
 

SPARK 2.0 
REFERENCE MANUAL 

 
Simulation Problem Analysis and Research Kernel 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 1997-2003 
Lawrence Berkeley National Laboratory 

Ayres Sowell Associates, Inc. 
Pending approval of the U.S. Department of Energy.  All rights reserved. 

This work was supported by the Assistant Secretary for Energy Efficiency and 
Renewable Energy, Office of Building Technologies Program of the  

U.S. Dept. of Energy. Contract No. DE-AC03-76SF00098.
 

 



SPARK 2.0 Reference Manual 

TABLE OF CONTENTS 

TABLE OF CONTENTS ................................................................................................................................................II 

FOREWORD ................................................................................................................................................................VII 

LICENSES AND COPYRIGHTS............................................................................................................................. VIII 

TEXT CONVENTIONS ............................................................................................................................................... IX 

1 INTRODUCTION ...................................................................................................................................................1 
1.1 WHAT IS SPARK? ..............................................................................................................................................1 
1.2 KINDS OF PROBLEMS THAT SPARK CAN SOLVE ................................................................................................1 
1.3 DESCRIBING PROBLEMS FOR SPARK SOLUTION ................................................................................................1 
1.4 PORTABILITY AND USER INTERFACES................................................................................................................3 
1.5 THE HISTORY OF SPARK ...................................................................................................................................3 
1.6 VERSIONS OF SPARK .........................................................................................................................................4 

2 BASIC METHODOLOGY .....................................................................................................................................5 
2.1 OVERVIEW AND TERMINOLOGY.........................................................................................................................5 
2.2 A PROBLEM WITH A SINGLE OBJECT..................................................................................................................6 

2.2.1 Running the SPARK Problem .......................................................................................................................7 
2.2.2 Arbitrary Input/Output Designation .............................................................................................................8 

2.3 PROBLEMS WITH SEVERAL OBJECTS ..................................................................................................................9 
2.4 PROBLEMS REQUIRING ITERATIVE SOLUTION ..................................................................................................11 
2.5 ITERATIVE SOLUTION AND BREAK VARIABLES................................................................................................13 
2.6 WELL-POSED PROBLEMS .................................................................................................................................14 

3 CREATING SINGLE-VALUED ATOMIC CLASSES ......................................................................................16 
3.1 CLASS DEFINITION...........................................................................................................................................16 

3.1.1 The PORT Statement..................................................................................................................................17 
3.1.2 The EQUATIONS Statement......................................................................................................................17 
3.1.3 The FUNCTIONS Statement......................................................................................................................17 

3.2 INVERSE FUNCTIONS DEFINITION.....................................................................................................................18 
3.2.1 Basic Structure of a Single-Valued EVALUATE Callback .........................................................................18 
3.2.2 Defining the C++ Callback Function.........................................................................................................19 
3.2.3 Defining the Argument Variables ...............................................................................................................19 
3.2.4 Calculating the Result Value ......................................................................................................................19 
3.2.5 Returning the Result Value .........................................................................................................................20 

3.3 SYMBOLIC PROCESSING ...................................................................................................................................20 
3.3.1 Simple Symbolic Processing .......................................................................................................................21 
3.3.2 Generating an Inverse ................................................................................................................................21 
3.3.3 Caveats .......................................................................................................................................................21 

4 CREATING MULTI-VALUED ATOMIC CLASSES.......................................................................................23 
4.1 MOTIVATION....................................................................................................................................................23 
4.2 LIMITATIONS....................................................................................................................................................24 
4.3 CLASS DEFINITION...........................................................................................................................................24 

4.3.1 The PORT Statement..................................................................................................................................25 
4.3.2 The EQUATIONS Statement......................................................................................................................26 
4.3.3 The FUNCTIONS Statement......................................................................................................................26 

4.4 INVERSE FUNCTION DEFINITION ......................................................................................................................26 
4.4.1 Defining the C++ Callback Function.........................................................................................................26 

ii 



SPARK 2.0 Reference Manual 

4.4.2 Defining the Argument Variables ...............................................................................................................26 
4.4.3 Defining the Target Variables ....................................................................................................................26 
4.4.4 Calculating the Result Values.....................................................................................................................27 
4.4.5 Returning the Result Values........................................................................................................................28 
4.4.6 Basic Structure of a Multi-Valued EVALUATE Callback...........................................................................29 

5 MODELS OF PHYSICAL SYSTEMS ................................................................................................................31 
5.1 UNITS, VALID RANGE, AND INITIAL VALUES...................................................................................................31 
5.2 MACRO CLASSES .............................................................................................................................................32 

6 DIFFERENTIAL EQUATIONS ..........................................................................................................................36 
6.1 NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS ....................................................................................36 
6.2 SOLVING A SIMPLE DIFFERENTIAL EQUATION .................................................................................................37 
6.3 INTEGRATOR CLASSES IN THE SPARK LIBRARY ..............................................................................................39 
6.4 CREATING SPARK INTEGRATOR OBJECT CLASSES ..........................................................................................41 

6.4.1 Simplified Implementation of the Euler Method .........................................................................................41 
6.4.2 The Initialization Issue ...............................................................................................................................42 
6.4.3 The Restart Issue ........................................................................................................................................43 
6.4.4 The Previous Value Issue............................................................................................................................43 

6.5 SOLVING A LARGER EXAMPLE: THE AIR-CONDITIONED ROOM.......................................................................44 
7 HOW SPARK ASSIGNS VALUES TO VARIABLES .......................................................................................52 

7.1 INITIALIZATION................................................................................................................................................52 
7.1.1 What Must be Initialized.............................................................................................................................52 
7.1.2 What Might Need Initialization ..................................................................................................................52 
7.1.3 How to Specify Initialization ......................................................................................................................53 
7.1.4 Initial time solution of a dynamic problem.................................................................................................53 

7.2 PREDICTION .....................................................................................................................................................54 
7.2.1 Where Prediction is Needed .......................................................................................................................54 
7.2.2 How Prediction is Specified........................................................................................................................54 

7.3 UPDATING........................................................................................................................................................54 
7.3.1 What Needs to Be Updated .........................................................................................................................54 
7.3.2 How Updating is Specified .........................................................................................................................55 

7.4 SOLUTION ........................................................................................................................................................55 
7.4.1 What Needs to Be Solved For .....................................................................................................................55 
7.4.2 How Solution Is Specified...........................................................................................................................55 

7.5 PROPAGATION..................................................................................................................................................55 
7.6 INPUT VALUES FROM FILES..............................................................................................................................56 

7.6.1 Categorization of Different Types of Input .................................................................................................56 
7.6.2 Example of Multiple Input Files .................................................................................................................57 

8 ADVANCED LANGUAGE TOPICS...................................................................................................................59 
8.1 MACRO LINKS..................................................................................................................................................59 
8.2 INTERNAL SPARK NAMES FOR VARIABLES (FULL NAMES OF LINKS OR PORTS) .............................................61 
8.3 PREVIOUS-VALUE VARIABLES, OR UPDATING VARIABLES FROM LINKS .........................................................63 
8.4 USAGE OF THE LIKE KEYWORD IN PORT STATEMENTS..................................................................................65 
8.5 THE PROBE STATEMENT .................................................................................................................................65 
8.6 USAGE OF THE CLASSTYPE KEYWORD IN ATOMIC CLASSES .........................................................................66 
8.6.1 INTEGRATOR classes............................................................................................................................67 
8.6.2 SINK classes ..........................................................................................................................................67 
8.6.3 DEFAULT classes...................................................................................................................................68 

8.7 USAGE OF THE RESIDUAL KEYWORD IN EVALUATE CALLBACKS ................................................................68 
8.7.1 Motivation...................................................................................................................................................68 
8.7.2 Implications for the Graph-Theoretic Analysis ..........................................................................................69 
8.7.3 Mathematical Example ...............................................................................................................................69 
8.7.4 Class Definition ..........................................................................................................................................71 
8.7.5 Inverse Function Definition........................................................................................................................72 

iii 



SPARK 2.0 Reference Manual 

8.8 USAGE OF THE DEFAULT RESIDUAL INVERSE IN THE FUNCTIONS STATEMENT .............................................72 
9 THE CALLBACK FRAMEWORK.....................................................................................................................74 

9.1 OVERVIEW AND TERMINOLOGY.......................................................................................................................74 
9.1.1 Inverse Type................................................................................................................................................74 
9.1.2 Inverse Instance..........................................................................................................................................74 
9.1.3 Callback Function ......................................................................................................................................75 
9.1.4 Private Data ...............................................................................................................................................76 

9.2 CALLBACK ENTRY POINTS IN SIMULATION LOOP ............................................................................................76 
9.3 SPECIFYING THE CALLBACK FUNCTIONS .........................................................................................................77 

9.3.1 The FUNCTIONS Statement .......................................................................................................................77 
9.3.2 Callback Keywords.....................................................................................................................................78 

9.4 STRUCTOR CALLBACKS ...................................................................................................................................79 
9.4.1 Syntax .........................................................................................................................................................79 
9.4.2 Rules ...........................................................................................................................................................79 

9.5 MODIFIER CALLBACKS ....................................................................................................................................80 
9.5.1 Syntax .........................................................................................................................................................80 
9.5.2 Rules ...........................................................................................................................................................81 

9.6 NON-MODIFIER CALLBACKS............................................................................................................................82 
9.6.1 Syntax .........................................................................................................................................................82 
9.6.2 Rules ...........................................................................................................................................................83 

9.7 PREDICATE CALLBACKS ..................................................................................................................................83 
9.7.1 Syntax .........................................................................................................................................................84 
9.7.2 Rules ...........................................................................................................................................................84 

9.8 DEFINING PRIVATE DATA FOR AN INVERSE .....................................................................................................85 
9.8.1 Private Data Mechanism ............................................................................................................................85 
9.8.2 Example of an Inverse with Private Data...................................................................................................88 

10 THE REQUEST MECHANISM......................................................................................................................92 
10.1 CONCEPT..........................................................................................................................................................92 
10.2 UTILITY REQUESTS ..........................................................................................................................................92 
10.3 STATE TRANSITION REQUESTS.........................................................................................................................93 
10.4 TIME EVENT REQUESTS ...................................................................................................................................94 
10.5 INTEGRATION REQUESTS .................................................................................................................................95 

11 SOLUTION METHOD CONTROLS .............................................................................................................96 
11.1 SOLUTION METHODOLOGY ..............................................................................................................................96 
11.2 PREFERENCE SETTINGS ....................................................................................................................................96 

11.2.1 Default Preference File ..........................................................................................................................96 
11.2.2 Global Settings .......................................................................................................................................97 
11.2.3 Default Component Settings...................................................................................................................98 
11.2.4 Component Settings................................................................................................................................99 
11.2.5 Changing the Preference Settings ..........................................................................................................99 

11.3 COMPONENT SOLVING METHODS ....................................................................................................................99 
11.4 MATRIX SOLVING METHODS .........................................................................................................................101 
11.5 JACOBIAN EVALUATION METHODS................................................................................................................102 

11.5.1 Scaled Perturbation for the Numerical Approximation of the Partial Derivatives..............................102 
11.5.2 Jacobian Refresh Strategy....................................................................................................................103 
11.5.3 Automatic Jacobian Refresh Strategy ..................................................................................................103 

11.6 CONVERGENCE CHECK STRATEGY.................................................................................................................104 
11.6.1 Notation................................................................................................................................................104 
11.6.2 Scaled Stopping Criterion for Iterative Solution..................................................................................104 
11.6.3 Prediction Convergence Check ............................................................................................................105 
11.6.4 Iteration Convergence Check...............................................................................................................106 
11.6.5 Safety Factors.......................................................................................................................................106 
11.6.6 Relaxed Convergence Check ................................................................................................................107 

11.7 SCALING METHODS........................................................................................................................................107 

iv 



SPARK 2.0 Reference Manual 

11.7.1 Variable Scaling Procedure .................................................................................................................107 
11.7.2 Scaled Norms and Implications for the Solution Methods ...................................................................109 
11.7.3 Total Internal Scaling of Linear Systems .............................................................................................110 
11.7.4 Detection of an Ill-Conditioned Problem.............................................................................................111 
11.7.5 Implication for the Backtracking Step Control Methods......................................................................111 

12 DEBUGGING SPARK PROGRAMS ............................................................................................................113 
12.1 PARSING ERRORS...........................................................................................................................................113 
12.2 SETUP ERRORS...............................................................................................................................................113 
12.3 SOLUTION DIFFICULTIES ................................................................................................................................113 
12.4 TRACE FILE MECHANISM...............................................................................................................................115 
12.5 PROBLEM-LEVEL DIAGNOSTIC MECHANISM..................................................................................................116 

12.5.1 Description of the Inputs Diagnostic Mode .........................................................................................116 
12.5.2 Description of the Reports Diagnostic Mode .......................................................................................116 
12.5.3 Description of the Convergence Diagnostic Mode ..............................................................................117 
12.5.4 Description of the Statistics Diagnostic Mode .....................................................................................119 

13 THE NATIVE INPUT FILE MECHANISM................................................................................................120 
13.1 PRECEDENCE RULE ........................................................................................................................................120 
13.2 EVALUATION RULE........................................................................................................................................120 
13.3 FILE FORMAT.................................................................................................................................................120 
13.4 PROPERTY READER........................................................................................................................................121 

13.4.1 How to Specify a Property in an Input File..........................................................................................121 
13.4.2 When Properties Are Read from Input Files ........................................................................................121 

14 THE READ URL MECHANISM ..................................................................................................................123 
14.1 OVERVIEW AND TERMINOLOGY.....................................................................................................................123 
14.2 READ URL FILE TYPE ...................................................................................................................................123 

14.2.1 DOE-2 Weather file (doe2bin) .............................................................................................................124 
14.2.2 TMY Weather file (tmyascii).................................................................................................................125 
14.2.3 EnergyPlus Weather File (eplusweather).............................................................................................125 
14.2.4 Column File..........................................................................................................................................126 
14.2.5 Named Column File .............................................................................................................................126 
14.2.6 Format File ..........................................................................................................................................127 

14.3 READ URL STRING TYPE...............................................................................................................................127 
14.3.1 DOE-2 Schedule Type (doe2sch)......................................................................................................127 
14.3.2 Algebraic Expression Type (expr)......................................................................................................128 

14.4 URL MAP FILE ..............................................................................................................................................130 
14.4.1 The Map File Syntax ............................................................................................................................130 
14.4.2 Loading Rules.......................................................................................................................................131 

15 OUTPUT AND POST PROCESSING ..........................................................................................................132 
15.1 THE OUTPUT FILE ..........................................................................................................................................132 
15.2 PLOTTING THE OUTPUT FILE..........................................................................................................................132 
15.3 POST PROCESSING IN MATLAB......................................................................................................................133 

16 LOG FILES......................................................................................................................................................134 
16.1 RUN LOG FILE................................................................................................................................................134 
16.2 ERROR LOG FILE............................................................................................................................................134 
16.3 FACTORY LOG FILE........................................................................................................................................134 
16.4 DEBUG LOG FILE ...........................................................................................................................................134 
16.5 BACKTRACKING LOG FILE .............................................................................................................................135 

17 SNAPSHOT FILES.........................................................................................................................................136 
17.1 WHY SNAPSHOT FILES ARE USEFUL..............................................................................................................136 
17.2 GENERATING SNAPSHOT FILES ......................................................................................................................136 
17.3 USING SNAPSHOT FILES TO INITIALIZE A SIMULATION RUN ..........................................................................136 

v 



SPARK 2.0 Reference Manual 

17.3.1 Specifying Snapshot Files as Input Files..............................................................................................136 
17.3.2 Restarting after a Numerical Error......................................................................................................137 
17.3.3 Enforcing Initial Conditions from a Different Problem Definition ......................................................137 

18 RUN-CONTROL FILE ..................................................................................................................................138 

19 SPARK LANGUAGE REFERENCE.............................................................................................................140 
19.1 NOTATION USED IN THIS SECTION .................................................................................................................140 
19.2 SPECIAL CHARACTERS...................................................................................................................................140 
19.3 NAMES AND OTHER STRINGS.........................................................................................................................140 

19.3.1 Reserved Names ...................................................................................................................................140 
19.3.2 Rules for User-Specified Names...........................................................................................................141 
19.3.3 Literals .................................................................................................................................................141 

19.4 COMMENTS ....................................................................................................................................................141 
19.5 STATEMENT TERMINATOR .............................................................................................................................141 
19.6 COMPOUND STATEMENT................................................................................................................................141 
19.7 ATOMIC CLASS  FILE......................................................................................................................................142 
19.8 MACRO CLASS FILE .......................................................................................................................................143 
19.9 PROBLEM FILE ...............................................................................................................................................144 
19.10 PORT STATEMENT ........................................................................................................................................145 

19.10.1 Atomic port...........................................................................................................................................145 
19.10.2 Macro port ...........................................................................................................................................147 

19.11 PARAMETER STATEMENT ..........................................................................................................................149 
19.12 PROBE STATEMENT .....................................................................................................................................150 
19.13 DECLARE STATEMENT................................................................................................................................151 
19.14 LINK STATEMENT.........................................................................................................................................152 
19.15 INPUT STATEMENT.......................................................................................................................................154 
19.16 EQUATIONS STATEMENT ...........................................................................................................................154 
19.17 FUNCTIONS STATEMENT............................................................................................................................155 

REFERENCES .............................................................................................................................................................158 

APPENDIX A: CLASSES IN THE GLOBALCLASS DIRECTORY ......................................................................159 

APPENDIX B: USING THE HVAC TOOLKIT.......................................................................................................161 
THE SPARK HVAC TOOLKIT .....................................................................................................................................161 
EXAMPLE USAGE ........................................................................................................................................................161 

APPENDIX C: PREFERENCE FILE FORMAT .....................................................................................................166 
WHAT ARE PREFERENCE FILES?..................................................................................................................................166 
USES OF PREFERENCE FILES IN SPARK.......................................................................................................................166 
HIERARCHICAL DATA: THE STRUCTURE OF THE PREFERENCE FILE ............................................................................166 
PREFERENCE FILE FOR THE BUILDING DESCRIPTION EXAMPLE...................................................................................167 
EDITING THE PREFERENCE FILE ..................................................................................................................................168 

APPENDIX D: SPARK PROBLEM DRIVER...........................................................................................................170 

GLOSSARY OF TERMS ............................................................................................................................................171 

INDEX ...........................................................................................................................................................................176 
 
 
 

vi 



SPARK 2.0 Reference Manual 

FOREWORD 

Documentation for the SPARK program is comprised of two manuals: the SPARK Reference Manual and the 
VisualSPARK Users Guide. These documents are available as downloadable PDF files from 
http://SimulationResearch.lbl.gov.  

This Manual is intended to cover the basic principles of SPARK programming.  To the extent possible, it is 
intended to be independent of the platform.  Consequently, examples are demonstrated using the command 
line interface only. 

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of 
Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of 
Energy, under contract DE-AC03-76SF00098. 

NOTICE: The Government is granted for itself and others acting on its behalf a paid-up, nonexclusive, 
irrevocable, worldwide license in this data to reproduce, prepare derivative works, and perform publicly and 
display publicly. Beginning five (5) years after (date permission to assert copyright was obtained) and subject 
to any subsequent five (5) year renewals, the Government is granted for itself and others acting on its behalf a 
paid-up, nonexclusive, irrevocable, worldwide license in this data to reproduce, prepare derivative works, 
distribute copies to the public, perform publicly and display publicly, and to permit others to do so. 
NEITHER THE UNITED STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY, NOR 
ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES 
ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR 
USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR PROCESS DISCLOSED, OR 
REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS. 

The SPARK simulation program is not sponsored by or affiliated with SPARC International, Inc. and is not 
based on SPARC architecture. 

 

vii 

http://simulationresearch.lbl.gov/


SPARK 2.0 Reference Manual 

LICENSES AND COPYRIGHTS 

UMFPACK Version 4.0 (Apr 11, 2002). Copyright (c) 2002 by Timothy A. Davis. All Rights Reserved. 
UMFPACK License: Your use or distribution of UMFPACK or any modified version of UMFPACK implies 
that you agree to this License. THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO 
WARRANTY EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. Permission is hereby 
granted to use or copy this program, provided that the Copyright, this License, and the Availability of the 
original version is retained on all copies. User documentation of any code that uses UMFPACK or any 
modified version of UMFPACK code must cite the Copyright, this License, the Availability note, and "Used 
by permission." Permission to modify the code and to distribute modified code is granted, provided the 
Copyright, this License, and the Availability note are retained, and a notice that the code was modified is 
included. This software was developed with support from the National Science Foundation, and is provided to 
you free of charge. Availability: http://www.cise.ufl.edu/research/sparse/umfpack  

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper. Copyright (c) 
2001, 2002 Expat maintainers. Availability: http://www.libexpat.org/  

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated 
documentation files (the"Software"), to deal in the Software without restriction, including without limitation 
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and 
to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above 
copyright notice and this permission notice shall be included in all copies or substantial portions of the 
Software. 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 
SOFTWARE. 

