. The interface subsequently uses the rest of the
information in the configuration file to process the returned readings in a similar manner as described before.

12

Figure 13 Sample configuration file (variables.cfg) including the All_C tag.

4. Control algorithm implementation

Based on the development in section 3, this section describes a specific instantiation of such a BCVTB control
application that has been implemented and tested in the Advanced Windows Testing Facility.

4.1. BCVTB configuration and setup

The main objective for the implemented application was to regulate a constant task illuminance in the testing room
with a combined control of electric light and venetian blind, hence daylight. The task illuminance certainly should
not be too low so as to impair the performance of visual tasks. On the other hand, glare and unnecessary energy
consumption may also accompany excessive levels of task illuminance. In particular, the control algorithm was
designed to maintain the task illuminance at 500 lux2.

The dimmable electric lights that have originally been in place were utilized as the source of artificial light. An
interior venetian blind with 2-inch slat and matte white color was connected to the blind driver for regulating
admitted daylight. The block diagram in Figure 14 shows the actual setup of the BCVTB control framework in the
Advanced Windows Testing Facility. Blue arrows in the diagram indicate the sensor data flow, while red arrows
represent the flow of control commands. Blocks enclosed in the green dashed box are the delicate monitoring and
control infrastructure that has already been in place for various tests conducted in the facility prior to this
implementation. A dedicated LabVIEW program interfaces the newly created BCVTB server with the existing
infrastructure. As mentioned before, several sensors that are not originally deployed in the existing infrastructure
were added to an extra channel, tagged Xtra_, and the BCVTB server directly acquires those sensor readings without
going through the data acquisition machine. This is for the purpose of not disturbing the original data acquisition
setup in the facility.

2 The task illuminance in this test was referred to and assessed against the two photometers at desk height (30 inches)
close to the two desks, one of which was as against the west wall and the other was against the east wall.

13

Figure 14 BCVTB control setup in the testing facility.

In this particular setup, the control and extra data (sensor data attached to the CntlC and Xtra_ tags in Table 2) are
updated every 12 seconds, and the corresponding data strings stored on the BCVTB server are updated accordingly.
In the mean time, the latest control commands from the BCVTB surrogate interface will only be sent to the control
machine for execution at the multiple of 12 seconds according to the server’s clock no matter when they were
actually received. The other monitoring sensor data (sensor readings attached to other tags in Table 2) are acquired
every 60 seconds by a dedicated data acquisition machine as established before the BCVTB framework was
implemented, and the corresponding data strings on the BCVTB server are then updated in accordance.
In addition, a database was commissioned, as shown in Figure 14, to store all the control and sensor data for future
analysis. A standalone Java program, also packaged into a JAR file, was created to query the BCVTB server for
sensor data in the same way as the BCVTB interface, i.e. using the URL in Figure 5 with the All_X tag, and store the
data into the database.

Figure 15 shows the actual BCVTB configuration for this implementation that realizes the BCVTB configuration
block in Figure 14. Two Simulator actors are used for co-simulation of Matlab and the BCVTB surrogate interface.
The Matlab block is a Simulator hosting Matlab, which runs the control algorithm script. The other Simulator, the
LabVIEW block, hosts the BCVTB interface that communicates with the BCVTB server for sensor readings and
hardware actuation commands. The time step of this configuration is set to be 12 seconds, same as the minimal data
update rate at the BCVTB server. For the convenience of runtime visualization, the sensor readings output from the
BCVTB interface are displayed in a separate window using a Display actor (the sensor readings block). Similarly,
the control decisions calculated by the Matlab script are also shown in a separate window by another Display actor
(the Control Values block). The blocks at the bottom of Figure 15 show two time information; the ‘Time in
Simulation’ block carries the theoretical time passed since the program starts, i.e. number of complete time steps
multiplied by the duration of a time step (12 seconds), and the ‘Execution Time’ block shows the actual time that
has elapsed. Notice that the ‘Execution Time’ should always be greater or equal to the ‘Time in Simulation’ due to
real-world delays caused by computation, network, etc.

14

Figure 15 BCVTB configuration for actual implementation in the facility.