 

 

 

viii 

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.libexpat.org/


SPARK 2.0 Reference Manual 

TEXT CONVENTIONS 

Throughout this manual, we use different typefaces as follows: 

Program Name 

File Name 

KEYWORD 
Screen Display, Code, Key 

In addition, when discussing SPARK terminology (starting with Section 2.1), italic and bold typefaces identify 
the different entities, as follows: 

problem name macro class 
object name atomic class 
probe, link name port name 
problem variable port variable 
 

ix 



SPARK 2.0 Reference Manual 

1 INTRODUCTION 

1.1 WHAT IS SPARK? 
Simulation of a physical system requires development of a mathematical model that is usually composed of 
differential and/or algebraic equations.  These equations must then be solved at each point in time over some 
interval of interest. The Simulation Problem Analysis and Research Kernel (SPARK) is an object-oriented 
software system that performs such simulations.  By object-oriented we mean that components and 
subsystems are modeled as objects that can be interconnected to specify the model of the entire system.  Often 
the same component and subsystem models can be used in many different system models, saving the work of 
redevelopment.  

1.2 KINDS OF PROBLEMS THAT SPARK CAN SOLVE  
 

 

Since nearly any physical or 
biological system can be 
described in terms of a 

mathematical model, SPARK 
can be used in many scientific 

and engineering fields. 

SPARK may be thought of as a general differential/algebraic equation solver.  
This means that it can be used to solve any kind of mathematical problem 
described in terms of a set of differential and algebraic equations.  The term 
“continuous system” is often used to describe this class of problems. Typical 
examples include building heating and cooling systems, heat transfer analysis, 
and biological processes.  

While, in principle, any system can be described in terms of differential and 
algebraic equations, there are many systems that are more easily described in 
terms of discrete states. Typical examples include assembly lines from the 
field of manufacturing engineering and queuing problems from various fields. 
SPARK is not designed for discrete state simulation problems. However, there 
are limited facilities for handling discrete events in otherwise continuous 
systems.  

 

1.3 DESCRIBING PROBLEMS FOR SPARK SOLUTION 
Describing a problem for SPARK solution begins by breaking it down in an object-oriented way (Nierstrasz 
1989).  This means thinking about the problem in terms of its components, where each component is 
represented by a SPARK object. A model is then developed for each component not already present in a 
SPARK library.  Since there may be several components of the same kind, SPARK object models,  i.e., 
equations or groups of equations, are defined in a generic manner, called classes.  Classes serve as templates 
for creating any number of like objects that may be needed in a problem.  The problem model is then 
completed by linking objects together, thus indicating how they interact, and specifying data values that 
specialize the model to represent the actual problem to be solved.  Section 2 has several examples    

Naturally, model descriptions must be expressed in some formal way.  SPARK class models are described in a 
textual language that is similar to other simulation programming languages except that it is non-procedural.  
That is, it is neither necessary to put the equations in order, nor to express them as assignment statements.  
This property derives from the input/output free manner in which the classes are defined, and the use of 
mathematical graphs (McHugh 1990) to find an appropriate solution sequence. 

In SPARK, the smallest programming element is a class consisting of an individual equation, called an atomic 
class and stored in a file with extension *.cc.  Macro classes bring together several atomic classes (and 
possibly other macro classes) into a higher level unit.  Macro classes are stored in files with the extension 

  1 Introduction 
 



SPARK 2.0 Reference Manual 

*.cm. Problem models are similarly described, using a combination of atomic and macro classes, and placed in 
a problem specification file with extension *.pr.   

Figure 1-1 shows the steps involved in the SPARK build process whereby the problem description expressed 
in the SPARK language is transformed into an executable program that can be executed to solve the problem 
for given boundary conditions.  

 

Figure 1-1: SPARK Build Process. 

 

When the problem is processed by SPARK, the problem specification problem.pr file is first parsed along with 
the macro and atomic classes used in the problem, in order to generate the setup file problem.stp. The setup file 
contains a flat representation of the problem, which is then used for the graph-theoretical analysis performed 
by the setupcpp program. This step produces an efficient solution sequence for the underlying system of 
equations. The setupcpp program writes this information out in various files with different formats: the user-
readable equation file problem.eqs, the C++ file problem.cpp and the XML file problem.xml.  

To produce an executable simulator the problem.cpp file can be compiled and linked against the solver’s 
library. Another approach to generating an executable simulator consists in loading the problem description 
provided in XML format in the problem.xml file and instantiating the corresponding solver at runtime. The 
process of building the executable simulator is typically automated using a makefile or a build program in the 
SPARK installation. Finally, at runtime the preference file, problem.prf can be used to specify the settings for 
the various solution methods. 

You must have access to a C++ compiler on the machine running SPARK. On Windows 95/98/NT platforms, 
the default WinSPARK installation assumes that you have Microsoft Visual C++ installed, but Borland, GNU, 
and Symantec compilers are also supported.  VisualSPARK on Windows 95/98/2000/ME/NT platforms 

  2 Introduction 
 



SPARK 2.0 Reference Manual 

usually uses the mingw implementation of the GNU C++ compiler.  UNIX installations normally use the 
GNU compiler, but SPARK has also been used with other compilers commonly available on Sun workstations. 

While specifying problems in the SPARK language using existing classes is relatively easy, writing SPARK 
class models can be tedious.  One necessary task is deriving the inverses for the class equation, i.e., closed-
form solutions for several or all variables that occur in the equation.  The labor of this task is multiplied in 
certain kinds of problems, such as those described in terms of partial differential equations.  Such equations 
must first be expressed as sets of ordinary differential equations replicated many times with slight variations.  
To simplify this, SPARK can be installed with symbolic tools, such as Maple (Char, Geddes et al. 1985).  
With such tools you need specify only the atomic class equation, from which all necessary inverses and 
supporting C++ functions are generated automatically through symbolic manipulation.  For users without 
Maple, SPARK comes with its own symbolic manipulation tool that, while very limited, can find inverses of 
many equations encountered in simulation practice.  For more involved problems, these symbolic tools offer a 
significant improvement in productivity.  However, initially it will be more instructive for you to use SPARK 
directly, as we show here. 

1.4 PORTABILITY AND USER INTERFACES 
SPARK is intended to be portable.  The basic elements,  i.e., the parser, setup program, and fixed elements of 
the solver, will compile and run on nearly any platform for which there is a C++ compiler.  In the current 
release, executables, necessary source code, and graphical user interfaces are provided for the UNIX and 
Windows platforms.  On both platforms, the graphical user interfaces allow text-based creation of classes and 
problems using the SPARK language, as well as problem execution and results display.  Post processing for 
visualization of results is supported in both environments. 

1.5 THE HISTORY OF SPARK 
Although a general tool, SPARK was developed for use in the simulation of building service systems, e.g., 
heating, ventilation and air-conditioning. Most usage up to the time of this writing has been on systems from 
this field.  

The first implementation of SPARK, which solved only algebraic problems, was done at the Lawrence 
Berkeley National Laboratory in 1986 (Anderson 1986).  The basic ideas, including the graph-theoretic 
aspects, were based on earlier work at the IBM Los Angeles Scientific Center (Sowell, Taghavi et al. 1984).  
Then, in 1988, the LBNL implementation was extended to allow solution of differential equations (Sowell 
and Buhl 1988).  The MACSYMA and Maple interfaces were developed by Nataf (Nataf and Winkelmann 
1994), who also made many other improvements.  Since that time there have been new developments.  For 
example, the solver was revised to decompose the problem into separately solvable components (Buhl, Erdem 
et al. 1993).   

Then in preparation for the initial public release (version 1.0), SPARK was completely rewritten in 1995-96.  
In this rewrite a new class and problem description language was implemented to improve modeling 
flexibility, and the solver was redesigned to improve solution speed.  In addition, several user interface tools 
were developed, including a simple symbolic manipulation tool.  

The current release (version 2.0) significantly extends the modeling capabilities of earlier versions by 
supporting multi-valued inverses which calculate multiple values simultaneously instead of a single value. A 
multi-valued inverse essentially models a multi-dimensional vector function. Also, it is now possible to attach 
private data to each inverse instance in the problem under study with the help of the added callback 
mechanism. Finally, real-time operation of a SPARK simulator is made possible by the addition of the request 
mechanism that allows to synchronize the solver’s global time with user-specified meeting points at runtime. 
Furthermore, this capability along with the possibility of customizing the driver function facilitates integrating 
a SPARK simulator as a black-box solver in another application. 

  3 Introduction 
 



SPARK 2.0 Reference Manual 

1.6 VERSIONS OF SPARK 
A document, entitled README.txt, is included in the release package of VisualSPARK. The file is located in 
the doc subdirectory and describes new features, changes and bug fixes from the previous to the current 
version. 
 

 

  4 Introduction 
 



SPARK 2.0 Reference Manual 

2 BASIC METHODOLOGY 
Although SPARK is intended for the analysis of complex physical systems represented as large systems of 
nonlinear equations, both algebraic and differential, an understanding of the basic methodology can best be 
obtained by working first with simple mathematical problems.  We begin with the simplest possible problem, 
a single linear equation.  This problem is then extended in steps to demonstrate more and more SPARK 
features.  This will prepare us for dealing with more complex systems in later sections. 

2.1 OVERVIEW AND TERMINOLOGY 
We begin by defining some terminology.  The basic entity in a SPARK model is the object, it consists of a 
single algebraic equation that calculates one value and its interface or port variables.  Objects are created by 
reference to a class, which may be thought of as a template for the equation object.  As an example, consider 
the simple equation for the sum of two real numbers: 

a b c+ =  (2.1) 

The class, which we might call sum, would contain this equation (2.1), and its ports would consist of the 
variables a, b, and c.  Figure 2-1 is a pictorial representation of this idea. 

Note that we distinguish between an object and the 
class from which it was created.  This is because there 
might be need for more than one equation of this form 
in a particular model.  We can create as many 
instances (objects) from the class sum as we wish.  
Moreover, classes are saved, allowing their use in 
many different problems.  In this way, SPARK reduces 
the model development work through code reuse. 
Note also that the possibility of multiple instances of a 
class means that we must distinguish between the 
symbols used in defining the class and the 
corresponding variable names occurring in the 
problem definition.  That is, if we wish to have the 
sum class represent both x + y = z and r + s = t, it is 
obvious that a must represent x in one place and r in 
another.  We call variables such as x and r problem  

 

a

 

Figure 2-1:  sum class diagram  

variables because they relate to a particular problem being described.  On the other hand, a, b, and c relate 
only to the class definition and are called interface or port variables.  It is also common to refer to SPARK 
problem variables as links because the keyword LINK is used to connect object ports, thus introducing the 
variable and assigning to it a name.  We will see this in examples that follow.  

In addition, when discussing SPARK terminology, italic and bold typefaces identify the different entities, as 
follows: 

problem name macro class 
object name atomic class 
probe, link name port name 
problem variable port variable 

  5 Basic Methodology 
 



SPARK 2.0 Reference Manual 

2.2 A PROBLEM WITH A SINGLE OBJECT  
As a first exercise we will develop a SPARK solution for a simple math problem called 2sum.  In 2sum we 
seek solutions for the equation: 

 +  =  x y z  (2.2) 

As we saw in Section 2.1, there is a class in the SPARK foundation class library globalclass called sum that we 
can use to solve this problem.  As shown in Figure 2-1, its port variables are a, b, and c, and it enforces the 
relationship of Equation (2.1).  Obviously, by associating a with x, b with y, and c with z we can represent 
Equation (2.2) with an object of the sum class. 

Equation (2.2) is a mathematical model involving three variables and one equation.  To create a well-posed 
problem, we have to define two inputs.  For this example, let's specify x and y as input, so that z is to be 
determined.  The problem definition file 2sum.pr then has the following contents: 
/*   Problem Definition File for Simple Math Problem 2sum.pr */ 
DECLARE sum  s; 
LINK    x s.a  INPUT  REPORT; 
LINK    y s.b  INPUT  REPORT; 
LINK    z s.c         REPORT; 
 

Inputs are the quantities known 

at the outset.  

Links that are not inputs are 

variables to be solved for. These

variables are also referred to as 

the output variables or the 

unknowns. 

 

Here the DECLARE statement creates an object s as an instance of the class 
sum.  The LINK statements associate the problem variables with object port 
variables. The links x and y are associated with the corresponding object port 
variables s.a and s.b respectively.  Note that we employ the notation 
name.variable to refer to the port variable of object name.  The keyword 
INPUT1 in the LINK statements indicate that these problem variables are 
inputs, as opposed to being determined by the solution process.  A LINK 
statement with the keyword INPUT is also referred to as an INPUT 
statement.  The LINK statements without the INPUT keyword are variables 
to be solved for rather than inputs. The keyword REPORT in LINK 
statements means that the variable should be reported in the SPARK output.  

This results in the following directed graph for the sum problem with the specified input/output designation. 

Figur

After creating 2sum.pr as shown abov
contents: 

                                                      
1 A LINK statement with the INPUT keyword can
notation it is no longer necessary to repeat the INP
INPUT   x s.a  REPORT; 
 
 

  
 

y

 

e 2-2: Directed graph for the sum problem. 

z
a
b

x cs 

e, you must create an input file called 2sum.inp with the following 

 also be specified using the INPUT keyword in place of the LINK keyword. With this shorthand 
UT keyword in the statement. E.g.: 

6 Basic Methodology 



SPARK 2.0 Reference Manual 

2 x Y 

0 1 2 

Here we see the format of a SPARK input file.  The first line gives the number of input items, followed by 
their symbols as defined by the INPUT statements in the problem specification file.  The subsequent lines 
give values for each input variable, preceded by the time at which these values apply.  If the problem is not a 
dynamic one, i.e., we are seeking a solution for only one set of inputs, only two lines are required as shown 
above.  However, if we seek solutions at other time values, as many lines as needed can be given.  This is 
discussed further when we take up dynamic problems in Section 6. 

2.2.1 Running the SPARK Problem 

You can now run the problem with SPARK.  The commands to do so differ somewhat depending on your 
installation and platform.  For a WinSPARK installation on the Windows platform, type: 

buildsolver 2sum.pr spark.prf <enter> 

This creates an executable program called 2sum.exe   Several other files are also created, including 2sum.prf 
and 2sum.run, that are needed to execute 2sum.exe.  To execute the program for numerical solution enter: 

sparksolver 2sum.prf 2sum.run 2sum.xml <enter> 

If you are working with VisualSPARK on either the Windows or UNIX platforms, the equivalent command is: 

runspark <enter> 

This builds and executes the single allowed problem file in the current working directory.  It can be executed 
again without rebuilding with the command line: 

sparksolver 2sum.prf 2sum.run 2sum.xml <enter> 

Since SPARK is often used to solve dynamic problems, run-control information is needed when the program 
begins to execute.  This information is provided in a problem run-control file, probName.run, generated 
automatically when you first run a new SPARK problem. The file has the format of a SPARK preference file, 
discussed in Appendix C. 
The run-control file for 2sum.pr, i.e., 2sum.run, is: 
( 
InitialTime  ( 0.0 ()) 
FinalTime  ( 0.0 ()) 
InitialTimeStep  ( 1.0 ()) 
FirstReport  ( 0.0 ()) 
ReportCycle  ( 1.0 ()) 
DiagnosticLevel  ( 3 ()) 
InputFiles  ( 2sum.inp ()) 
OutputFile  ( 2sum.out ()) 
FinalSnapshotFile  ( 2sum.snap ()) 
InitialSnapshotFile  ( 2sum.init ()) 
) 
 

  7 Basic Methodology 
 

The first five keys define the interval over which the problem is solved and other time related data.  The keys 
InitialTime, FinalTime, and InitialTimeStep control the solution interval and the initial time 
step used to step through the solution points in this interval.  By default, the time step is kept constant during 
the simulation. Thus, the InitialTimeStep key specifies the constant time step. Since you may not wish 
to generate output at every solution point, you are allowed to specify when reporting is to begin and the 
interval between reporting with FirstReport and ReportCycle respectively.  Because we are working 



SPARK 2.0 Reference Manual 

a simple, algebraic problem here and want a single solution, we specify FinalTime to be the same as the 
InitialTime and FirstReport at time 0. The key DiagnosticLevel specifies the amount of 
intermediate output wanted in the run log file.  This is discussed further in Section 12.5. 

The remaining lines in the run-control file specify various files related to the problem.  We have already 
discussed the 2sum.inp and 2sum.out files.  Here we see that in the 2sum.run file you can specify where these 
files are located in your directory structure.  In the above example, they are specified to reside in the current 
working directory.  The other two keys, InitialSnapshotFile and FinalSnapshotFile, are 
discussed in Section 17. They specify the names of the snapshot files requested at the initial time and at the 
final time of the simulation run. 

When the problem runs, summary output is displayed in the run log file and the principal output is written to 
the file called 2sum.out.  For this problem the 2sum.out file contains: 

3 Y x z 

0 2 1 3 

As with the input file, the first line gives the number of outputs, followed by the link names of each.  The 
second line gives the time, followed by the result values for each output listed in the preceding line.  As 
expected, adding 1 and 2 gives 3 ! 

2.2.2 Arbitrary Input/Output Designation 

 

With SPARK, the problem 
can be changed without 

changing the model. 

The preceding example showed the basic steps required to set up a SPARK 
problem.  However, it did not show SPARK's unique capabilities.  One of these 
capabilities is that we can easily change which variables are input and which are 
output. That is, the problem can be changed without changing the model.  For 
example, if we are interested instead in what y will be for specified values of x 
and z, we simply designate z as input and y as link:  

/* Add 2 numbers together */ 
/*     2sum.pr            */ 
/*                        */ 
DECLARE  sum s; 
LINK     x s.a    INPUT  REPORT; 
LINK     y s.b           REPORT; 
LINK     z s.c    INPUT  REPORT; 

This results in the following directed graph for the sum problem with the re-arranged input/output 
designation. 

 

Figure 2-3: Directed graph for the new sum problem. 

s zb
x c
y

a

And, we must also change the input file to be: 

2 x z 

0 1 3 

The resulting output file, 2sum.out, contains: 

  8 Basic Methodology 
 



SPARK 2.0 Reference Manual 

3 z x y 

0 3 1 2 

Thus we see that y is calculated given z and x.  Although shown here for a very simple problem with a single 
equation, this feature extends to more complex problems as well.  The only requirement is that the model and 
the designated input variables must form a well-posed mathematical problem, i.e., one for which a solution 
exists. 

2.3 PROBLEMS WITH SEVERAL OBJECTS 
The previous examples were problems with a single 
equation and required only one SPARK object.  Most 
real problems involve more than one equation and 
more than one object, thus raising the question of how 
objects are interconnected in SPARK.  The following 
two examples show how this is done. 

The problem we consider first is as follows: 

1 2

3 4

5 6

5

6

7

x x x
x x x
x x x

+ =
+ =
+ =

 (2.3) 

  

x7

x5

x6

x1

x2

x3

x4

a
s1

b
c

a
s3

b
c

a
s2

b
c

 
Figure 2-4:  The 4sum example  

Obviously, each of these equations can be represented by an object of class sum.  The diagram in Figure 2-4 
shows how these objects would have to be interconnected to represent this problem.  

The problem specification file for this problem contains the following code: 
/* Add 4 numbers together */ 
/*     4sum.pr            */ 
DECLARE sum s1,s2,s3; 
LINK  x1 s1.a        INPUT  REPORT; 
LINK  x2 s1.b        INPUT  REPORT; 
LINK  x3 s2.a        INPUT  REPORT; 
LINK  x4 s2.b        INPUT  REPORT; 
LINK  x5 s1.c, s3.a; 
LINK  x6 s2.c, s3.b; 
LINK  x7 s3.c               REPORT; 

Observe that the LINK statement named x5 connects the problem variable x5 to the port c of s1 and a of s3,  
demonstrating the basic object interconnection method of SPARK.  Any number of object ports can be 
specified following the problem variable name, causing all to be equated to the single problem variable 
defined in the LINK statement and named after the LINK statement.  The LINK and DECLARE statements 
(plus a few others yet to be discussed) form the SPARK language.  The complete language is presented in 
reference form in Section 19. 

Because there are four INPUT statements in 4sum.pr there must be a 4sum.inp file with values for the same 
four variables.  This file is formatted as follows: 

4 x1 x2 x3 x4 

0 1 1 1 1 

As before, the leading number in the first line, 4, is the number of inputs.  It is followed by as many symbols, 
corresponding to input variables, as defined in 4sum.pr.  The first number in the second line is the initial time, 
followed by values for each of the input variables. 

  9 Basic Methodology 
 



SPARK 2.0 Reference Manual 

The problem is built and executed using the same commands as for our 2sum example. The results are placed 
in 4sum.out which is formatted like the input file: 

5 x4 x3 x2 x1 x7 

0 1 1 1 1 4 

Several other files of interest are also produced when a SPARK problem is built and executed.  First, various 
files with the extension *.log may appear in the workspace.  As you might suspect, these contain any error or 
warning messages that may have been produced, as well as intermediate output and diagnostic from the 
numerical solution step. 

Also produced is the equations file,  e.g., 4sum.eqs.  For complex problems exhibiting numerical difficulties, it 
is sometimes useful to examine this file because it contains the computation sequence determined by SPARK 
and used to solve the problem. For 4sum this file contains: 
Known variable(s) :  
        x4                   INPUT 
        x3                   INPUT 
        x2                   INPUT 
        x1                   INPUT 
 
 
Component 0 :  
   Solution sequence :  
        x6                   = s2:sum__c( x3, x4 ) 
        x5                   = s1:sum__c( x1, x2 ) 
        x7                   = s3:sum__c( x5, x6 ) 

In this file, inputs are listed first, followed by a sequence of assignments to problem variables, each computed 
by a right-hand-side function reference.  These functions represent the inverses of the underlying class  
equation.  In this case there is only one component that contains three function references in a non-iterative 
sequence.  Later, we will see that in more complex problems SPARK will break problems down into several 
components that can be solved independently in sequence.  Note that here we use the word “component”  in a 
graph theoretical sense, meaning a group of nodes and edges, i.e., equations and variables, that can be solved 
together; these have nothing to do with physical components.  Some components are strongly connected, 
meaning that there are cycles in that part of the graph.  The practical significance of strongly connected 
components is that the corresponding equations have to be solved simultaneously, by iteration until 
convergence. This is typically achieved using the Newton-Raphson solution method. 

As with the single object example, we can use the same model to solve different problems by changing what 
is input and what is solved for.  For example, suppose we want to specify x5 and determine x1.  The problem 
file is then: 
/* Add 4 numbers together */ 
/*     4sum.pr            */ 
/*                        */ 
DECLARE sum s1, s2, s3; 
LINK  x1 s1.a                REPORT; 
LINK  x2 s1.b         INPUT  REPORT; 
LINK  x3 s2.a         INPUT  REPORT; 
LINK  x4 s2.b         INPUT  REPORT; 
LINK  x5 s1.c, s3.a   INPUT; 
LINK  x6 s2.c, s3.b; 
LINK  x7 s3.c                REPORT; 

A suitable input file is: 

  10 Basic Methodology 
 



SPARK 2.0 Reference Manual 

4 x5 x2 x3 x4 

0 2 1 1 1 

After building and executing, the resulting 4sum.out file is: 

5 x4 x3 x2 x7 x1 

0 1 1 1 4 1 

And the equations file shows the solution sequence: 
Known variable(s) :  
        x4                   INPUT 
        x3                   INPUT 
        x5                   INPUT 
        x2                   INPUT 
 
 
Component 0 :  
   Solution sequence :  
        x6                   = s2:sum__c( x3, x4 ) 
        x7                   = s3:sum__c( x5, x6 ) 
        x1                   = s1:sum__a_or_b( x5, x2 ) 

Just as you might do, based on Figure 2-4, SPARK evaluates object s2 followed by object s3 in the “forward” 
direction yielding x6 and x7, then evaluates object s1 in the “reverse” direction to get x1. 

2.4 PROBLEMS REQUIRING ITERATIVE SOLUTION 
Up to this point all of our examples have been such that non-iterative solutions could be found.  Each 
component could be solved using forward substitution of the unknowns in the sequence of equations. In more 
complex problems this may not be possible.  For example, consider the set of equations below, in which c  
and  are given and 

1

2c 1x , 2x , 3x , and 4x
 
are to be determined. 

1

3

2
1 3 2 2

2 1
3

1 4 3 4 4 2

4 3

x

x

1x x x x c

x x e

x x x x x c

x x e−

+ + + =

=

+ + =

=

 (2.4) 

This set of equations does not have a closed form 
solution and is very difficult to solve by any means.  
In fact, with some values of c  and , it has no 
solution at all.  However, with  and c

1 2c
30001c = 2 1=  

there is a solution and SPARK can easily find it. 

The problem can be specified for SPARK exactly as 
for simpler ones. Figure 2-5 shows a SPARK diagram 
with objects and interconnections. 

  

r3

r1 x1 x1x1

x2 x2x2
x3
x1
x3 x3
x4 x4x4
c

con1

con2

r2

r4

c

 
Figure 2-5:  Four nonlinear equations 

x3

  11 Basic Methodology 
 



SPARK 2.0 Reference Manual 

In this case we have used four objects, each representing one of the equations.  We assume for the moment 
that there are classes r1, r2, r3, and r4 representing the equations in the order given previously, presumed to 
have been defined and placed in the problem class directory.2  The SPARK problem file can then be 
constructed as follows: 
/*  Four nonlinear equations */ 
/*       example.pr          */ 
DECLARE r1  r1; 
DECLARE r2  r2; 
DECLARE r3  r3; 
DECLARE r4  r4; 
 
LINK  con1 r1.c                                INPUT  REPORT; 
LINK  con2 r3.c                                INPUT  REPORT; 
LINK  x1 r1.x1   MATCH_LEVEL = 0, r2.x1, r3.x1        REPORT; 
LINK  x2 r1.x2, r2.x2                                 REPORT; 
LINK  x3 r1.x3, r3.x3, r4.x3                          REPORT; 
LINK  x4 r3.x4, r4.x4                                 REPORT; 

The two constants,  and , in the equations are defined as input variables con1 and con2.  In these INPUT 
statements, the port variables representing the c  and  constants are called c in the classes r1 and r3.  
Similarly, in the LINK statements it is evident that the other port variables have the same names as the 
corresponding problem variables.  Usually, in the interest of code reuse,  it is better to define a generic class 
using local names for port variables, as we have done in the earlier examples.  Here, however, where it is 
unlikely that we will have need for other instances of these rather specialized objects, it would introduce 
unnecessary confusion to employ different port and problem variable names.  Hence the x1 problem variable 
is linked to the x1 port variable of all objects in which it occurs, i.e., r1, r2 and r3. 

1c 2c

1 2c

A new SPARK language keyword,  MATCH_LEVEL, is used in this problem.  The purpose of this keyword is 
to provide a hint to SPARK on how to match certain variables to certain equations.  Here,  by placing the 
MATCH_LEVEL = 0 after the r1 port connection for x1, we are discouraging SPARK from using the r1 
object, i.e., the first equation, to calculate x1.  Although most often SPARK can do without such hints, there 
may be times when you have particular insights into the numerical properties of the problem, and the 
MATCH_LEVEL keyword provides one mechanism for capitalizing on this knowledge.  For example, 
experience with the current problem indicated that the above MATCH_LEVEL restriction leads to a better 
solution sequence.  Unfortunately, it is not always easy to discover appropriate matching preferences, but 
when you do develop the insight for a particular problem it is important to be able to control SPARK in this 
manner.  This subject is discussed further in Section 12.3. 

The results of running SPARK on the problem so described, with values of 3000 and 1 for the constants con1 
and con2, respectively, are shown below: 

6 con2 con1 x4 x1 x2 x3 

0 1 3000 0.288576 2.927303 54.67379 0.4547163 

Naturally, the values reported for 1x  through 4x  satisfy the given equations. 

The equations file, example.eqs, shows how SPARK arrived at these answers:3 
Known variable(s) :  
        con2                 INPUT 

                                                      
2  We will see how to define SPARK object classes in Section 2.4. 
3  As is often the case for nonlinear problems, this example has multiple solutions.  The solution found will depend upon the starting point in the 
iterative solution process. 

  12 Basic Methodology 
 



SPARK 2.0 Reference Manual 

        con1                 INPUT 
 
 
Component 0 :  
   Break variable(s) :  
        x3                   PREDICT_FROM_LINK = x3 
 
   Solution sequence :  
        x4                   = r4:r4_x4( x3 ) 
        x1                   = r3:r3_x1( x3, x4, con2 ) 
        x2                   = r2:r2_x2( x1 ) 
[BREAK] x3                   = r1:r1_x3( x1, x2, con1 ) 

We see there is a single component (called “Component 0”) in the solution, meaning that this problem does 
not allow partitioning.  Within this single component, the function r4_x4(x3) represents object r4,  i.e., the 
fourth equation in (2.4), solved for x4 in terms of x3. The value returned by the function is assigned to the x4 
problem variable.  Similarly,  r3_x1(x3, x4, con2) represents object r3,  i.e., the third equation, solved for x1,  
r2_x2(x1) is r2 solved for x2, and finally r1_x3(x1, x2, con1) is r1 solved for x3.  It is apparent that these 
assignments form a cycle, i.e., x1 must be known to get x3, but x3 must be known to get x1.  That is, the 
component is strongly connected.  Recognizing this, SPARK has selected x3 to break the cycle, i.e., a value 
of x3 is guessed to start an iterative solution process.  Thus after evaluating r1_x3 (using the guessed value of 
x3 to get x4 and then x1 and x2) SPARK will use a numerical method for estimating a new value of x3 and 
repeat the calculations from the first assignment.  This will continue until the predicted and calculated values 
of x3 agree to within the SPARK precision, which defaults to 10-6.  By default, the solution is computed with 
the Newton-Raphson method.  If convergence is not achieved, alternate methods can be tried.  Usually, 
convergence is obtained with the Newton-Raphson method. 

The above functions are based on the respective object class equations.  By chance, the function r4_x4 
happens to be the way the r4 equation was originally expressed, i.e., as a formula for x4 in terms of x3.  
However, the function r3_x1 is the r3 object class rearranged symbolically, i.e., 

( )3
2 3 4 4

1
4

c x x x
x

x
− −

=  (2.5) 

This is called an inverse of the object.  Part of the task of developing a SPARK class is performing these 
symbolic inversions of the given equations and embedding them in C++ functions.  This is discussed in 
Section 3.2  

2.5 ITERATIVE SOLUTION AND BREAK VARIABLES 
As we have noted in the previous example, systems of equations often have to be solved iteratively.  In 
SPARK, this can be true even if the equations are all linear, because no specific test is done for linearity.  
Usually, you need not be concerned with the iterative process, so we will not go into detail here.  However, a 
general awareness of the methods used is helpful if solution difficulties are encountered. 
First, in the problem setup phase, SPARK determines if iteration is required by detecting cycles in the problem 
graph.  If cycles are detected, a graph algorithm is used to find a small set of variables (nodes in the graph) 
that “cut” the cycles.  The associated problem variables, called break variables, are placed in a vector to act 
as the unknown vector x in a multi-dimensional Newton-Raphson solution scheme.  The residual functions 
that are forced to zero in the Newton-Raphson process are of the form 

( ) ( )F x f x x= −  (2.6) 

  13 Basic Methodology 
 



SPARK 2.0 Reference Manual 

where x is the vector of break variables, and ( )f x  represents the directed acyclic graph formed when the 
original problem graph is cut at the cut-set vertices.  In other words, the current solution estimate, x, is applied 
to the graph, producing ( )f x , from which the original estimate is subtracted.  At the solution, the residual 
functions is equal to zero. 

( ) 0F x ≡  (2.7) 

The Jacobian matrix for the residual function is defined as 

FJ
x

∂
=

∂
 (2.8) 

In each Newton-Raphson iteration the next estimate nextx  is calculated by solving the linear set 

( )J x F x∆ = −  (2.9) 

for , then calculating  x∆

nextx x x= + ∆  (2.10) 

The solution of the linear set, Equation (2.9), is carried out with Gaussian elimination, LU decomposition, or 
similar method.  Note that the size of the Jacobian matrix is the size of the cut set, so this solution can be 
much more efficient than if we had not attempted to minimize the cut set. 
Normally, this process converges to the solution quite rapidly (quadratically).  However, it is well known that 
the Newton-Raphson process, like all methods for solving general sets of nonlinear equations, can fail to 
converge under certain circumstances.  Failure occurs when the residual functions have particular kinds of 
non-linearities and the starting values are not sufficiently close to the actual solution.  Thus starting values are 
important. 
In SPARK, we refer to the process of selecting a starting value for the iteration process as  “prediction.”  By 
default, the prediction for solution at a particular time step is the final solution value for the same variable at 
the previous time step.  This can be changed by use of the PREDICT_FROM_LINK=linkFrom keyword in 
the corresponding LINK statement.  In this case, the value of the linkFrom link is used as the predictor. 
Note that at the initial solution when the time is equal to InitialTime, there is no proper “previous time 
step value.”  In this case, if there is no PREDICT_FROM_LINK=linkFrom, SPARK will use the default 
value for the break variable as the initial predictor.  Since default values determined in this way are not 
appropriate for every variable, they may not be very close to the solution value.  Therefore it is best to 
provide initial predictors via input files. This issue is discussed further in Section 7.2. 

2.6 WELL-POSED PROBLEMS  
In Section 2.2.2 we saw that SPARK allows us to change which problem variables are input and which are to 
be solved for without changing the underlying model.  This flexibility is the result of specifying object 
models without a priori specification of inputs and outputs (Sahlin and Sowell 1989).  Thus we were able to 
solve for 5x , 6x , and 7x in the example Equation (2.3) given 1x  through 4x , or by a simple change of 
INPUT and LINK designations solve for 1x , 6x , and 7x  given 2x , 3x , 4x , and 5x . 

It would be grand if we could say that this selection of the input and output sets was completely arbitrary.  For 
example, in the example of Section 2.3, Equation (2.3), there are three equations (objects) and seven 
variables, so one might hope that any set of four inputs could be used to determine the remaining three 
variables.  However, we are constrained by what is mathematically possible.  In many problems there are sets 
of inputs that will not define a problem that has a solution.  For example, if we specified 2x , 3x , 4x , and 6x  

  14 Basic Methodology 
 



SPARK 2.0 Reference Manual 

 

it is impossible to determine a solution.  From Figure 2-4, we see that if 3x  and 4x  are both specified then 6x  
cannot be specified.  Moreover, there is no way to determine 1x , 5x , and 7x  given only 6x .  Mathematically, 
a problem is said to be well-posed if it admits a solution.  Thus with this input set we have an ill-posed 
problem.  

Naturally, SPARK has no ability to solve ill-posed problems; however, in this case, SPARK can immediately 
determine that the problem is not well-posed. Specifically, it discovers that there is no possible matching of 
equations and variables.  Other forms of ill-posedness cannot be discovered until a numerical solution is 
attempted and, in such cases, a lack of convergence will be reported.  Unfortunately, however, lack of 
convergence also may be the result of other numerical problems, such as improper starting values, so we 
cannot always conclude that this means ill-posedness.  Problems of this nature are all too familiar to those 
who routinely work with nonlinear systems of equations.  Often, insights afforded by knowledge of the 
physical problem under analysis suggest ways to fix the numerical problem. In seeking to resolve these 
difficulties, we should be motivated by the realization that proper mathematical models of physical systems 
are well-posed.  Otherwise, the physical system could not behave in the observed way. 

In summary, SPARK offers a method for specifying and solving sets of equations in a computationally 
efficient way, provided solution is possible.  But it should be no surprise that it cannot solve insoluble 
problems, and numerical difficulties may be encountered as they would be in other solution methods. 

 

  15 Basic Methodology 



SPARK 2.0 Reference Manual 

3 CREATING SINGLE-VALUED ATOMIC CLASSES  
In Sections 2.2 and 2.3, the examples have so far made use of existing SPARK classes that implement single-
valued inverses, i.e., calculating the value for a single port.  In practice, it is often necessary to create new 
classes to meet special needs, as shown in Section 2.4.  This can be done either by hand, with symbolic tools 
such as the SPARK symbolic solver, or third-party tools like Maple, Mathematica or MACSYMA.  Here we 
present the manual process of creating a single-valued atomic class which will allow you to better understand 
the use of the symbolic tools as discussed in Section 3.3. The process of creating a multi-valued atomic class 
will be discussed in Section 4. 

3.1 CLASS DEFINITION 
Creating a SPARK atomic class is a two step process.  First, you must create the class definition.  Second, the 
functions required by the class definition4 must be expressed in C++ following the SPARK function protocol.  
The class definition and the supporting C++ callback functions are stored in the same file with a .cc 
extension.  These steps are demonstrated below for the sum atomic class. 
#ifdef SPARK_PARSER 
 
PORT a "Summand 1" ; 
PORT b "Summand 2" ; 
PORT c "Sum" ; 
 
EQUATIONS { 
 c = a + b ; 
} 
 
FUNCTIONS { 
 a = sum__a_or_b( c, b ) ; 
 b = sum__a_or_b( c, a ) ; 
 c = sum__c( a, b ) ; 
} 
 
#endif /* SPARK_PARSER */ 
#include "spark.h" 
 
EVALUATE( sum__a_or_b ) 
{ 
    ARGDEF(0, c); 
    ARGDEF(1, b); 
    double a_or_b ; 
 
    a_or_b = c - b; 
    RETURN( a_or_b ) ; 
} 
EVALUATE( sum__c ) 
{ 
    ARGDEF(0, a); 
    ARGDEF(1, b); 
    double c; 
 

                                                      
4 They are referred to as the callback functions since they implement a callback mechanism with the solver. 

  16 Creating Single-Valued 
Atomic Classes 

 



SPARK 2.0 Reference Manual 

    c = a + b; 
    RETURN( c ) ; 
} 

As shown above, it is customary to begin a class with comments to describe what it does.  After the comment 
header comes the body of the class definition.  This is placed within C-style #ifdef SPARK_PARSER and 
#endif  so the file can be processed both by the SPARK parser and the C++ compiler.  

3.1.1 The PORT Statement 

The first part of the class definition is a list of the ports.  It is through these ports that objects of the class 
communicate with other objects.  Although the PORT statement has additional optional clauses (See Section 
19.10), the only requirement is the name of the port variable.  Here, we also provide a description string that 
is used for error reporting.   

The port variable name can be arbitrarily chosen and of any length and is placed following the PORT 
keyword.  Note that throughout the SPARK language user selected names are case sensitive; however,  
keywords of the language are not.  Thus, either port or PORT will do, but a and A are considered different 
PORT names.  Like all SPARK statements, the PORT statement can span multiple lines if necessary.  Each 
PORT statement ends with a semicolon.   

3.1.2 The EQUATIONS Statement 

After the PORT declaration,  the equation for the class can be given in the optional EQUATIONS block. 
Although this SPARK atomic class presently has a single equation,  the possibility of multiple equations is 
allowed for with the compound statement using braces,  EQUATIONS {…}. 5 

3.1.3 The FUNCTIONS Statement 

Following the equations is the FUNCTIONS {…} compound statement that defines the set of inverses 
assigned to each mutually exclusive set of ports between the braces.  An inverse consists of a set of target 
ports followed by the = sign and a list of comma-separated callback functions, each prefixed by a callback 
keyword.  A callback function is specified with its name followed by the list of the argument ports using 
parenthesis.  The argument ports are the ports whose values are needed to implement the behavior of the 
callback.  Each inverse statement ends with a semicolon.  The following code snippet shows the structure of 
the FUNCTIONS statement. 
FUNCTIONS { 
 port1 = <callback-keyword1> inverse1_callback1( port2, port3, …),  
  <callback-keyword2> inverse1_callback2( port2, port3, port4,
 …) 
 ; 
 port2 = <callback-keyword1> inverse2_callback1( port1, …),  
  <callback-keyword2> inverse2_callback2( port1, port4, …) 
  … 
 ; 
} 

The list of callback keywords and the behavior of each callback function is explained in Section 9. The 
callback function responsible for calculating the values of the target port variable(s) assigned to it is the 
EVALUATE callback function.  It is the only callback function for which the callback keyword may be 
omitted.  
                                                      
5  The equations block is optional since SPARK currently does not process it.  Future releases may automatically generate the C++ functions based on 
the equation block. 

  17 Creating Single-Valued 
Atomic Classes 

 



SPARK 2.0 Reference Manual 

Since any inverse defines the EVALUATE callback function it is customary to refer to each inverse with the 
name of the associated EVALUATE callback function.  Here the atomic class sum defines three inverses: 

• the inverse sum__a_or_b assigned to the port a;  

• the inverse sum__a_or_b assigned to the port b; and  

• the inverse sum__c assigned to the port c. 

Note that each inverse is assigned to a different port and that it defines only the EVALUATE callback 
function.  The inverse assigned to the port a is different than the inverse to the port b although they both rely 
on the same callback function sum__a_or_b. 

An inverse that calculates the value of only one port variable is referred to as a single-valued inverse, whereas 
an inverse that calculates simultaneously the values for more than one port variable is referred to as a multi-
valued inverse (See Section 4).   

In the atomic class sum we define three single-valued inverses for calculating each of the three port variables.  
Usually, defining an inverse for each port variable is the best practice, since it allows SPARK greatest 
flexibility and efficiency in devising a solution strategy for various problems in which the class might be 
used.  That is, some problems may require c to be determined in terms of a and b, while in others it may be 
preferred to calculate b given a and c.  As we shall see below, each inverse is a “mathematical” inverse 
function of the object equation.  