4.2. Closed-loop control

The control system realized using the BCVTB framework was implemented in a closed-loop fashion. The benefits
of closed-loop control are two-fold: the control decisions can be made based on the outcomes of previous decisions,
and the requirements on hardware resolution and precision can be relieved. Take venetian blinds for instance, it will
be extremely difficult, if not impossible, to tilt the slats to the exact desired angle due to the difference in motor,
tilting mechanism, etc., intrinsic to each individual blind. Furthermore, it can be even more challenging or
computationally expensive to figure out the exact amount of daylight that will be admitted into the space at a given
slat angle.

The most important feedback information was the ceiling-mounted control photosensor readings. Based on the
readings from the particular sensor, the control algorithm in Matlab determined how to actuate the electric lights and
the venetian blind slats to maintain the 500 lux task illuminance. The exterior global and direct illuminance readings
were also incorporated to help the control algorithm make decisions on deploying/retracting the blind.
Other than the above functional feedback, several operational feedbacks were also found to be crucial in order for a
successful feedback lighting control system with short time step, such as a time step less than one minute. There will
always be discrepancies between the time when the control commands were sent to the BCVTB server and the time
when the commands were actually executed. The delay, as will be discussed in depth in the next section, could span
the duration of several time steps in the worst-case scenario. Therefore, blindly making control decisions without
knowing that the previous commands have been in effect could easily cause the system to oscillate or even become
unstable. Therefore, the dimming ballast voltage and the venetian blind slat angle on the control sensor channel (data
with CntlC tag) were used as the operational feedbacks. The Matlab control algorithm will keep track of the
previous commands, compare to the operational feedback data, and only calculate and issue new commands after the
previous ones have been executed.

5. Potential challenges

Several potential challenges have been identified during the process of implementing the BCVTB control
framework at the Advanced Windows Testing Facility. This section will discuss the challenges in detail and
recommend possible improvements.

15

5.1. Latency

Latency can be an issue when the BCVTB time step is too close to the data acquiring/updating frequency. As hinted
in the previous section, there are several sources of delays: the delay caused by the BCVTB server implementing
commands, unsynchronized/staggered timing for sensor data acquisition and network delay. In this particular
implementation, the BCVTB server only executes the commands every 12 seconds according to its own clock. In
other words, control commands received at any time in between will not be in effect until next multiple of 12
seconds. For example, a command received by the server at the 13th second will be executed at the 24th second,
which then results in a delay of 11 seconds.

The unsynchronized/staggered timing for sensor data acquisition may also cause latency. It is a very practical and
inevitable problem since each single data acquisition process requires a little amount of time, and thus it is
impossible to acquire all sensor data simultaneously. It is potentially more challenging to synchronize the data
acquisition time with the control command execution cycle. For both the functional and operational feedback
described in section 4.2, the control algorithm may still see the old sensor data from the BCVTB server if an updated
reading has not been acquired even though the control command has been executed. In this case, a new control
decision can only be made at the next time step, causing at least one time step delay (12 seconds) on top of other
latencies.

Network delay can be the most unpredictable source of delay, especially when the data/commands have to go
through several routers between the control machine and the BCVTB server. During the testing period, a delay of
several seconds was commonly observed. Notice that these delays actually happened even though both machines
were on the LBNL Ethernet without many intermediate routers in between.

It is recommended that the 12-second updating cycle of the BCVTB server be reduced, if possible, in order to
respond to control commands more promptly. One possible way to mitigate the delay caused by unsynchronized
sensor data acquisition timing could be to make the control sensor data acquisitions follow the execution of control
commands. In other words, the BCVTB server should acquire the control sensor data immediately after it executes
the latest control commands (or with a slight delay to allow the hardware to settle).

5.2. Control acknowledgement

This issue is closely related to the latency issue discussed above. The acknowledgement from the BCVTB server
upon receiving control commands does not imply that the commands have been executed. In the current setup, when
a control command is issued from the BCVTB interface (Figure 8), the BCVTB server echoes back the command
string (Figure 9) immediately as a means for acknowledging a successful network communication. This mechanism,
however, does not give the client any information about whether the commands have been in effect. As a result, a
separately operational feedback as described in section 4.2 has to be in place so as to indicate the timing and
successfulness of executing the control commands.

For future implementation, the BCVTB server acknowledgement mechanism should include both network
communication and command execution. The most straightforward way would be for the BCVTB server to only
echo back the received commands or send back any indicative message after the commands have been executed.
This approach could, however, result in hanging of the BCVTB operation waiting for the acknowledgement from
the server, and the duration of hanging depends on the execution cycle as discussed in previous subsection.