For complex equations, some inverses may be difficult or impossible to obtain.  Or, it may be that special 
knowledge about the problem under investigation suggests that a particular inverse should not be used, 
because, for example, it might lead to numerical difficulties.  For these reasons, SPARK allows you to omit 
unavailable or unwanted inverses.  For example, we could simply omit the function for calculating a from the 
sum class.  Should the need to calculate c from a and b then arise in some problem using the class, SPARK 
would have to perform the calculation iteratively.  

3.2 INVERSE FUNCTIONS DEFINITION 
After the class definition comes the definition of the inverse functions.  These functions, supporting the 
SPARK class definitions, are expressed as C++ free functions implementing the callback functions (See 
Section 9).  Although some familiarity with C++ would be helpful here, you should be able to understand the 
discussion with background in any similar language.   

3.2.1 Basic Structure of a Single-Valued EVALUATE Callback 

The basic structure of the EVALUATE callback function in a SPARK atomic class is:  
EVALUATE( funct_name ) 
{ 
 // Code for calculating the result from the arguments, 
 // returned as a double using the RETURN preprocessor macro. 
 double result; 
 … 
 RETURN( result ); 
} 

In order to make the definition of the callback functions easier to the user, C preprocessor macros that hide 
the implementation details of argument passing as well as the function prototype are defined in the header file 
spark.h. With these preprocessor macros we can write the body for the sum__c callback function as follows: 

  18 Creating Single-Valued 
Atomic Classes 

 

EVALUATE( sum__c ) 



SPARK 2.0 Reference Manual 

{ 
    ARGDEF(0, a); 
    ARGDEF(1, b); 
    double c; 
 
    c = a + b; 
    RETURN( c ) ; 
} 

3.2.2 Defining the C++ Callback Function 

The code  
EVALUATE( sum__c ) 

declares the C++ function sum__c as an EVALUATE callback. The EVALUATE callback is responsible for 
calculating the value of the port variable assigned to the inverse in the FUNCTIONS {…} statement.  In this 
case, the EVALUATE callback of the sum__c inverse calculates the value of the target port c from the values 
of the argument ports a and b.  Other callback functions can be specified for a SPARK inverse to implement 
other operations beside evaluating the value of the target port.  However, the EVALUATE callback is the only 
function that must always be specified for any inverse.6   

The macro preprocessor EVALUATE expands to the C++ function prototype expected for a EVALUATE 
callback with the proper argument list.   

3.2.3 Defining the Argument Variables 

The code  
ARGDEF(0, a);  

declares a as the argument port passed in the first position (index 0) to the callback function sum__c in the 
FUNCTIONS { } statement for this inverse. Note that indexing in the argument list is zero-based as is 
customary in C++.  Similarly, the code  

ARGDEF(1, b);  

declares b as the argument port passed in the second position (index 1) to the callback function sum__c.   

The SPARK solver implements the argument variables as instances of the class TArgument.  Thus, the 
macro preprocessor ARGDEF declares the variables a and b as instances of this C++ class.   

3.2.4 Calculating the Result Value 

The code 
double result = a + b; 

calculates the sum of the argument ports a and b to be assigned to the target port c. This statement implements 
the mathematical relation expected by this inverse using the TArgument instances a and b.  

The C++ variables named a and b are directly used in the arithmetic expression a + b  to compute the sum 
of the two associated argument ports as a double value.  This is possible because the class TArgument 

                                                      
6 The default SPARK atomic class describes an equation that returns the value(s) of the target port(s) that is/are assigned to each inverse. However, 
there are other types of atomic classes (See Section 8.6) that are not required to return value(s).  Therefore, these classes will not define the EVALUATE 
callback.  

  19 Creating Single-Valued 
Atomic Classes 

 



SPARK 2.0 Reference Manual 

behaves as a numerical value by overloading the operator double() method.  Therefore, the C++ 
variables a and b return their respective current numerical values where they appear in the expression.   

Each instance of the class TArgument also stores information about the other properties of a SPARK 
variable, such as its name, units, minimum value, maximum value, and initial value. The htm/chm tutorial 
SPARK Atomic Class API should be consulted for more information on the class TArgument and how to use 
its methods. 

3.2.5 Returning the Result Value 

Finally, the RETURN preprocessor macro takes care of returning the calculated value result to the variable 
connected to the target port c for this single-valued inverse sum__c.  This ensure the proper data flow across 
the set of the unknown variables in the problem. 

SPARK functions can be as simple as the above example, or quite complicated.  The full expressive power of 
C++ is allowed.  Also, code for existing models can be integrated by means of a function call.  Furthermore, 
by following the rules for mixed language programming in your environment,  the referenced functions can 
be in FORTRAN, Pascal, or Assembly language.  The principal requirement is that the EVALUATE callback 
function returns the calculated value for the associated target variable.  Perusal of some of the classes in 
the SPARK globalclass and hvactk\class directories may be beneficial before beginning development of 
complex classes of your own. 

3.3 SYMBOLIC PROCESSING 
As seen in earlier examples, SPARK atomic classes are constructed from equations.  While these classes can 
be constructed manually, the process can be time consuming and tedious.  First, the equation must be solved 
for all (or most) of its variables, one at a time.  For example, if the equation is the ideal gas relationship, 
pv nRT= , we need to do the algebra to get the following formulas: 

/
/

/
/
/

p nRT v
v nRT p
n pv RT
R pv nT
T pv nR

=
=
=
=
=

 (3.1) 

These are called inverses of the original equation.  Then, for each inverse we must construct a C++ function 
that evaluates the right hand side and returns the resulting value.  Finally, all of these functions must be 
incorporated in a SPARK atomic class representing the ideal gas law, following the syntax shown in the 
earlier examples (Section 3.1). 

Fortunately, these tasks can be automated using symbolic processing (also called computer algebra) tools.  
SPARK provides a program called sparksym that fills this need.  With it you can generate all symbolic 
inverses of an algebraic equation, generate C++ functions implementing these single-valued inverses, or 
create the complete SPARK atomic class. 

Actually, sparksym is an interface to third-party symbolic programs.  Currently, it can use either Mathomatic, 
Maple, Mathematica or MACSYMA, as selected by a command line option.  A subset of the Mathomatic 

  20 Creating Single-Valued 
Atomic Classes 

 



SPARK 2.0 Reference Manual 

program is integrated in sparksym, so that option is always available.7  If Maple, Mathematica or MACSYMA 
are detected on your machine when SPARK is installed, or if you install them later and take steps to link them 
to SPARK, you can select one as an alternative symbolic engine for sparksym.  Maple, Mathematica and 
MACSYMA are more powerful than Mathomatic, allowing more complex equations to be handled. 

3.3.1 Simple Symbolic Processing 

Command-line usage of sparksym is with the command: 

sparksym –engine -option [name] "equation" [target] [outFile] <enter> 

where: 
engine  = O (Mathomatic), P (Maple), E (Mathematica), S (MACSYMA) 
option  = i (single inverse),  a (all inverses),  f (function), c (class) 
name  = Name for function of class (used only with option f or c) 
equation  = An equation of the form <expression>=<expression> 

(enclose in double quotes if spaces occur) 
target  = The variable to be solved for (used only for options i and f) 
outFile  = Optional file for the result 

3.3.2 Generating an Inverse 

For example, to generate the inverse equation for T using the ideal gas law, with output to the screen: 
sparksym –O -i "p*v = n*R*T"  T <enter> 
Inverse: 
 T = p*v/n/R 
 

Or to create the SPARK idealGasLaw atomic class, with results written to idealGasLaw.cc: 

sparksym –O -c idealGasLaw "p*v=n*R*T" idealGasLaw.cc <enter> 

The class generated is directly usable, but perhaps not as complete as you may wish.  For example, the ports 
are all assigned a description which is the same as the port name, units are [-] (i.e., unspecified), and the 
INIT, MIN, and MAX values are set at 1, -100000, and 100000 respectively.  You can edit the output file to 
give more appropriate values for these items if you wish. 

3.3.3 Caveats  

You are advised to carefully check all symbolic results, since computer algebra software often gives 
unexpected results, sometimes simply wrong.   

Sparksym using the Mathomatic option is not as robust as a full-featured symbolic package, although it may 
meet many of your needs.  With it, you are limited to expressions using the operators +, -, *, /,  and ^ 
(exponentiation).  It will fail quickly if it cannot easily invert the equation for the desired variable.  Note that 
the atomic class generated with the -c option will have functions for each variable in the equation, whether or 
not an explicit inverse was found for it.  Variables for which it could not find an explicit inverse use an 
implicit inverse as in Section 12.2.  You may wish to edit the implicit functions, as discussed in the same 
section, to improve numerical stability. 

                                                      
7  The sparksym executable provided with SPARK does not give you the full capability of Mathomatic.  You can download the DOS shareware program 
from http://www.lightlink.com/george2/.  Among other features, it is capable of symbolic elimination of variables and equations in sets of equations; 
sometimes this feature can be used to help develop efficient SPARK classes. 

  21 Creating Single-Valued 
Atomic Classes 

 



SPARK 2.0 Reference Manual 

With the Maple option, practically any equation can be handled, including various mathematical functions.  
Additionally, it will sometimes find multiple inverses.  In this case all inverses are written in the generated 
functions, with all but one commented out.  Therefore it is a good idea to examine the generated class to see 
that the wanted inverse is being used. 

 

  22 Creating Single-Valued 
Atomic Classes 

 



SPARK 2.0 Reference Manual 

4 CREATING MULTI-VALUED ATOMIC CLASSES  
One limitation of the concept of the single-valued atomic class presented in Section 3 is that only a single 
result can be communicated to the rest of the problem, even though many variables may be determined in the 
process. In order to deal with situations like that, it is possible to define multi-valued atomic classes that will 
determine the values of more than one variable simultaneously. This section describes the process of defining 
the inverse of a multi-valued atomic class. 

4.1 MOTIVATION 
When writing the model classes situations also arise where a developer or analyst wishes to use a model 
expressed in an algorithmic language within a SPARK model (Sowell 2003). This comes up when there is an 
existing, trusted model written in a procedural language, e.g., FORTRAN, C, or C++, and time or other 
factors argue against re-implementation as an equation-based SPARK model through the definition of the 
equivalent single-valued atomic classes. 

Figure 4-1: Diagram representing a wrapper multi

Wrapper 
for external 

program 

 

Additionally, sometimes there are small sets of equations within a system
any global iterative solution scheme, but which can be reliably solved sim
procedural algorithms.  

In both of these situations there are multiple equations being solved for m
within the subsystem model. This is in contrast to the normal SPARK app
the constituent individual equations and variables to be solved globally. T
subsystem models, there is a need for SPARK to accept subsystem model
to the global solver using multi-valued atomic objects, rather than the nor

Following is a non-exhaustive list of possible applications for multi-value

¾ Compute values for a set of target variables at once, thus potentia
calculations used to calculate the value for each individual target

¾ Implement the symbolic solution of a set of equations instead of 
the numerical solution. 

¾ Implement rule-based, multi-dimensional control algorithms as C

¾ Specify a wrapper atomic class around a third-party program whi
equations with fixed inputs and outputs as shown in Figure 4-1. E

o Integrate a legacy-code model expressed in any procedur

o Couple SPARK with other programs such as a CFD code

o Operate a SPARK model in real-time with embedded dig

  23 

 

m 
n
 

-valued class. 

 that are numerically problematic for 
ultaneously with well-known 

ultiple variables simultaneously 
roach of breaking subsystems into 
o better accommodate such 

s that provide multiple values back 
mal single-valued atomic objects.  

d atomic classes: 

lly saving duplicate intermediate 
 variable. 

relying on the SPARK solver to find 

++ code. 

ch describes a directed set of 
.g.,  

al language. 

. 

ital controllers and sensors. 

Creating Multi-Valued 
Atomic Classes 



SPARK 2.0 Reference Manual 

¾ Specify a wrapper atomic class around another SPARK problem to embed inside a master SPARK 
problem. It is also possible to model discrete states for the atomic class implemented through different 
embedded problems that describe the change in formulation of the underlying equations 
corresponding to each discrete state. 

4.2 LIMITATIONS 
When writing a multi-valued atomic class you become responsible for devising an algorithm for the 
EVALUATE callback function that calculates the values of the target ports as a multi-dimensional function, 
thereby bypassing one of SPARK's most unique capabilities. If the underlying equations of the multi-valued 
inverse are described as a nonlinear problem in residual form, then the appropriate solution algorithm8 must 
be implemented in the body of the callback function.  

It is of course possible to define a separate SPARK problem that solves this set of nonlinear equations and 
embed the resulting problem in the multi-valued inverse using the SPARK Problem Driver API documented in 
separate html/chm help files. Thus, the solution algorithm for the subproblem is devised automatically by 
SPARK and your task consists only in embedding the subproblem in the multi-valued atomic class. 

Another limitation of the current implementation of the multi-valued inverse mechanism stems from the 
matching algorithm executed in the setupcpp program. Only one multi-valued inverse can be specified per 
atomic class. Thus, the multi-valued objects represented as directed objects in the computational graph force 
the links connected to the target ports to be matched with their unique multi-valued inverse. Future versions 
of SPARK might be capable of handling more than one multi-valued inverse per atomic class as long as each 
inverse is assigned to a the set of mutually exclusive target ports. 

4.3 CLASS DEFINITION 
As an example of a multi-valued atomic class we use the root2.cc atomic class that is part of the global classes 
stored in the globalclass subdirectory. This atomic class calculates the roots of a 2nd order polynomial 
described through its coefficients. This is a clear case where using a single multi-valued inverse to calculate 
both roots simultaneously is more efficient because it allows to reuse the intermediate value for the 
discriminant in the calculation of each possibly distinct root. 
// root2.cc 
// Multi-valued object that returns the 2 roots of a second order 
// polynomial 
//     a*x^2 + b*x + c = 0 
///////////////////////////////////////////////////////////////////////// 
 
#ifdef SPARK_PARSER 
 
PORT a; 
PORT b; 
PORT c; 
PORT root_plus; 
PORT root_minus; 
PORT discriminant; 
 
 
EQUATIONS { 
  a*x^2 + b*x + c = 0; 

                                                      
8 The Newton-Raphson method is usually used to solve such a set of nonlinear equations.  

  24 Creating Multi-Valued 
Atomic Classes 

 



SPARK 2.0 Reference Manual 

} 
 
FUNCTIONS { 
 root_plus, root_minus, discriminant = root2__mroot2( a, b, c ) 
   ; 
} 
 
#endif /* SPARK_PARSER */ 
#include "spark.h" 
 
EVALUATE( root2__mroot2 )  
{ 
    ARGUMENT( 0, a ); 
    ARGUMENT( 1, b ); 
    ARGUMENT( 2, c ); 
     
    TARGET( 0, root_plus ); 
    TARGET( 1, root_minus ); 
    TARGET( 2, discriminant ); 
 
    double discriminantx = b*b - 4.0*a*c; 
 
    if (discriminantx < 0.0) { // Atomic class error 
        REQUEST__ABORT( "Cannot compute complex roots." ); 
    } 
 
    double square_discriminant = sqrt( discriminantx ); 
     
    root_plus  = (-b + square_discriminant)/(2.0*a); 
    root_minus = (-b - square_discriminant)/(2.0*a); 
    discriminant = discriminantx ; 
} 

Since only a single inverse is allowed for a multi-valued atomic class, the data flow through the class is 
automatically directed from the argument ports to the target ports as shown in Figure 4-2. Using multi-valued 
classes therefore constrains the matching algorithm performed in the setupcpp program and might lead to 
incomplete matching. 

 

Figure 4-2: Directed graph representing the root2 multi-valued atomic class. 

root2
a 

b 
c 

root_plus

root_minus

discriminant

4.3.1 The PORT Statement 

The first part of the class definition is a list of the ports.  The root2.cc atomic class defines six ports: 

• one for each coefficient a, b and c; 

  25 Creating Multi-Valued 
Atomic Classes 

 



SPARK 2.0 Reference Manual 

• one for each possibly distinct root, root_plus and root_minus; and 

• one port to expose the value of the discriminant, discriminant. 

Note that the port discriminant could be defined with the keyword NOERR to indicate that it is not required 
that this port be connected to any link variables in the problem definition, thus making it an optional port. 

4.3.2 The EQUATIONS Statement 

After the PORT declaration, the equation for the class is given in the optional EQUATIONS block.  

4.3.3 The FUNCTIONS Statement 

Following the equations is the FUNCTIONS {…} compound statement that defines the unique multi-valued 
inverse assigned to the target ports root_plus, root_minus and discriminant between the braces.  As with 
single-valued inverses, the list of target ports is specified on the left hand-side of the = sign. This inverse 
defines only the EVALUATE callback function named root2__mroot2, which depends on the three 
polynomial coefficients defined as the ports a, b and c. 

4.4 INVERSE FUNCTION DEFINITION 

4.4.1 Defining the C++ Callback Function 

After the class definition comes the definition of the inverse functions.  The code  
EVALUATE( root2__mroot2 ) 

declares the C++ function root2__mroot2 as an EVALUATE callback which calculates the values of the 
target ports root_plus, root_minus and discriminant from the values of the argument ports a , b and c.     

4.4.2 Defining the Argument Variables 

The code  
ARGUMENT( 0, a );  

declares a as the argument port passed in the first position (index 0) to the callback function 
root2__mroot2 in the FUNCTIONS { } statement for this inverse. This declaration using the 
ARGUMENT macro is exactly equivalent to using the ARGDEF macro preprocessor as shown in Section 3.2.  

Similarly, the code  
ARGUMENT( 1, b );  
ARGUMENT( 2, c );  

declares b and c as the argument ports passed in the second (index 1) and third (index 2) positions to the 
callback function root2__mroot2.   

4.4.3 Defining the Target Variables 

The code  
TARGET( 0, root_plus );  

declares root_plus as the target port defined in the first position (index 0) in the list of target ports 
specified for the inverse in the FUNCTIONS {…} statement. The SPARK solver implements the target 
variables as instances of the class TTarget.  Thus, the macro preprocessor TARGET declares the variable 

  26 Creating Multi-Valued 
Atomic Classes 

 



SPARK 2.0 Reference Manual 

root_plus as an instance of this C++ class.  The tutorial SPARK Atomic Class API should be consulted for 
more information on the class TTarget and how to use its methods. 

Similarly, the code  
TARGET( 1, root_minus );  
TARGET( 2, discriminant );  

declares the instances root_minus and discriminant of the class TTarget for the target ports 
specified in the second (index 1) and third (index 2) positions.   

4.4.4 Calculating the Result Values 

The last part of the C++ code of the callback function deals with calculating the values for each target ports 
and assigning the results to each of the associated TTarget instances. Here the full expression of the C++ 
programming language can be used to derive the results from the values of the TArgument instances. 

The distinct real roots of a 2nd-order polynomial expressed as  

   (4.1) 2 0a x b x c⋅ + ⋅ + =

are obtained with the following equations when the discriminant ∆  is strictly positive: 

 

2 4

2

2

b a

bx
a

bx
a

+

−


∆ = − ⋅ ⋅


− + ∆ = ⋅
 − − ∆

=
⋅

c

  (4.2) 

When the discriminant is equal to zero, then there is a real double root instead of the two distinct real roots, 
rootx x x+= = − . When the discriminant is negative, the two roots are no longer real but conjugate complex 

numbers. Since SPARK does not have native support for complex numbers, we will not treat this case in our 
implementation of the root2.cc atomic class.  

The code 
    double discriminantx = b*b - 4.0*a*c; 
 
    if (discriminantx < 0.0) { // Atomic class error 
        REQUEST__ABORT( "Cannot compute complex roots." ); 
    } 

calculates the value of the discriminant ∆  using the previous equation and stores it in the temporary double 
variable discriminantx. Note that we use the TArgument instances a, b and c directly in the C++ 
code that implements the discriminant equation. Indeed, thanks to the overloaded double operator, a 
TArgument instance returns its current value as a double value whenever mentioned in a C++ expression 
that expects a double value. It is also possible to use any other methods of the TArgument class in the 
code. 

The following  if {…} statement detects when the discriminant is negative and stops the simulation by 
sending an ABORT request to the solver. The request is implemented using the REQUEST__ABORT 
preprocessor macro that takes a const char* string as an argument to identify the context of the request at 
runtime. See Section 10 for more information on the request mechanism. 
  27 Creating Multi-Valued 

Atomic Classes 
 



SPARK 2.0 Reference Manual 

The code 
    double square_discriminant = sqrt( discriminantx ); 

calculates the square root of the discriminant using the C library function sqrt defined in <cmath>. 

4.4.5 Returning the Result Values 

Finally, the code 
    root_plus  = (-b + square_discriminant)/(2.0*a); 
    root_minus = (-b - square_discriminant)/(2.0*a); 
    discriminant = discriminantx ; 

assigns the result values to each TTarget instance. This statement implements the mathematical relations 
shown in Equation (4.2) to compute the real distinct roots x+  and x− . Again, we can freely write code that 
mixes the TArgument instances and the locally defined, temporary variables defined as double.  

Unlike in our example of a single-valued inverse in Section 3.2, we can no longer rely on the convenient 
preprocessor macro RETURN to assign the result values to the target variables. Indeed, the RETURN macro 
assumes that there is only one target port assigned to the inverse, therefore always returning the result value 
for the first (and only!) target port.  

In the case of a multi-valued inverse, you have to explicitly write the assignment statements for each 
TTarget variable before returning from the EVALUATE callback function. This is achieved by using the 
operator = of the TTarget class, whereby on the left hand-side of the = sign you write the name of the 
TTarget instance and on the right hand-side the double result value or a C++ expression that can be 
evaluated as a double value. 

For example, the code 
    root_plus  = (-b + square_discriminant)/(2.0*a); 

assigns the value of the mathematical relation for the root x+  to the TTarget instance root_plus. A 
similar assignment statement follows for the TTarget instance root_minus using the corresponding 
mathematical relation for the root x− .  

The last statement assigns the value of the temporary double variable discriminantx to the TTarget 
instance discriminant. This line simply copies the value of the local variable to the internal data structure 
representing the SPARK variable. You might wonder why we did not directly use the TTarget instance 
discriminant to hold the value computed for discriminantx in the first place. The reason why this is 
not allowed originates in the graph-theoretical analysis performed in the setupcpp program.  

In order to ensure the correct variable dependency between target and argument ports across all the atomic 
objects defined in the SPARK problem, the value of a target port cannot be used in the computation of the 
inverse assigned to the target ports unless the same port is also specified as an argument port. Essentially, the 
argument ports provide read-only access to their current values  through the overloaded operator double, 
whereas the target ports provide write-only access to their current numerical values  through the overloaded 
operator =. If you need to access the current value of a target port in the callback function, then you must also 
declare the port in the argument list of the corresponding callback in the FUNCTIONS {…} statement. Thus, 
the inverse appears to depend unequivocally on the value of one of its target port(s), which forces the variable 
connected to this target port to be a break variable.  

Were it possible to access the current value of a target port when computing the value of the same target port, 
it would create a hidden dependency between the target variable and the inverse it is matched with, resulting 

  28 Creating Multi-Valued 
Atomic Classes 

 



SPARK 2.0 Reference Manual 

in an algebraic loop that would go unnoticed during the graph-theoretic analysis. Clearly, this situation would 
produce a wrong solution sequence that no longer accounts for the topology actually described by the 
underlying equations. 

This explains why we had to use a temporary variable discriminantx to hold the value of the 
discriminant so that this value could also be reused in the computation of the two roots. Indeed, it would not 
have been possible to retrieve the value stored in the TTarget instance named discriminant, had we 
foregone the use of the temporary variable. 

Our implementation of the root2.cc atomic class is not very robust since it does handle the special numerical 
cases whereby the polynomial coefficients a or b are zero, resulting in a division by zero at runtime. It would 
be a fairly simple task to extend the current implementation to make it more robust numerically. Consult the 
root2.cc atomic class provided as part of the global classes for a more robust implementation. 

4.4.6 Basic Structure of a Multi-Valued EVALUATE Callback 

The EVALUATE callback function of a multi-valued inverse implements a multi-dimensional function, also 
commonly referred to as a vector function, that calculates the values of the m  target variables Y  from the 

values of the  argument variables 
j

n iX . The target variables are the output values of the function, whereas the 
argument variables are the input values to the function. 

  (4.3) 
( )

, ( , ) , 1
: , ,

n m

n

n m m
F X Y F X X Y

 → ∈ >


= ∈

\ \ `
6 \ m∈\

The following code snippet shows the basic structure of the EVALUATE callback function defined for a multi-
valued inverse calculating the values for (M+1) target ports from (N+1) argument ports. This code can serve 
as template for the callback function of your own multi-valued inverse, whereby the number of target and 
argument ports must be adapted and the code that calculates the result values must be added. 
EVALUATE( callback_name )  
{ 
// Declare (N+1) argument variables 
    ARGUMENT( 0, arg_0 ); 
    … 
    ARGUMENT( N, arg_N ); 
 
// Declare (M+1) target variables 
    TARGET( 0, target_0 ); 
    … 
    TARGET( M, target_M ); 
 
// Calculate (M+1) result values for all target variables 
    double result_0 = …; 
    … 
    double result_M = …; 
 
// Assign (M+1) result values to corresponding target variables     
    target_0 = result_0 ; 
    … 
    target_M = result_M ; 
} 
 

  29 Creating Multi-Valued 
Atomic Classes 

 



SPARK 2.0 Reference Manual 

 
 

  30 Creating Multi-Valued 
Atomic Classes 

 



SPARK 2.0 Reference Manual 

5 MODELS OF PHYSICAL SYSTEMS 
The previous examples were purely mathematical in nature.  They allowed us to discuss the basic ideas in 
SPARK, unencumbered by details.  Here we take up some of the other issues that arise when modeling 
physical systems.  In particular, we show how SPARK handles the problems of unit consistency and range of 
values for variables.  Also, we show provision in SPARK for modeling at a level higher than individual 
equations.  Then, using these new ideas, we show the development of a SPARK model for a system of modest 
complexity.   

5.1 UNITS, VALID RANGE, AND INITIAL VALUES 
When simulating real physical systems, there must be consistency in the units of measure throughout the 
problem.  In terms of a SPARK problem specification, this means that the units of a problem variable linked to 
an object port must be the same as the units assumed for the port variable when the object class was defined. 

SPARK has a limited capability to ensure unit consistency.  This is provided by associating an optional unit 
string with each port.  Then the SPARK processor can check and report an error if you inadvertently connect 
variables of different units.  Also, you can give initial, minimum, and maximum values for the port variable.  
For example, the cpair class from the HVAC Toolkit has a port for the specific heat coded as follows: 
port CpAir “Specific heat of air” [J/(kg_dryAir*deg_C)] 
           INIT = 1.0 
           MIN = 0.01 
           MAX = 5000.0;  

The unit string is placed in square brackets […].  Any connection to this port will have to have an identical 
unit string.  The MIN and MAX values have the obvious meaning;  run time warnings are issued when the 
value is outside this range.  The INIT value is used by SPARK as the default starting value for the initial time 
solution if none is provided elsewhere.  For example, if the associated variable happens to be a break variable, 
then the very first iteration will use the INIT value of 1.0 for CpAir. 

In order for SPARK units checking to work to your benefit you must define a consistent set of units. Table 5-1 
shows the SI units used in the HVAC Toolkit (see Appendix B).  Other consistent sets could be used instead.  
Note that the units and value ranges given in are not built into SPARK; they are simply the units employed in 
the HVAC Toolkit class library.  However, they do serve as an example of a consistent set of units.  When 
developing SPARK models you have the choice of adhering to these units or developing your own library 
with units of your choice.  Obviously, you should be consistent with whatever unit system you choose, 
otherwise you will have to implement special unit conversion objects when your objects are connected.  The 
INIT, MIN, and MAX values should be set as appropriate for each port. 

Table 5-1:  SPARK Units (SI) used in the HVAC Toolkit 

Unit String Description Initial Minimum Maximum 

[-] Unspecified    
[J/kg_dryAir] Enthalpy, air 25194.2 -50300.0 398412.5 
[J/kg_water] Enthalpy, water 25194.2 -50300.0 398412.5 
[kg_water/kg_dryAir] Mass ratio .002 0.0 0.1 
[kg_dryAir/s] Mass flow rate, air 10000. 1000. 1000000. 
[kg_water/s] Mass flow rate, water 10. 0. 1000. 
[deg_C] Dry-bulb temperature 20. -50. 95. 
[m^3/kg] Specific volume, fluid  1.0  

  31 Models of Physical Systems 
 



SPARK 2.0 Reference Manual 

[m^3/kg_dryAir] Specific volume, air  0.6 1.6 
[kg/m^3] Ratio of total (air plus 

moisture) mass to volume 
1.2026 0.6 1.8 

[J/kg] Enthalpy, steam    
[J/(kg*deg_C)] Specific heat, fluid 1.0 0.01 5000.0 
[J/(kg_dryAir*deg_C)] Specific heat, air 1.0 0.01 5000.0 
[kg/s] Mass flow rate, fluid  0.0  
[m^3/s] Volumetric flow rate, fluid  1  
[m] Distance  1  
[m^2] Surface area  0  
[W] Power 1 -10000 10000 
[Pa] Pressure 101325 0 110000 
[W/deg_C] U*A, heat transfer 0 -1.0E6 1.0E6 
[s] Time, seconds 0.0 0 1.0E30 
[fraction] Any ratio 1.0 0.0 1.0 
[scalar] Any non-dimensional 1.0 -1.0E30 1.0E30 
 

To demonstrate, consider the sercond class from the HVAC Toolkit, which models two conductors in series.  
The ports are defined as:  
PORT U1   "Conductance 1"        [W/deg_C]; 
PORT U2   "Conductance 2"        [W/deg_C]; 
PORT Utot "Overall conductance"  [W/deg_C]; 

Then, when the sercond class is used in a problem definition you have to give matching unit strings at each 
LINK or INPUT statement for the problem variables connected to the ports of sercond: 
DECLARE sercond  sc; 
LINK    UA1 sc.U1        [W/deg_C]  INPUT  REPORT; 
LINK    UA2 sc.U2        [W/deg_C]  INPUT  REPORT; 
LINK    UATotal sc.UTot  [W/deg_C]         REPORT; 

The SPARK parser can then check to be sure you have not made a units error; if the units string in a LINK or 
INPUT statement does not match those of all port variables in the same statement, a units error will be 
reported. 

There are times when you may not want strict enforcement of unit consistency.  For example,  the sum class 
is used in many places, sometimes adding heat flux and other times mass flow rates.  If we insisted on strict 
unit consistency, we would have to have a separate sum class for every different case.  To avoid this problem, 
and to allow for problems where units are not important, there is an unspecified unit identifier.  Units on a 
port are unspecified when you do not give any unit information, or when you explicitly declare unspecified 
units with “[-]” as the unit identifier.  When a port has unspecified units, no unit checking is done on links 
to that port.   

5.2 MACRO CLASSES 
SPARK uses a computational graph based on individual problem variables and equations to produce an 
efficient solution strategy optimized for simulation speed. The SPARK atomic class is the fundamental 
building block where the equations are described.  Because of this unique approach, SPARK is referred to as 
an equation-based solver.   

  32 Models of Physical Systems 
 



SPARK 2.0 Reference Manual 

While this is an advantage for efficient solving, the disadvantage is the tedium of defining a large system 
model entirely in terms of individual equations.  When modeling physical systems, it is sometimes more 
convenient to work in terms of larger elements, such as models of physical components or subsystems.  Such 
models most often will involve several equations and variables rather than one.  

Macro classes allow you to 
work at a high level of 

abstraction, while allowing 
SPARK to employ efficient, 

equation-based solution 
strategies. 

The macro class provides the abstraction mechanism for allowing more complex 
SPARK classes.  It allows multiple atomic classes, and even other macro classes, 
to be assembled into a single entity for use by the model builder.  Macro classes 
are used in problems or in other macro classes exactly like atomic classes, i.e., by 
use of the DECLARE keyword.  However,  when processed by the SPARK parser, 
any declared macro objects are separated into atomic objects so that the graph-
theoretic solution methods can be applied in the normal manner. 

As an example of the need for a macro class, consider 
the flow of air in a duct network, such as might occur 
in a heating system for a building.  In simulation of 
these systems there is a need for models of various 
components such as diverters that split the flow into 
two streams and mixers that merge the flow of two 
duct sections into one.  Here, let's focus on the mixer 
and devise a model for it in the form of a SPARK 
macro class. 
The diagram in Figure 5-1 shows the mixer 
component. 
The air duct mixer model must include two laws from 
physics: conservation of mass and conservation of 
energy.  These can be expressed in the following 
equations: 

 

 

Figure 5-1:  Dry air mixer. 

1 2 3

1 1 2 2 3 3

m m m
m h m h m h

+ =

+ =
 (5.1) 

where m represents mass flow rate and h represents the enthalpy of the air streams.  The subscripts 1 and 2 
represent the conditions at the two inlets, and 3 the condition at the outlet. 

  33 Models of Physical Systems 
 



SPARK 2.0 Reference Manual 

To construct a macro object class for the mixer let's 
assume that we already have object classes for the 
mass and energy balance equations.  Actually, the 
mass equation can be represented with the familiar 
sum class.  Also in the SPARK object library there is 
an object class called balance that represents 
equations like the enthalpy one.  The port variables 
analogous to m and h are m and q respectively.  

The macro class will connect the constituent classes 
exactly as if we were creating a problem definition 
file.  Constituent class port variables that are to have 
the same meaning in the context of our new macro 
class are linked together, forcing equivalence.  Those 
that are to be available for interfacing to problems or 
other macro classes are “elevated,” i.e.,  made port 
variables of the macro class. 

Figure 5-2 shows this idea and serves as a guide in 
writing the macro class.  Because all represent the  

 

m1

m2

h1

h2

s
a
b

c

m1
q1
m2
q2

b m
q

m3

h3

 

Figure 5-2: Mixer macro class diagram. 

same quantity, the port variable m1 of the macro class must be connected to the a port of the sum class and 
the m1 port of the balance class.  Other port variables are linked in a similar manner.  The SPARK expression 
of this is shown below. 
 
/* SPARK Mixer Object Macro Class 
 *  
 */ 
PORT  m1 "Stream 1 mass flow rate" [kg_dryAir/s]; 
PORT  m2 "Stream 2 mass flow rate" [kg_dryAir/s]; 
PORT  m3 "Stream 3 mass flow rate" [kg_dryAir/s]; 
PORT  h1 "Stream 1 enthalpy" [J/kg_dryAir]; 
PORT  h2 "Stream 2 enthalpy" [J/kg_dryAir]; 
PORT  h3 "Stream 3 enthalpy" [J/kg_dryAir]; 
DECLARE  sum s; 
DECLARE  balance b; 
LINK  mass1 .m1, s.a, b.m1; 
LINK  mass2 .m2, s.b, b.m2; 
LINK  mass3 .m3, s.c, b.m; 
LINK  enthalpy1 .h1, b.q1; 
LINK  enthalpy2 .h2, b.q2; 
LINK  enthalpy3 .h3, b.q; 

It will be observed that this is very much like a problem definition.  The principal difference is the absence of 
inputs. Also, note that a macro class has ports, whereas a problem does not.  Ports provide the interface to the 
outside.  That is, when an object of this class is used, connections will be made to its ports.  The internal links, 
on the other hand, are not exposed to the outside at all.  If you want a variable represented by a macro class 
link to be available for outside connections, you must connect it internally to a port.  For example, the line: 

LINK  mass1 .m1, s.a, b.m1; 

means that the link named mass1 connects the m1 port of the mixer macro class to the a port of s and the m1 
port of b.  

  34 Models of Physical Systems 
 



SPARK 2.0 Reference Manual 

Note the dot (.) in front of the first connection following the link names in the above example.  The rationale 
for the dot syntax is based on the general connection notation x.p, where we are referring to the p port of the x 
object.  When the port in question belongs to the macro class being defined, as opposed to one of its 
constituents, the class name is that of the very class we are defining and therefore is not expressed.9  

The similarity between macro classes and problems makes it common practice when developing a macro class 
to first test it as a problem.  For example, you could develop the mixer class as a problem, saving it in a file 
with .pr extension.  Once it is working properly, you simply change the inputs to links, add ports for the 
variables needed at the interface, connect the corresponding links to these ports, and save it as a .cm file. 

You may have noticed in the above example that the names of links, e.g., mass1, are not used anywhere.  This 
is because we express the internal connections entirely in terms of the class and port names, as in s.a, or with 
an implied class name and port name as in .m1.  Because link names are not used, they are optional when 
defining macro classes.  That is, we could write: 
LINK .m1, s.a, b.m1; 
instead of the previous statement with exactly the same effect.  In contrast, link names are required for 
problems, as these are the names by which we know the problem variables.  Further discussion of link names 
is provided in Section 8.2.  

Note that we have included unit strings in the ports.  This will prevent you from connecting inappropriate 
links to objects of the mixer class.  Also,  we could have placed unit strings in the links to allow unit checking 
of the links to the ports of the classes which are used in the macro.  We elect not to do so here,  however, 
because both sum and balance are mathematical classes with generic ports. 

Finally, note that macro classes are entirely equivalent to normal SPARK classes in terms of usage.  They can 
be used in creating problem specification files or in building other macro classes.  The SPARK parser 
recursively expands the macro objects as it generates the solver code. 

 

 

                                                      
9 In some object-oriented languages, such as C++, the name of the class being defined is known internally as this.  In SPARK we chose to have the 
name this be understood rather than expressed. 

  35 Models of Physical Systems 
 



SPARK 2.0 Reference Manual 

6 DIFFERENTIAL EQUATIONS 
Thus far we have focused on problems with only algebraic equations.  However, many simulation problems 
are dynamic in nature and involve differential equations as well.  That is, some of the problem variables 
appear as derivatives with respect to time.  In this Section we see that SPARK is capable of representing and 
solving such problems.  We begin with a brief review of numerical methods used in solving ordinary 
differential equations. 

6.1 NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS 
Numerical solution methods for differential equations start with given initial values for the dynamic 
variables10 and attempt to project to a new solution a short time later.  When the differential equation is part of 
a larger system of equations the entire set must be solved at each point to ensure accuracy.  The process is 
then repeated, with the newly calculated values becoming the basis for the next projection forward.  The 
amount by which time is advanced at each projection is called the time step. It is initialized with the value of 
the key  InitialTimeStep specified in the run-control file.  Generally speaking, the time step has to be 
small in order to achieve sufficient accuracy of the solution.  Since simulations are often carried out over long 
periods of time,  many small time steps are required.  Computational efficiency is therefore very important.  

The projection is done by means of an integration formula involving current and/or past values of the 
dynamicvariables and their time-derivatives.  For example, the simple Euler integration formula f is:  

( ),p p p px f x x x hx= =� + �  (6.1) 

where x  is the dynamic variable, �x  is its derivative with respect to time, and h is the time step.  Note that the 
Euler formula involves variable and time-derivative values only from the previous time, indicated by the 
subscript p.  This is called an explicit formula because it gives the new solution explicitly, i.e., without 
reference to unknown values at the end of the current time step.  On the other hand, some integration formulas 
do involve values of the dynamic variables at the new time, i.e.,  

( , , , )p px f x x x x= � �  (6.2) 

Such formulas are called implicit because they involve values at the new point as well as past values.11  
Obviously, iteration might be required for implicit integration formulas, while not for explicit integration 
formulas.  The aim of the more complex formulas is to get improved accuracy and numerical stability with 
larger time steps.  

SPARK deals with differential equations by introducing object classes to represent integration formulas.  
These can be from the SPARK globalclass library, or user defined.  You can define many different kinds of 
integration object classes, ranging from simple explicit formulas such as Euler’s to complex implicit formulas 
used in predictor-corrector methods.  Unlike other simulation languages, SPARK even allows you to use 
different integration formulas in different parts of the same problem.12 

Below we will learn how to solve a simple differential equation.  First we will use integrators from the 
SPARK library, and then see how integrator object classes are created.  In Section 6.5, this will be extended to 
a more complex problem with mixed algebraic and differential equations. 

                                                      
10 The dynamic variables are the variables appearing in differential form in the set of equations
11 The terms open and closed are sometimes used instead of explicit and implicit. 
12 This is however not recommended as there are numerous numerical issues involved with mixing integration schemes in the same problem. 

. 

  36 Differential Equations 
 



SPARK 2.0 Reference Manual 

6.2 SOLVING A SIMPLE DIFFERENTIAL EQUATION 
As a simple example, consider the differential equation: 

( )0; 0x ax b x t x+ = =�  (6.3) 

where �x  is understood to be the derivative of x  with respect to time, t, the independent variable.  We see this 
to be a well-posed problem: ( )x t  can be determined given the parameters  and b , and the initial condition a

0x . 

To achieve a numerical solution in SPARK we view the derivative as a separate dependent variable.  In order 
to preserve the balance between equations and variables, this additional variable requires an additional 
equation to be added to the set.  An integration formula provides this needed equation, giving the value of x  
at the next point in time.  If we employ the Euler formula, Equation (6.1), the set of equations to be solved is: 

p p

x a x b
x x h x

+ ⋅ =
 = + ⋅

�
�  (6.4) 

It is seen that we again have a well-posed problem consisting of two equations in the two variables x  and �x .  
Since both equations are algebraic, they can be easily solved by the established SPARK methodology. 

This example is simple, but the method is general.  Regardless of problem complexity, we simply introduce a 
new problem variable for every (first order) time-derivative, and at the same time introduce an integrator 
object for the dynamic variable.  