5.3. Constrained time step

The time step of the BCVTB control framework is constrained by the updating and execution cycle of the BCVTB
server. In the particular implementation in the Advanced Windows Testing Facility, the time step cannot be smaller
than the 12-second BCVTB server updating/execution cycle. This constraint should not be an issue for systems that
do not need to be actuated frequently, such as the venetian blinds. However, for the electric lights to perform
daylight dimming, it is desirable to dim the light continuously and smoothly in response to available daylight. A
smooth dimming could not be achieved with a minimum interval of 12 seconds although the electric lighting system
does possess such capability and resolution. As a result, electric lighting dimming was divided into 20 steps with a
5% change in light output each step increment/decrement. Therefore, the response of electric light to daylight

16

variation was slow, especially when the latencies mentioned in section 5.1 were added on top of the relatively large
time step.

5.4. Restart with prescribed initial condition

An initial condition has to be prescribed in each co-simulated program for BCVTB to start the first data exchange at
time step 0. The state of final simulation results do not carry over to a new BCVTB simulation. When a BCVTB
configuration is used for pure simulation, it makes perfect sense to start with certain initial condition since each
simulation instance will be a complete run and the effects of initial conditions can eventually be negligible. For the
BCVTB control framework, this requirement could pose a potential inconvenience. During a day-long control
performance testing, many things can go wrong unexpectedly and force the tests to be temporarily stopped,
including loss/interruption of network connection, flaws in the control algorithm, problems with hardware and
computers, etc. While most of the issues can be corrected within minutes, BCVTB control always has to be restarted
with the prescribed initial condition (electric lights off and blind retracted in this particular implementation) instead
of being resumed from where it was stopped.

One possible solution would be to add a mechanism in the control algorithm, the Matlab script in this particular case,
to record the last status. The control algorithm can create and update a separate file every time new sensor readings
are received and new control commands are sent. This static file will last even when the control script is stopped or
closed. When a new BCVTB run is started, the control algorithm will then have the option to initialize itself with the
last state by reading the status file.

6. Conclusions

A control framework built on the Building Controls Virtual Test Bed has been established and implemented in the
Advanced Windows Testing Facility at the Lawrence Berkeley National Laboratory. The BCVTB, originally
developed for co-simulation of domain-specific programs, was utilized as a means for rapid-prototyping control
design and testing with physical systems. The corresponding protocol and interface developed makes this framework
flexible for easy implementation. A 6-month test of an integrated electric lighting and venetian blind control
algorithm has been successfully realized and tested in the facility leveraging this framework, and a detailed data
analysis assessing the control performance is documented in a separate report.

During the testing and implementation of this BCVTB control framework, several potential challenges have also
been identified, including latency, insufficient acknowledging mechanism, constrained time step and fixed initial
conditions. These challenges serve as considerations for further improvements in the future.

While Matlab was the only co-simulated program running the control algorithm in the Advanced Windows Testing
Facility implementation, other domain-specific program can potentially be used with this BCVTB control
framework for more versatile building energy management. For example, EnergyPlus can be added for co-
simulation under the control framework. The sensor readings from the facility may be used to real-time calibrate the
EnergyPlus building model. On the other hand, the control commands can simultaneously go into both the facility
and a calibrated EnergyPlus model, and the resulting condition in the real and the virtual buildings can be compared
for fault detection and other continuous commissioning purposes.

Acknowledgement

We would like to acknowledge Mr. Dennis DiBartolomeo for his significant contribution on building the BCVTB
server and the corresponding LabVIEW interfacing with the existing sensing and control infrastructures. He also
provided valuable suggestions and insight into the development of the BCVTB rapid-prototyping control framework.
We also thank Dr. Michael Wetter, the original developer of BCVTB, for his consultancy during the development of
this work. We are also grateful for Ms. Eleanor Lee’s support on implementing the developed framework in the
Advanced Windows Testing Facility.

17

References

[1] M. Wetter, Building Controls Virtual Test Bed. [Computer software]. Available at https://gaia.lbl.gov/bcvtb.

[2] J. Eker, J. Janneck, E.A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs and Y. Xiong, “Taming heterogeneity - the
Ptolemy approach,” Proceedings of the IEEE, 91(1), 2003, pp. 127-144.