The SPARK solver then has an algebraic problem to deal with.  Observe also that implicit integration 
formulas, Equation (6.2), require no special consideration.  Such formulas involve the x  at the new time, i.e., 
are implicit in x .  But this is of no concern, because the SPARK solver anticipates that an iterative solution 
process may be necessary due to the possibility of other cycles in the problem.  The implicit integration 
formula is simply one more equation to be converged through the normal iteration. 

One other issue needs to be dealt with, and that is preserving past values of dynamic variables and their 
derivatives.  From Equation (6.1) we see that the Euler integration formula uses values of x  and �x  from the 
previous time to calculate x  at the new time.  Some integration formulas use values of these quantities from 
earlier time steps as well.  In order to provide these past values, SPARK provides four past values for all 
problem variables.  This allows definition of a wide range of practical integrator classes.13 

xdot x
xDot c

a
b

c
p

a

b

ax

dt

s
ab

c
dt x

 
Figure 6-1:  First-order differential equation diagram. 

With these ideas we can continue with our example.  Figure 6-1 shows a SPARK diagram for our differential 
equation.  We use an instance of the safprod object class, p, to form the ax  product, and an instance of the 

                                                      
13 If needed, SPARK can be reconfigured to allow more past values. 

  37 Differential Equations 
 



SPARK 2.0 Reference Manual 

sum object class, s, to form the sum �x ax+ .  We then link the a port of s and the xdot port of the instance c 
of the euler class using a problem variable called xDot.  This causes the x port of c to carry the problem 
variable, x, which we also link to one of the multiplicand ports of the object p. 

�x

/*        First order differential  equation 
 *                xdot + a*x = b  
 *               frst_ord.pr 
 */ 
DECLARE  safprod    p; 
DECLARE  sum        s; 
DECLARE  euler      c;  
LINK     a     p.a        INPUT; 
LINK     b     s.c        INPUT; 
LINK     dt    c.dt             GLOBAL_TIME_STEP; 
LINK     x     p.b, c.x         REPORT; 
LINK     xDot  s.a, c.xdot; 
LINK     ax    s.b, p.c; 

The values of the variables a and b, must be placed in an input file, frst_ord.inp.  Also, when you solve 
differential equations it is necessary to provide initial conditions for each dynamic variable.  In SPARK there 
are two ways to accomplish this.  One way is to place  INIT=VALUE in the LINK statement for the variable.  
Alternatively, you can specify the initial values by giving the initial time and associated initial values for the 
dynamic variables in the input file.  This is preferable if you want to carry out parametric runs with different 
initial conditions without changing the problem specification file.  To demonstrate the latter method, suppose 
a and b are both 1.0, the initial time is 0, and x has an initial value of 0.  Then frst_ord.inp should be:  

 3 a b x 

 0 1 1 0 

Since x is a dynamic variable rather than specified as input, its value will be read from the input file only at 
start-up (see Section 7.1).  Some numerical integration methods require values of dynamic variables and their 
derivatives at times earlier than the initial time.  When needed, these values can be provided in the same 
manner, using time values earlier than the problem initial time (i.e., negative time if initial time is 0). 

Note that the units of time are not defined in SPARK, so you are free to choose whatever time units you wish 
and develop your differential equations to reflect your choice.  For example, if in the above differential 
equations x  is measured in meters and  is to be in meters/second, the coefficient a must have units of 
reciprocal seconds and b must have units of meters/second. 

The run-control file needed to run this problem, frst_ord.run, is: 
( 
InitialTime   ( 0.0 ()) 
FinalTime   ( 5.0 ()) 
InitialTimeStep ( 0.015625 ()) 
FirstReport   ( 0.0 ()) 
ReportCycle   ( 0.03125 ()) 
InputFiles   ( frst_ord.inp ()) 
OutputFile   ( frst_ord.out ()) 
) 

  38 Differential Equations 
 



SPARK 2.0 Reference Manual 

We ask for the solution over a time range of 
0 to 5 seconds, with a time step of 
0.015625.14  The link for dt includes the 
GLOBAL_TIME_STEP keyword.  This 
propagates the time step specified in the run-
control file to wherever it may be needed in 
the problem and macro classes.  The 
requested output at every other time step is 
written to frst_ord.out.  The results are plotted 
in Figure 6-2, generated by opening 
frst_ord.out with Microsoft Excel.  
Alternatively, you could use the free-use 
plotting program provided with WinSPARK, 
wgnuplot, see Section 14.  

 

0

0.5

1

1.5

0 1 2 3 4 5
Time

x

 
Figure 6-2:  Results for the frst_ord dynamic problem. 

6.3 INTEGRATOR CLASSES IN THE SPARK LIBRARY 
The SPARK library has several integrator classes.  All integrator classes have the same port interface 
consisting of the port x for the dynamic variable, the port xdot for its time-derivative, and the port dt for the 
global time step.  In order to be able to distinguish the integrator objects from the other algebraic objects at 
runtime, each integrator class is also typed as INTEGRATOR using the CLASSTYPE statement (See Section 
8.6).  

This approach of typing the integrator classes and of keeping the same port interface for all of them allows to 
identify the dynamic variables and their respective time-derivatives in the problem under study. This 
information is then used during the solution phase in order to provide specific numerical treatment for the 
dynamic variables. In particular, classes of type INTEGRATOR are allowed to send requests to the solver to 
adapt the global simulation time step in order to satisfy the user-specified integration tolerance (See Section 
10). Also, the list of dynamic variables is written out to the equation file generated by the setupcpp program 
(See Figure 1-1). The equation file should be consulted to find out which problem variables are the dynamic 
variables for which initial conditions must be provided at the start of the simulation. 

If the CLASSTYPE INTEGRATOR statement is omitted in the atomic classes implementing the integration 
methods,15 then the integrator objects are treated like any other atomic class16 during the SPARK build process. 
The variables connected to the x port will not be tagged as dynamic variables and they will not be listed in the 
equation file. During the solution phase, these integrator objects will not be able to provide error control by 
adapting the time step. Notwithstanding these limitations, it is still possible to use integrator classes that are 
not defined as CLASSTYPE INTEGRATOR.  

However, we strongly recommend that you use the new integrator classes of the SPARK library defined as 
CLASSTYPE INTEGRATOR in order to benefit from the improved numerical treatment such as the 
capability to monitor the integration error. 

The integrator classes in the SPARK library are shown in Table 6-1.  For each integrator, we also indicate 
whether it can be used with variable time step and whether it provides integration error control through 
varying the time step. All of the implemented integration methods are fully described in numerical analysis 
texts so we will just describe them briefly here. 

  39 Differential Equations 
 

                                                      
14  Although the time step can be any wanted value we choose 1/26 =0.015625 because powers of 2 can be represented exactly in the binary storage 
format used internally. Step sizes that are not powers of 2 are difficult to synchronize with reporting intervals. 
15 This was the approach followed in SPARK 1. 
16 By default, the atomic classes are considered to be defined as CLASSTYPE DEFAULT unless specified otherwise. 



SPARK 2.0 Reference Manual 

Table 6-1: Integrator Object Classes in the SPARK Library. 

Integration method Class file Variable 
Time Step 

Error 
Control 

Euler (explicit) euler.cm yes no 

Implicit Euler  implicit_euler.cc yes no 

Backward-Forward Difference bfd.cc yes no 

4th-order Backward - Forward Difference bd4.cc no no 

Adams-Bashforth-Moulton abm4.cc no no 

PC Euler integrator_euler.cc yes yes 

PC Trapezoidal integrator_trapezoidal.cc yes yes 
 
• The Euler method is based on the simplest of all methods, using only the time-derivative at the beginning 

of the time step. It is a 1st-order integration method. 

• The Implicit Euler method is the same basic idea as the normal (explicit) Euler method except the time-
derivative is estimated at the end of the time step. It is also a 1st-order integration method but with better 
stability behavior than the explicit Euler method.  

• The Backward-Forward Difference method is only slightly more complex, using the time-derivative at the 
end of the time step as well as at the beginning. It is a 2nd-order integration method. 

• The 4th-order Backward-Forward Difference method uses additional previous values and time-derivatives. 
These Backward-Forward Difference methods are often used for “stiff” differential equations sets (Press, 
Flannery et al. 1988). This scheme cannot be used in the variable time step mode because the constant 
coefficient implementation assumes equidistant previous solution points.  

• The Adams-Bashforth-Moulton method is a 4th-order predictor/corrector method.  Such methods employ 
two separate integration formulas, a predictor to make an initial estimate of the new solution, and a 
corrector to refine the solution iteratively. The predictor is an explicit formula, while the corrector is an 
implicit formula. This scheme cannot be used in the variable time step mode because the constant 
coefficient implementation assumes equidistant previous solution points. 

• The PC Euler method is a 1st-order predictor/corrector scheme providing control of the local truncation 
error when the solver is operated in the variable time step mode (See Section 18). The predictor scheme 
implements the explicit Euler method and the corrector scheme implements the implicit Euler method. 
The error estimate is obtained from the difference between the predictor and the corrector and is of order 
1. The error control strategy uses the Euclidean norm of the local truncation errors estimated for each 
dynamic variable. The time step adaptive strategy implements the Error Per Step approach, whereby the 
error norm at each step is kept smaller than the user-specified tolerance. 

• The PC Trapezoidal method is a 2nd-order predictor/corrector scheme providing control of the local 
truncation error when the solver is operated in the variable time step mode. The predictor scheme 
implements the explicit Euler method and the corrector scheme implements the trapezoidal method, also 
known as the backward-forward difference method. The error estimate is obtained from the difference 
between the predictor and the corrector and is of order 1. The error control strategy uses the Euclidean 
norm of the local truncation errors estimated for each dynamic variable. The time step adaptive strategy 
implements the Error Per Step approach, whereby the error norm at each step is kept smaller than the 
user-specified tolerance. 

  40 Differential Equations 
 



SPARK 2.0 Reference Manual 

6.4 CREATING SPARK INTEGRATOR OBJECT CLASSES 

6.4.1 Simplified Implementation of the Euler Method 

If none of the library integrator object classes are suitable, you can define your own.  SPARK integrator object 
classes are created much like any other object class.  To see how this is done, let’s look at the following 
implementation of the euler class.  The port variables are the dynamic variable x, its derivative xdot, and the 
time step dt.  An inverse is given for a single port variable, the dynamic variable x.17 
/*          euler.cc             */ 
#ifdef spark_parser 
PORT x;  
PORT xdot;  
PORT dt;  
EQUATIONS { 
 x = x[1] + dt*xdot[1]; 
} 
FUNCTIONS { 
 x = euler__x(xdot, dt); 
} 
#endif /*spark_parser*/ 
#include "spark.h" 
EVALUATE( euler__x ) 
{ 
 ARGUMENT( 0, xdot); 
 ARGUMENT( 1, dt); 
 TARGET( 0, x); 
 double result; 
 result = x[1] + dt*xdot[1]; 
 RETURN( result ); 
} 

The EVALUATE callback function euler__x employed in the class definition is implemented in C++ after 
the class itself.  It is basically an expression of the Euler integration formula, Equation (6.1).  First, the 
arguments declared for the callback function euler__x are defined as instances of the class TArgument 
using the preprocessor macro ARGUMENT called with the respective positions in the argument list18: the time-
derivative argument xdot and the time step argument dt. Then, the target for the dynamic variable x is 
defined as an instance of the class TTarget using the preprocessor macro TARGET. 

The heart of the callback function is the line: 
result = x[1] + dt*xdot[1]; 

which represents the Euler formula.  As might be surmised from the code, x[1] refers to the value of the 
target port x one time step back.19 Similarly, xdot[1] refers to the value of the argument port xdot one time 
step back.  The right hand side adds the time step multiplied by the derivative at the beginning of the time step 
to the variable at the same time.  This is the new value of the dynamic variable, which is then returned using 
the preprocessor macro RETURN.   

                                                      
17  Theoretically, SPARK would not care whether the integration formula was used to calculate the dynamic variable or its derivative.  As a token to the 
sensibilities of most numerical analysts, however, here we restrict this relationship to be a formula for the dynamic variable. 
18 The ARGDEF macro uses zero-based indexing. 
19  Remember that it is not possible to access the value at the current step of a TTarget instance but the values at previous steps can be freely 
accessed as well as other properties. 

  41 Differential Equations 
 



SPARK 2.0 Reference Manual 

Finally, note that we did not define the euler class as CLASSTYPE INTEGRATOR. However, this would be 
trivial to do by simply adding the statement in the class definition because our simplified implementation is 
already compatible with the port interface required by an INTEGRATOR class. 

6.4.2 The Initialization Issue 

The function euler__x in this example is simplified because there is no guarantee that the dynamic variable 
x  will be equal to the prescribed initial value 0x  at the initial time  in order to satisfy the prescribed initial 
condition

0t
20 

( )0 0x t x=  (6.5) 

To understand the initialization issue, we need to consider the situation at the very beginning of the 
simulation period, i.e., InitialTime, and contrast it with conditions at later time steps.  At 
InitialTime, presumably we want the prescribed initial values of the dynamic variables to be used as 
shown in Equation (6.5). However, at all other times in the dynamic solution process we need to calculate the 
value of x from the integration formula used in the SPARK integrator object.  That is, assuming we are using 
the Euler formula, we want to enforce: 

p px x hx= + �  (6.6) 

where the subscript p refers to the previous time step values for x and its time-derivative x� .  

Thus we see that the system model is slightly different at InitialTime.  Ideally, then, we should formulate 
the problem twice, once with an object representing Equation (6.5) and again with the integrator relationship, 
Equation (6.6), starting the simulation with the first formulation and switching to the second after the 
InitialTime solution.  However, SPARK cannot change the model during simulation; it allows for a 
single problem formulation.  Therefore we have to use the integrator object at InitialTime as well as 
throughout the simulation period. 

An approach to achieve proper start-up is to modify the integrator class to behave differently at 
InitialTime.  For example, we could write 
if ( ACTIVE_PROBLEM->IsStaticStep() )  
 result = x.GetInit(); 
else  
 result = x[1] + h*xdot[1]; 

where ACTIVE_PROBLEM->IsStaticStep() is a boolean function that returns true only when the 
problem under study is currently solving a static simulation step, which is typically the case  when the time 
equals InitialTime.  Also, x.GetInit() is a method invocation that returns the initial value of x.  The 
htm/chm tutorial SPARK Atomic Class API should be consulted for more information on the TTarget and 
TProblem classes. 

This is actually quite a good solution to the start-up problem.  It is easy to implement and will adapt to even 
complex integrators.  The drawbacks are small losses in computational efficiency and generality.  The 
principal efficiency loss is due to the extra if-check which must be executed at every time step in the 
simulation; it is doubtful that this increase in solution time will be significant in most problems.  The loss in 
generality is because certain kinds of initial conditions, e.g.,  

c)t(x 0 =�  (6.7) 
                                                      
20 We also refer to the initial condition for a dynamic variable as its initial value. 

  42 Differential Equations 
 



SPARK 2.0 Reference Manual 

cannot be enforced because they require solving a different initial problem. Future versions of SPARK will 
deal with this start-up situation more rigorously.  Two different problem graphs will be constructed, one using 
a start-up formula and the other a proper integration formula.  This will allow determination of completely 
different solution sequences at start up if needed to enforce special initial conditions.  Moreover, this 
approach will permit use of different integration formulas whenever necessary later in the simulation, e.g., 
after a change in integration time step. 

6.4.3 The Restart Issue 

After initial time the solver might need to restart the simulation by computing a static step to calculate a 
consistent, new set of “initial” values for the dynamic variables at the current time. This operation is 
sometimes referred to as a warm restart21 because it occurs after the initial time.  

Resetting the integrators following a warm restart is a similar task to the one previously discussed with the 
initialization issue whereby the integration formula is bypassed and a constant value is returned for the 
dynamic variable. The difference with the warm restart is that this constant value is simply the value at the 
previous step.  

For example, we could write 
if ( ACTIVE_PROBLEM->IsStaticStep() )  // No integration 
 result = ( 
  ACTIVE_PROBLEM->IsInitialTime() ?  
  x.GetInit() // Initial time solution special case 
  : 
  x[1] // Use past value for restart after initial time solution 
  ); 
else // Perform integration 
 result = x[1] + h*xdot[1]; 

where ACTIVE_PROBLEM->IsInitialTime() is a boolean function that returns true only when the 
global time in the problem under study is equal to the initial time. Only at initial time do we return the initial 
value of the dynamic variable. For each static step after the initial time, we return the previous value of the 
dynamic variable, as expected for a warm restart. 

6.4.4 The Previous Value Issue 

More complex integrators, differing primarily in the use of more previous terms, may be found in the SPARK 
globalclass directory.  There it will be seen that x two steps back is written x[2], and so on.  Users with 
special needs can reconfigure SPARK to work with any number of previous values of any class argument. 

In addition to the initialization issue, the integrator in this example is also simplified in another way.  As 
presented, it uses the variable name, xdot, that represents both the new value at the current time step and the 
previous value.  However, the integration formula only needs knowing about its previous value. That is, the 
euler__x callback function has the form: 

x = euler__x(xdot, dt); 

Written this way, the SPARK parser will assume that we are using the current-time value of xdot in the right 
hand side of the integration formula, whereas in fact it is the previous-time value of xdot that occurs there as 
can be seen in Equation (6.1).  Since the code for the corresponding C++ callback function euler__x 
actually uses only the previous value of xdot on the right hand side, namely xdot[1], Euler integration will 
be properly applied at execution time.   

                                                      
21 The initial time solution is also referred to as a cold start. 

  43 Differential Equations 
 



SPARK 2.0 Reference Manual 

However, the disadvantage of the way we have coded it here is that the generated solver will potentially 
include an unnecessary feedback loop, and therefore an additional but unnecessary break variable, if the 
variable xdot depends on the variable x in the problem.  A better way to implement explicit integrators that 
avoids this undesired topological dependency in the computational graph is discussed in Section 8.3. 

6.5 SOLVING A LARGER EXAMPLE: THE AIR-CONDITIONED ROOM 
As a more realistic simulation example, let us consider a simple air-conditioned room shown in Figure 6-3.22 

The room is supplied by air at temperature 
.  The flow rate of supply air is , 

which is controlled by a proportional 
controller acting in response to the 
difference between room air temperature, 

, and the set point, limited between 
maximum and minimum values T  and 

.  Heat Q  is transferred through 
the external envelope in proportion to the 
outside-to-inside temperature difference.  
Also, heat  is transferred from the 
floor slab to the room air in proportion to 
the temperature difference between these 
two bodies.  Accounting for the heat 
capacity of the floor slab, the 
mathematical model for this system can be 
written: 

inT

aT

minT

m�

max

wall

floorQ

 

Ta

Qwall

Tosa

Qfloor

m
Tin

pc

T

Tfloor
 

Figure 6-3:  Temperature-controlled room. 

 

( )
( )

( )

( )

,

min min

max min
, min min

max min

max max

wall wall a osa

floor floor a floor

flow p in a

floor flow wall

floor p floor floor floor

a

p a a

a

Q UA T T

Q hA T T

Q mC T T

Q Q Q

M C T Q

M if T T
M MmC M T T
T T

M if T T

= −

= −

= −

= −

=

 <


−= + − ⋅
 −


>

�

�

�

 (6.8) 

where: 

wallUA  is the wall conductance,  
flowQ  is the heat added (+) or removed (-) from 

the room due to air flow, 

osaT  is the outside air temperature,  
pmC�  is the supply air capacity rate, 

                                                      
22  The VisualSPARK Users Guide contains a tutorial showing how a similar problem would be formulated using the VisualSPARK user interface. 

  44 Differential Equations 
 



SPARK 2.0 Reference Manual 

floorhA  is the floor to room air conductance,  
,floor p floorM C  is the floor slab heat capacity, 

floorT  is the floor slab temperature,  
maxM  is the maximum supply air capacity rate, 

aT  is the room air temperature,  
minM  is the minimum supply air capacity rate, 

wallQ  is the heat flow from room air to 
walls, 

 
minT  is the room temperature at which supply 

air capacity rate is maximum,  

floorQ  is the heat flow from room air to 
floor, 

 
maxT  is the room temperature at which supply 

air capacity rate is minimum. 

 

The first two equations express the relationship between the temperature differences and heat flow to the 
room air, while the third gives the heat removal rate due to the stream of conditioned air.  The next two give, 
respectively, the heat storage rate of the floor slab, Q , and the rate of change of energy stored in the slab, floor

,floor p floor floorM C T� ; of course, these quantities are equal.   

The last equation is the proportional control expression, stating that the air stream cooling capacity is 
proportional to the difference between room air temperature and the set point, limited between maximum and 
minimum values. 

This system can be represented by seven SPARK objects, as shown in Figure 6-4.  The three heat transfer 
equations are represented by the objects flow, walls, and floor, all of which are instances of the HVAC 
Toolkit class called cond (a conductor) having the form: 

(12 1 2q U T T= ⋅ − )  (6.9) 

The slab heat storage rate relationship is represented by a diff object called net.  Also, a safprod object called 
rate is required to form a product between the slab heat capacity, MCp, and the rate of change of slab 
temperature, T_floor_dot.  An integrator object called c implements the backward-forward difference formula 
to get T_floor from T_floor_dot.  Finally, the proportional controller is implemented by the class called 
propcont from the HVAC Toolkit (see Appendix B). 
 

  45 Differential Equations 
 



SPARK 2.0 Reference Manual 

response

signal

response_hi
response_lo
signal_lo
signal_hi

pc
U12

T1
T2
q

flow

U12

T1
T2
q

walls

U12

T1
T2
q

floor

a
b

c

net

dt
xdot

x

c

b
c

a

rate

Tin

mcp

Ta

Q flow

Q wall

Tosa

UA

hA dt

Mcp

T floor

Q floor T floor dot

max_cap
min_cap
T_set_low
T_set_high

 

Figure 6-4:  SPARK diagram for temperature-controlled room (see file room_fc.cm). 

 
Because several rooms are often required in a complete problem, we implement the diagram in Figure 6-4 as a 
SPARK macro class called room_fc.cm, as shown below: 
/*   
     Massive Floor Room, with Controller Macro room_fc.cm 
 */ 
// Temperatures 
PORT  Ta          [deg_C]   "Room air temperature"; 
PORT  T_floor     [deg_C]   "Room floor temperature"; 
PORT  T_floor_dot [deg_C/s] "Room floor temperature rate of change"; 
PORT  Tosa        [deg_C]   "Outside air temperature"; 
PORT  Tin         [deg_C]   "Supply air temperature"; 
 
PORT  UA          [W/deg_C] "Wall conductance"; 
PORT  hA          [W/deg_C] "Floor to air conductance"; 
PORT  mcp         [W/deg_C] "Supply air heat capacity rate"; 
PORT  Mcp         [J/deg_C] "Floor mass heat capacity"; 
 
// Proportional controller 
PORT  T_set_high  [deg_C]   "Set point temp, high"; 
PORT  T_set_low   [deg_C]   "Set point temp, low"; 

  46 Differential Equations 
 

PORT  max_cap     [W/deg_C] "Max supply air capacity rate"; 



SPARK 2.0 Reference Manual 

PORT  min_cap     [W/deg_C] "Min supply air capacity rate"; 
 
// Heat transfers 
PORT  Q_flow      [W]       "Heat added (+) /removed (-) by air stream"; 
PORT  Q_wall      [W]       "Wall heat transfer"; 
PORT  Q_floor     [W]       "Heat from air to floor"; 
 
PORT  dt          [s]       "Time step for T_floor differential"; 
 
DECLARE  cond     flow;   //  Air mass flow "conductor" 
DECLARE  cond     walls;  //  Walls conductance 
DECLARE  cond     floor;  //  Floor to air conductor 
DECLARE  diff     net;    //  Diff between Q in and out 
DECLARE  safprod  rate;   //  Multiply T_floor_dot* Mcp 
DECLARE  propcont pc;     //  Proportional controller 
DECLARE  bfd      c;      //  Backward-forward difference integrator 
 
LINK  .Tosa,        walls.T2; 
LINK  .Tin,         flow.T1; 
LINK  .UA,          walls.U12; 
LINK  .hA,          floor.U12; 
LINK  .mcp,         flow.U12, pc.response; 
LINK  .Mcp,         rate.a; 
LINK  .T_set_low,   pc.signal_lo; 
LINK  .T_set_high,  pc.signal_hi; 
LINK  .max_cap,     pc.response_hi; 
LINK  .min_cap,     pc.response_lo; 
LINK  .Q_wall,      walls.q,  net.b; 
LINK  .T_floor,     floor.T2, c.x; 
LINK  .T_floor_dot, rate.b,   c.xdot; 
LINK  .Q_floor,     floor.q,  net.c,    rate.c; 
LINK  .Ta,          flow.T2,  walls.T1, floor.T1, pc.signal   INIT=20.0; 
LINK  .Q_flow,      flow.q,   net.a; 
LINK  .dt,          c.dt; 
 
This macro can be used to define a single-room problem as follows:  
/*                Air-conditioned Room room_fc.pr */ 
DECLARE room_fc  room; 
 
LINK  Mcp        room.Mcp         [J/deg_C]   INPUT; 
LINK  UA         room.UA          [W/deg_c]   INPUT; 
LINK  hA         room.hA          [W/deg_C]   INPUT; 
LINK  Tosa       room.Tosa        [deg_C]     INPUT; 
LINK  Tin        room.Tin         [deg_C]     INPUT; 
LINK  T_set_high room.T_set_high  [deg_C]     INPUT; 
LINK  T_set_low  room.T_set_low   [deg_C]     INPUT; 
LINK  max_cap    room.max_cap     [W]         INPUT; 
LINK  min_cap    room.min_cap     [W]         INPUT; 
 
LINK dt          room.dt          [s]                  GLOBAL_TIME_STEP; 
LINK mcp         room.mcp         [W/deg_C]                 REPORT; 
LINK Q_flow      room.Q_flow      [W]                       REPORT; 
LINK Q_wall      room.Q_wall      [W]                       REPORT; 
LINK Q_floor     room.Q_floor     [W]                       REPORT; 
LINK Ta          room.Ta          [deg_C] BREAK_LEVEL=10    REPORT; 

  47 Differential Equations 
 



SPARK 2.0 Reference Manual 

LINK T_floor     room.T_floor     [deg_C] INIT=30           REPORT; 
LINK T_floor_dot room.T_floor_dot [deg_C/s]                 REPORT; 
 

Here we have declared room as an instance of the room_fc macro class.  The room thermal characteristics and 
control settings are defined as inputs.  This alone would be sufficient to completely specify the problem since 
the necessary linkages are all internal to the room_fc macro class.  However, if we did not put some LINK 
statements  in the problem file, SPARK would have no problem variables and hence nothing to report.  We 
therefore introduce LINK statements to get reports on the room air temperature, Ta, floor slab temperature, 
T_floor, cooling rate of the air stream, Q_flow, and the air stream capacity rate, mcp.  Alternatively, you could 
use the PROBE keyword (see Section 8.5). 

The input data for this problem is shown in Table 6-2.  Note that the supply air temperature is initially 13°C, 
and is raised to 17°C at 20 hours (72,000 seconds) after starting.  The room_fc.inp file to specify this is 
constructed as shown below: 

9 hA UA Tosa Tin Mcp T_set_low T_set_high max_cap min_cap

0 60 30 38 13 1.e6 23 24 50 0 

71964 60 30 38 13 1.e6 23 24 50 0 

72000 60 30 38 17 1.e6 23 24 50 0 

*          

In the first line the first item, 9, is the number of problem input variables.  The next nine items in this line are 
the names of the input variables as defined in the INPUT statements in the problem specification file.  The 
data that follow give the times (in this case, seconds) and values for the inputs at discrete points throughout 
the intended simulation period.  The first line, with a time value of 0, gives the initial conditions.  We specify 
Tin to be set at 13°C from time 0 to 19.99 hours (71,964 seconds), and 17°C from 20.0 hours (72,000 
seconds) forward.  Other values are constant throughout the simulation.  SPARK will interpolate linearly 
between the given time values to arrive at the value of all input variables at each solution point as the 
simulation proceeds.23  The last line has an asterisk, *, meaning that all values remain fixed from that point 
forward.  

It will be observed that the time unit in the above example is seconds.  While there is a certain awkwardness 
with this choice,  it has the advantage of allowing the other problem variables to be expressed in true SI units.  
For example, had we chosen to use hours instead of seconds, the time values would be the (perhaps) more 
pleasing sequence 0, 19.99, 20.00, but then we would have had to express input data such as hA in 
J/(hour*deg_C) instead of W/deg_C.  

Another observation in this example is that some input values do not vary with time, and this leads to many 
repeated values in the file.  While there is nothing wrong with repeating the constant values as done here, 
there are alternatives that you may want to consider.  Perhaps the best way to deal with this situation is with 
multiple input files, as discussed in Section 7.6.2.  Another way to deal with a constant input variable, not 
necessarily recommended, is simply to omit it from the input file.  This sometimes works because problem 
input variables not listed in an input file  will assume their INIT values, if available. INIT values are 
specified in the PORT statement (Section 19.10) when SPARK classes are defined.  If the class does not 
provide INIT values, or the provided values are not acceptable, you can also give an INIT value on a link 
connected to the port.  The disadvantage of doing it this way is that the problem must be rebuilt whenever 
INIT values are changed. 

However provided, running the room_fc problem with the data in Table 6-2 produces the results plotted in   

                                                      
23 Note that there must be some time difference between successive points to allow legitimate interpolation. 

  48 Differential Equations 
 



SPARK 2.0 Reference Manual 

Figure 6-5 and Figure 6-6.24 

Table 6-2:  Input for the Temperature-Controlled Room Example. 

Variable  
see Equation (6.8) 

Link  
see room_fc.pr 

Value Units 

floorhA  hA 60 W/deg_C 

wallUA  
UA 30 W/deg_C 

osaT  Tosa 38 deg_C 

minM  min_cap 0.0 W/deg_C 

maxM  max_cap 50 W/deg_C 

minT  T_set_low 23 deg_C 

maxT  T_set_high 24 deg_C 

dt  dt 360 s 

,floor p floorM C  Mcp 1.0E6 J/deg_C 

( )0 71964inT −  Tin 13 deg_C 

( )72000inT −…  Tin 17 deg_C 

( )0floorT  T_floor 30 deg_C 

All inputs are constant except Tin, which starts at 13°C and is increased to 17°C at 20 hours (72,000 s).  The 
first of these plots,  

Figure 6-5, shows the controlled quantity, mcp, and we see that it remains at its maximum value for about six 
hours.  During this period the room air temperature, Figure 6-6, is being rapidly reduced.  Once within the 
range of proportional control,  the supply capacity rate modulates, maintaining the room air temperature close 
to the set point.  The slab temperature gradually cools.  At the twentieth hour, the scheduled change in supply 
air temperature takes place, causing the supply capacity rate to increase to the maximum.  However, this 
maximum is insufficient so the air temperature rises above the set point. 

 

                                                      
24  To get these plots we opened the output file with Microsoft Excel.  Alternatively, gnuplot could be used. 

  49 Differential Equations 
 



SPARK 2.0 Reference Manual 

mcp (W/deg_C)

35

40

45

50

55

0 18000 36000 54000 72000 90000 108000

Time (s)

 

Figure 6-5:  Supply Air Capacity Rate. 

20

21

22

23

24

25

26

27

28

29

30

0 18000 36000 54000 72000 90000 108000
Time (s)

Te
m

pe
ra

tu
re

s 
(d

eg
_C

)

Ta

T_floor

 

Figure 6-6:  Room and Floor Slab Temperatures. 

The room_fc.eqs file, shown below, reveals how SPARK solves this problem.  We see that there is a single 
strongly connected component, with one break variable, Ta.  The initial value of Ta is taken from the INIT 
values found in the macro or underlying atomic classes, since it is not mentioned in the input file, and no 
INIT value is given in the LINK statement in the problem file.   

  50 Differential Equations 
 



SPARK 2.0 Reference Manual 

The dynamic variable T_floor is initialized at InitialTime with the INIT value given in the LINK 
statement in the problem file.  After the initial time it is computed by the integrator object room`c using its 
time-derivative T_floor_dot and the global time step dt.  

These, along with the problem inputs, allow the indicated sequence of calculations.  The component is iterated 
to convergence at each time step. 
Global variable(s) : 
        GLOBAL_TIME_STEP               = dt 
 
 
Known variable(s) :  
        max_cap                        INPUT 
        min_cap                        INPUT 
        T_set_high                     INPUT 
        T_set_low                      INPUT 
        Mcp                            INPUT 
        hA                             INPUT 
        UA                             INPUT 
        Tosa                           INPUT 
        Tin                            INPUT 
 
 
Dynamic variable(s) :  
        T_floor                        <- room`c( T_floor_dot, dt ) 
 
 
Component 0 :  
   Break variable(s) :  
        Ta                             PREDICT_FROM_LINK = Ta 
 
   Solution sequence :  
        mcp                            = room`pc:propcont__response( Ta, T_set_low, 
T_set_high, min_cap, max_cap ) 
        Q_flow                         = room`flow:cond_q( Tin, Ta, mcp ) 
        Q_wall                         = room`walls:cond_q( Ta, Tosa, UA ) 
        Q_floor                        = room`net:diff__difference( Q_flow, Q_wall ) 
        T_floor_dot                    = room`rate:safprod__a_or_b( Q_floor, Mcp ) 
        T_floor                        = room`c:bfd__x( T_floor_dot, dt ) 
[BREAK] Ta                             = room`floor:cond_T1( Q_floor, T_floor, hA ) 

 
 
 

  51 Differential Equations 
 



SPARK 2.0 Reference Manual 

7 HOW SPARK ASSIGNS VALUES TO VARIABLES 
In a broad sense, one would think that variable values in a problem should either be user-specified or 
calculated in the process of solving the problem.  While this is indeed true, there are issues having to do with 
SPARK value assignments that sometimes need careful attention.  This is best discussed in terms of four 
different methods of value assignment that can take place in SPARK: initialization, prediction, updating, and 
solution. 

7.1 INITIALIZATION 
Initialization refers to providing values that are needed at the beginning of the simulation.  Using these initial 
values, SPARK then computes values for all link variables at the initial time of the simulation.  While all 
SPARK variables can be initialized, not all need to be initialized. 

7.1.1 What Must be Initialized 

There are two cases where variables must be given initial values, regardless of the numerical methods to be 
used: 

Dynamic variables.  These are the link variables that appear in differential equations, i.e., those attached 
to an x port of integrators.  This initialization requirement arises directly from the underlying 
mathematical theory, namely that you need an initial condition, in addition to the differential equation, in 
order to have a well-posed problem.  This requirement is independent of the choice of integration method 
or other numerical considerations.  

Previous-Value Variables.  Previous-Value Variables (see Section 8.3) are in a special category in 
SPARK.  Most SPARK non-input link variables get values in the process of solving the problem equations 
at the time in question.  Previous-Value Variables, on the other hand, get their values from calculations 
done at the previous time step.   
As described in Section 19.14, the syntax INPUT_FROM_LINK=fromLink defines the link from 
which the variable in question gets its value.  For this to work properly at InitialTime, obviously the 
variable referred to as fromLink must be initialized at the time one time step before the problem 
initial time.  This can be done either in an input file, or using the INIT in the LINK statement defining 
fromLink.  Note, however, that Previous-Value Variables that arise in the definition of integrators need 
not be initialized because they are not used at InitialTime. (See Section 8.3) 

7.1.2 What Might Need Initialization 

Additionally, certain numerical integration methods may need to be initialized not only at InitialTime, 
but also at one or more earlier time steps. While this can be done in SPARK, as a practical matter it is difficult 
or impossible to know such values.25  Ideally you should attempt to provide past values as needed by 
multistep methods, if used.  That said, some analysts may be willing to accept some degree of inaccuracy in 
early time steps, in which case this advice can be disregarded. 

BDF-like multistep schemes require past values for the dynamic variables, as many as the order of the 
method.  For example, the bd4 class requires values at one, two, three, and four time steps before the initial 
time of the simulation.  Similarly, Adams-like multistep schemes, e.g., the classes bfd and abm4 require past 
values for the derivatives of the dynamic variables, again as many as the order of the method. 

                                                      
25  For this reason, SPARK will avoid use of such methods at the beginning of the simulation and until necessary histories of past values have been 
solved for with single step methods. 

  52 How SPARK Assigns Values to 
Variables 

 



SPARK 2.0 Reference Manual 

Finally, it should be noted that the variables that SPARK selects as break variables may need initialization.  
The reason for this is that unless the LINK statement for break variable has the keyword 
PREDICT_FROM_LINK=fromLink (see below) the iteration process at each new time begins at the 
previous value of the break variable.  Without proper initialization, the previous value at InitialTime 
would likely become the built-in SPARK default value, 0.01.  To override use of the default value, you must 
initialize the break variable at InitialTime. 

7.1.3 How to Specify Initialization 

You can specify initial values in two ways.  First, INIT=value can be placed in the LINK statement for the 
variable, or in any equivalent link to a PORT statement in macro objects (see Sections 8.1and 19.14).  An 
alternative way to initialize is by means of input files.  During the initialization phase of the simulation, all 
variables can have initial and past values assigned through reading from input files.  This is done by providing 
the required variables and derivatives with values at InitialTime, and earlier time steps if needed, using 
negative times if necessary. 

Initialization of Previous-Value Variables is a special situation.  Since a variable of this kind gets its value 
from the previous value of another variable, the proper way to provide its InitialTime value is to specify 
the value of the corresponding fromLink at one time step before InitialTime, indicated by initial time 
minus the time step, using time stamp prior to InitialTime in an input file.  Note that an attempt to use 
the INIT keyword in a LINK statement in which the INPUT_FROM_LINK keyword is used results in a 
warning.  Moreover, values given for Previous-Value Variables per se in input files will be ignored. 

Thus we see that SPARK initial values can come from the default values, INIT=value, or input files.  
Either of the latter two will override the first.  If a variable has both INIT=value and occurs in an input 
file, the file input overrides the INIT value. 

7.1.4 Initial time solution of a dynamic problem 

To ensure starting the integration process from a consistent set of initial values at the first dynamic time step 
after the initial time, SPARK computes the initial time solution of a dynamic problem by solving a surrogate 
static problem (derived from the dynamic problem description), whereby all integrator objects return the 
initial value of the dynamic variable instead of evaluating the corresponding integration formula (See Section 
6.4.2).  Thus, the dynamic variables will be set to their desired initial values and the algebraic variables will 
be solved to produce a consistent solution at the initial time.  

The following steps are carried out by the initial value loader in SPARK prior to solving the problem at initial 
time: 

1. Load the INIT property values for all problem variables from the hard-coded values specified in the 
*.pr, *.cm and *.cc files.  The default INIT value, if none has been specified explicitly in the problem 
specification, is 0.01. 

2. Read in the INIT property values from input files specified for the initial time stamp.  Note that only 
the INIT properties of the variables appearing in the input files are updated.  The other variables 
keep their INIT values as specified in the *.pr, *.cm and *.cc files. 

3. Propagate the INIT values to the current values of all problem variables. 

4. Read in the current values from input files for all problem variables specified for the initial time 
stamp, thus overwriting the previously loaded INIT values.  This ensures that values specified in a 
snapshot file used to restart the simulation are loaded correctly, overriding prior INIT specifications. 

5. Propagate the initial values to the INPUT_FROM_LINK variables, if any. 

  53 How SPARK Assigns Values to 
Variables 

 



SPARK 2.0 Reference Manual 

6. Finally, write the current values back to the INIT property for each problem variable, so that 
subsequent firing of the method TArgument::GetInit() returns the correct initial value 
resulting from the previous steps.  This last step ensures proper initialization at InitialTime of 
the dynamic variables through the usage of the TArgument::GetInit() method in the integrator 
classes (See Section 6.4). 

7.2 PREDICTION 
In SPARK prediction refers to providing values for break variables at the beginning of each time step, i.e. 
prior to solving the simultaneous algebraic problem by iteration.  

7.2.1 Where Prediction is Needed 

As a rule, only break variables need predicted values.  

7.2.2 How Prediction is Specified 

By default, predicted values for break variables come from the final value for the same variable found at the 
previous time step.  In many cases this will work well, so you don’t have to take any special steps.  If your 
problem encounters solution difficulties, you may want to provide better prediction using either the 
PREDICT_FROM_LINK feature for links, or the PREDICT feature in the class definition.  

If PREDICT_FROM_LINK=fromLink appears in the LINK statement for a break variable, the starting 
value for the iterative solution at the new time will be the value of fromLink.  This mechanism is used 
when you know that the value of fromLink provides a more reliable estimate for the break variable than its 
previous value.  Note that since the fromLink can be any link, this mechanism allows you to devise 
predictor using variables from anywhere in your problem.  Therefore it is a very general and powerful 
mechanism. 

Another mechanism for prediction is provided by the syntax: 
PREDICT = predictor_fun(port1, port2, port3, ...) 

in the FUNCTIONS segment of a SPARK class definition.  This methods provides a predictor at the class 
level, as opposed to the PREDICT_FROM_LINK keyword which provides prediction at the link level.  
Class-level prediction is primarily used to implement predictor-corrector integration schemes (e.g.,  abm4.cc), 
where the predictor scheme is specified following the PREDICT keyword.  Another possible usage of 
class-level prediction is to provide a predictor function for a nonlinear atomic class using a linearized form of 
the nonlinear equation.  This approach has been successfully applied with the airflow-pressure power law 
relation in the zonal model context.  Unlike link-level predictors, class-level predictors can involve only the 
variables connected to the ports of the class in question. 

If a variable has both link and class level prediction (an unlikely situation), the class level prediction will 
override the link level prediction.  

7.3 UPDATING 
The concept of Previous-Value Variables (see Section 8.3), requires the concept of updating as a means of 
assignment of values to such variables. 

7.3.1 What Needs to Be Updated 

Updating refers only to providing values for Previous-Value Variables at the beginning of each time step. 

  54 How SPARK Assigns Values to 
Variables 

 



SPARK 2.0 Reference Manual 

7.3.2 How Updating is Specified 

To implement this concept, every Previous-Value Variable has in its defining LINK statement:  
INPUT_FROM_LINK = fromLink 

Previous-Value Variables are viewed as receiving values by updating from the specified links.  At the 
beginning of every time step, before solving the problem equations, the saved previous value of fromLink 
is assigned to the variable named in the LINK statement. 

7.4 SOLUTION 
Solution is the prevalent method whereby values are assigned to variables in a SPARK problem.  

7.4.1 What Needs to Be Solved For 

Normally, values for SPARK variables are determined by the solution of the system equations at each time 
point in the solution interval.  The exceptions to this are, input variables, previous-value variables, and 
dynamic variables at InitialTime. 

7.4.2 How Solution Is Specified 

As noted earlier, keywords in the associated LINK statements often determine the role of the variable.  Inputs 
variables are identified by the keyword INPUT either replacing the LINK keyword, or occurring elsewhere in 
the LINK statement.  Previous-Value Variables are defined by the keyword INPUT_FROM_LINK in the 
LINK statement.  Dynamic variables, on the other hand, have no special identifying keyword.  Variables 
become dynamic merely by being connected to an x port of an integrator.  The absence of these special 
keywords in a LINK statement indicates that the associated variable is to be solved for. 

Break variables are normal SPARK variables, other than inputs or Previous-Value Variables, that happen to be 
selected by SPARK for iteration.  Although they are assigned predicted values at the beginning of iteration at 
each time step, their final values after convergence at each time step are “solution” values, i.e., they satisfy the 
system equations.  Note that the break variables are determined automatically by SPARK. 

7.5 PROPAGATION 
As discussed previously, SPARK problem variables can have a default value assigned through the use of 
keywords in the PORT statement.  This default value will replace the built-in default value (0.01) for the port. 
However, when SPARK atomic classes are used to build macro classes, and when both become parts of 
SPARK problem files, a question arises about precedence among these values as set at different levels.   

For example, suppose we define atomic class ac1 which has a port called T with a default value of 20.  Now 
suppose we define a macro class mc1 which uses ac1, and this class also has a port called T with a default 
value of 10 which is linked to the T port of ac1.  The question is,  which default value will SPARK use for 
variables linked to the T port of the class mc1 when it is used in a problem or another macro class?  The same 
question can be posed for the INIT, ATOL, MIN, and MAX values assigned through the PORT or LINK 
statements.  

These questions are answered by propagation rules built into the SPARK parser.  The first rule is that the 
higher level takes precedence.  This means that a DEFAULT, INIT, ATOL, MIN, and MAX values given at 
any level override those given in lower level ports to which there is a connecting path.  That is, values will 
automatically propagate downward as needed.  Thus if mc1 were to be used in a problem file (or another 
macro class), any variable linked to its T port would have a default value of 10. 

  55 How SPARK Assigns Values to 
Variables 

 



SPARK 2.0 Reference Manual 

Let us consider another facet of this problem.  Suppose a default value is not given for the T port of the mc1 
class discussed above.  Will a variable linked to the T port of the mc1 class have a default value (other than 
the built-in value of 0.01) when it is used in a problem or another macro class?  The rule given above 
addresses downward propagation, but this question is one of upward flow of information, from a port in a low 
level class to a port linked to it in the higher level class or problem.  To deal with this situation, SPARK 
applies a second propagation rule, which is that DEFAULT, INIT, ATOL, MIN, and MAX values are 
propagated upward through connected ports whenever the higher level ports have no corresponding values.  

Together, these propagation rules produce behavior that most users will find natural.  However, ambiguity can 
arise when a macro class port is linked to two or more ports of constituent classes.  For example, suppose mc1 
also uses another atomic class, ac2, which also has a PORT called T, but with a default value of 15.  Will the 
value propagated upward (in the absence of default specification of the T port in mc1) be 20 or 15?  There is 
no way for SPARK to resolve such an ambiguity.  Consequently, the propagated value will be determined by 
the order in which the parser encounters the linkages in mc1.  To avoid such ambiguity, you should assign 
values at the higher levels when building complex macro classes. 

7.6 INPUT VALUES FROM FILES 
Most SPARK problems require data beyond that which is specified in the problem specification file.  In 
particular, as we saw in the examples of Section 2, variables designated as INPUT in the problem 
specification file need run time values.  Moreover, certain other kinds of data are needed to specify exactly 
how the problem is to be solved numerically, e.g., initial values for dynamic variables and prediction values 
for iteration variables.  All such data can be provided in SPARK input files.  Although usually bearing the .inp 
extension, files of any extension can be used as SPARK input files. 

7.6.1 Categorization of Different Types of Input 

Although in simple examples we have dealt with in this manual so far we have used a single input file for a 
SPARK problem, in practice it is often better to segregate the different kinds of input into separate files.  One 
useful categorization of different types of input is: 

Constant data:  These are usually physical characteristics of the system that do not change with time.  
For example, surface areas, equipment capacities, and any other physical problem data that are assumed 
to be constant, such as heat transfer coefficients.  
Time-varying data:  This includes any problem input data that varies with time during the simulation 
interval.  The most common example in HVAC problems is weather data, such as ambient temperature 
and humidity.  However, system control information, such as thermostatic set points, that are scheduled to 
change at particular times are also time-varying inputs. 
Initial Conditions:  If the problem includes differential equations, the initial values of all dynamic 
variables must be provided.  Although these can be specified in the problem specification file with the 
INIT keyword, it is usually better practice to specify them in an input file so they can be changed in 
subsequent runs without rebuilding the problem.  
Numerical support data:  Numerical techniques used in SPARK sometimes need, or at least benefit 
from, additional user supplied data.  This category often includes initial predicted values for variables that 
are solved for by iteration, i.e., break variables.  Also, if the chosen numerical integration methods for 
differential equations in the problem require previous values of the dynamic variables and/or their 
derivatives, they belong in this category. 

In a well organized problem, each of these categories should have a separate input file.  Moreover, it is 
sometimes wise to have multiple files within these categories.  For example, you could have a separate 
constant data file for each subsystem in a complex model.  Another situation calling for multiple input files 
within a category is when time-varying data has different temporal characteristics.  For example, if we wanted 
  56 How SPARK Assigns Values to 

Variables 
 



SPARK 2.0 Reference Manual 

to have outside temperature Tosa varying hourly in the room_fc problem example it would be far easier to 
place this in a different file than the one with Tin which changes only once.  

7.6.2 Example of Multiple Input Files 

We can demonstrate these ideas by revisiting the room_fc problem example from Section 6.5 For example, we 
could create four separate input files using the above categories.  The constant data file, appropriately called 
room_fcDesignParameters.inp, would contain: 

8 hA UA Tosa Mcp T_set_low T_set_high max_cap min_cap

0 60 30 38 1.e6 23 24 50 0 

while the time-varying data file, that we might call room_fcTimeVaryingParameters.inp, would contain: 

1 Tin 

0 13 

71964 13 

72000 17 

*  

Since the controlled room problem includes a differential equation, it is necessary to specify the initial value 
of the dynamic variable, T_floor.  Rather than relying upon the INIT keyword to set the initial value for this 
dynamic variable we can specify it in an initial conditions input file.  This file could be called 
room_fcInitialConditions.inp and would contain: 

1 T_floor 

0 30 

One advantage of this approach is that it is not necessary to rebuild the problem when initial values change. 

Finally, we should create an input file for whatever information is needed to support the numerical solution 
process, provided such information is available.  One issue in this regard is initial predictions for break 
variables, as explained in Section 7.2.  As explained there, at the very beginning of the solution an initial 
predictor is needed because otherwise there would be no “previous time value” to use.  If a reasonable 
estimate for a break variable is not readily available, SPARK can sometimes find a solution beginning with the 
default initial value, 0.01.  However, if you can estimate more appropriate initial predictions the iteration 
process will have a better chance of quickly finding the correct solution at the start of the problem.  Note that 
while better accuracy of these initial predictors will improve the chances for solution, usually great accuracy 
is not necessary. 

In the case of the controlled room example the equation file reveals that SPARK chooses Ta as break 
variables.    For the Ta variable, we can easily provide an estimate more accurate than the default value.  For 
example, a value half way between the initial T_floor value and the supply air temperature value should be a 
reasonable for Ta.  Thus a numerical support input file called room_fcNumericalSupport.inp could therefore be 
created as: 

1 Ta 

0 21.5 

A problem run-control file (see Section 18) must list the names and locations of all input files.  For this 
example, we have room_fc.run as: 
( 
InitialTime  ( 0.0 ()) 

  57 How SPARK Assigns Values to 
Variables 

 



SPARK 2.0 Reference Manual 

FinalTime  ( 108000.0 ()) 
InitialTimeStep ( 180 ()) 
FirstReport  ( 0.0 ()) 
ReportCycle  ( 360.0 ()) 
InputFiles ( room_fcDesignParameters.inp () 
   room_fcTimeVaryingParameters.inp () 
   room_fcInitialConditions.inp () 
   room_fcNumericalSupport.inp () 
 ) 
OutputFile ( room_fc.out ()) 
) 
 

  58 How SPARK Assigns Values to 
Variables 

 



SPARK 2.0 Reference Manual 

8 ADVANCED LANGUAGE TOPICS 

8.1 MACRO LINKS 
When systems with fluid flow are modeled, the component models are often connected with a common set of 
links.  For example, HVAC system air components such as fans, heating and cooling coils, and mixing boxes 
are connected by links representing air enthalpy (or temperature), humidity, and mass flow rate.   

In SPARK, a set of ordinary links such as these can be grouped together and used as a macro link, connecting 
macro ports of classes, thereby simplifying specification of such models.26   

As an example of macro links and ports, consider a moist air mixer in which we define the interface to have 
three macro ports, representing two inlet flow streams and one outlet flow stream: 
PORT AirEnt1 "Inlet air stream 1"  [airflow] 
 , .m  "air mass flow"       [kg_dryAir/s] 
 , .w  "hum. ratio"          [kg_water/kg_dryAir] 
 , .h   "enthalpy"  NOERR     [J/kg_dryAir] 
 ; 
PORT AirEnt2 "Inlet air stream 2"  [airflow] 
 , .m  "air mass flow"       [kg_dryAir/s] 
 , .w  "hum. ratio"          [kg_water/kg_dryAir] 
 , .h   "enthalpy"  NOERR     [J/kg_dryAir] 
 ; 
PORT AirLvg "Leaving air stream"  [airflow] 
 , .m  "air mass flow"       [kg_dryAir/s] 
 , .w  "hum. ratio"          [kg_water/kg_dryAir] 
 , .h   "enthalpy"  NOERR     [J/kg_dryAir] 
 ; 

In this example, each macro port has three properties or subports, namely mass flow rate, humidity ratio, and 
enthalpy.  Although the individual subports of one of these ports have separate names, description strings, and 
physical units, the macro port itself also has a name, description, and units string.27   

When an object of this class is instantiated you can connect similar macro ports (i.e., those with like units and 
similar internal structure) in the same manner as you would connect ordinary ports.  Thus if the class with the 
above interface were called mixerMP we could write (in some macro class or problem we were creating): 
DECLARE mixerMP m1, m2; 
LINK    AirStream1 m1.AirLvg, m2.AirEnt1; 

This would connect the humidity ratio, mass flow rate, and enthalpy of the air stream leaving m1 with the first 
inlet of m2. 

Developing classes that use macro ports requires great care, since if it is not done correctly the objects will 
not connect properly.  The principal requirement is that if the macro ports of two objects are to connect 
properly, the ports must be similarly defined in both objects.  By “similarly defined,” we mean that the unit 
strings for both macro ports must be identical, and that there must be at least one common port name between 
the two ports.  This is no problem in the above example, since m1 and m2 are of the same class, and the 
leaving air port is defined exactly the same as the two entering ports.   

                                                      
26  Technically, a macro link does not exist in its own right as a SPARK construct. It is just a term for referring to a link connected to a macro port. 
27  Although, rather than physical units, the macro port “units”” are merely a unique name, selected by the user. 

  59 Advanced Language Topics 
 



SPARK 2.0 Reference Manual 

However, errors can easily occur if the two ports being connected belong to objects of differing class, perhaps 
developed by different people.  For example, suppose a fan class were to be defined with the entering air port 
defined as: 
PORT AirEnt  "Inlet air stream"    [airflow] 
 , .massFlow  "air mass flow"     [kg_dryAir/s] 
 , .w  "hum. ratio"             [kg_water/kg_dryAir] 
 , .h   "enthalpy"  NOERR        [J/kg_dryAir] 
 ; 

Since the units string , airflow, is the same, SPARK would allow the following connection to be attempted: 
DECLARE mixerMP m1; 
DECLARE mfan f1; 
LINK    InFlow m1.AirLvg, f1.AirEnt; 

However, since the flow subport is called m in the mixerMP class and massFlow in the mfan class, only the 
w and h subports would be successfully connected.  This is because when the SPARK parser expands the 
macro link/port, it attempts to match subports of like names.  If there are no subports in the second object that 
match any of the subports of the first, the parser rejects the LINK statement as erroneous.  But if at least one 
of the subports at one end matches a subport at the other end,  SPARK assumes you know what you are doing 
and accepts the link.  This is useful since you may indeed want to connect some but not all subports; for 
example, you may wish to connect one component with a dry-air macro port (i.e., no humidity ratio) with 
another component that was designed for moist air calculations.28 

There are also situations where you need to qualify an individual subport in a macro link with one or more 
keywords.  For example, suppose the first inlet port of m1 in our first example comes from problem input 
data, and the mass flow rate is to be reported.  The syntax to accomplish this is shown below: 
DECLARE mixerMP m1, m2; 
LINK    AirStream1 m1.AirLvg, m2.AirEnt1; 
INPUT   massFlow1 m1.AirEnt1.m REPORT; 
INPUT   hFlow1 m1.AirEnt1.h; 
INPUT   wFlow1 m1.AirEnt1.w; 

As is seen in this example, this syntax is much the same as for ordinary links or inputs; the only difference is 
that we qualify the port name, e.g., m, with the subport name as a prefix.  The dot (.) is used as a separator. 

While the above syntax is valid and easy to interpret, it is not concise.  A more concise syntax that expresses 
the same connections is: 
DECLARE mixerMP m1, m2; 
LINK    AirStream1 m1.AirEnt1 (.h) INPUT (.w) INPUT (.m) {INPUT REPORT}; 
LINK    AirStream2 m1.AirLvg, m2.AirEnt1; 

The first LINK statement defines a macro link called AirStream1 that is connected to the AirEnt1 macro port 
of the m1 object.  We see that each subport is referenced with the notation (.portName), and that following 
such reference there is a keyword such as INPUT that applies only to that subport.  If more than one keyword 
is needed, they are enclosed in braces, e.g., {INPUT REPORT}.  Thus we see that all three subports are to 
come from input, and the m subport is to be reported. 

The need to make direct subport connections also arises in defining classes that have subports.  For example, 
the mixerMP class might be (partially) implemented using the concise syntax as: 
DECLARE  enthalpy  e1, e2, e3; 
DECLARE  sum       s; 
DECLARE  balance   hb, wb; 

                                                      
28  This is somewhat like plugging a 2-wire appliance cord into a 3-wire wall outlet. 

  60 Advanced Language Topics 
 



SPARK 2.0 Reference Manual 

 
LINK AirEnt1 .airEnt1, 
   (.TDb) e1.TDb  
   (.w) {e1.w, wb.q1}  
   (.h) {e1.h, hb.q1} 
   (.m) {s.a, hb.m1, wb.m1}; 
LINK AirEnt2 .airEnt2,  
   (.TDb) e2.TDb  
   (.w) {e2.w, wb.q2}  
   (.h) {e2.h, hb.q2}  
   (.m) {s.b, hb.m2, wb.m2}; 
LINK AirLvg .airLvg,  
   (.TDb) e3.TDb  
   (.w) {e3.w, wb.q}  
   (.h) {e3.h, hb.q}  
   (.m) {s.c, hb.m, wb.m}; 

Here we see that each subport of the three macro ports is linked to the appropriate ports of the constituent 
enthalpy and balance objects.  The normal syntax could also be used here, but this would require four times as 
many statements.29 

8.2 INTERNAL SPARK NAMES FOR VARIABLES (FULL NAMES OF LINKS OR 
PORTS) 

In our early examples the name of a problem variable was synonymous with the user-defined name assigned 
in a LINK or INPUT statement.  For example, in: 
DECLARE room r; 
LINK    Ta r.Ta; 

Ta is the link name and it obviously represents the variable placed at the Ta port of the r object, probably a 
room air temperature.  However, due to the hierarchical nature of SPARK programming, there are places 
where internal names used by SPARK might not be quite so obvious.  This matter can be important when you 
are reading certain SPARK files, such as the .eqs file for complex problems, and when using the PROBE 
keyword (see Section 8.5). 

To understand SPARK naming conventions you must understand that at solution time the solver works 
entirely at the equation level.  This means that when SPARK parses a problem file, all macro objects and 
macro links must be expanded into atomic objects and links.  When this happens, link names in higher level 
objects are propagated downward, as might be expected, overriding names that may have been assigned in the 
class definition of lower level object.  For example, suppose that the room class used in the above link 
statement is (partially) defined as:  
DECLARE  cond      flow; /*  Air mass flow "conductor"    */ 
DECLARE  cond      walls;/*  Walls conductance            */ 
DECLARE  cond      floor;/*  Floor to air conductor       */ 
DECLARE  diff      net;  /*  Diff between Q in and out    */ 
DECLARE  propcont  pc;   /*  Proportional controller      */ 
LINK     Tair .Ta, flow.T2, walls.T1, floor.T1, pc.signal [deg_C]; 

From this we can see that the problem level link named Ta is known as Tair inside the room class, and is 
connected to the Ta port of that class, and to ports of various names of the constituent classes of room.  By 
the noted propagation rule, all of these lower level names are overridden by the problem level name Ta.   

                                                      
29  The mixerMP class is one of the many classes in the HVAC Tool Kit implemented in the macro port form. 

  61 Advanced Language Topics 
 



SPARK 2.0 Reference Manual 

As a result of this downward propagation of link names, all problem level variables are readily identifiable 
when reported, for example, in the .eqs file. 

However, often there are links in lower level objects that do not appear at the problem level.  This occurs 
whenever a macro class developer elects not to connect an internal link to a port, or if the user of the class 
elects not to connect some unessential port (i.e., one with the NOERR keyword. See Section 19.10).  As an 
example, the mixer class in the HVAC Toolkit class library is defined as: 
PORT  m  "Combined flow rate, e.g., total mass flow" ; 
PORT  q  "Combined transported quantity, e.g., enthalpy" ; 
PORT  m1 "First inlet flow rate" ; 
PORT  q1 "First inlet transported quantity" ; 
PORT  m2 "Second inlet flow rate" ; 
PORT  q2 "Second inlet transported quantity" ; 
DECLARE   safprod  sp1, sp2, sp; 
DECLARE   sum      s; 
LINK   .m, sp.a ; 
LINK   .q, sp.b ; 
LINK    c  sp.c, s.c ; 
LINK   .m1, sp1.a ; 
LINK   .q1, sp1.b ; 
LINK    a   sp1.c, s.a ; 
LINK   .m2, sp2.a ; 
LINK   .q2, sp2.b ; 
LINK    b  sp2.c, s.b ; 

Note that the links named a, b, and c are not connected to ports.  Consequently, they cannot be accessed from 
higher level objects, and therefore cannot be problem level variables.30  Nonetheless, these links represent 
variables whose values must be calculated by the SPARK solver at run time, and they will be assigned names 
by the SPARK parser.  Under normal circumstances, you would not need to know these names;  after all, they 
are merely intermediate variables needed to solve the mixing equations.  However, if your problem does not 
solve properly you may have to look in the .eqs file, in which case you may want to know the names SPARK 
assigns to such links.  Also, if you need to use the PROBE keyword, you will need to know how to refer to 
lower level links and ports (see Section 8.5). 

Link names that do not resolve to problem-level links are generated by concatenation of object, link, and port 
names beginning at the highest level at which the link appears and going down to the port of an atomic class.  
The special prefix symbols (single quote(`), tilde (~), and dot (.)) are used in the concatenation to ensure 
unambiguous names.  As an example,  if we declare a room in a problem file as:  

DECLARE room r; 

and the room declares a mixer: 
DECLARE mixer mix1; 

then the c link in the mixer would be referred to as: 
r`mix1~c 

This might be read “the c link in the mix1 object in the r object.”  The single quote (`) prefixes an object in a 
hierarchy of objects,  while the tilde (~) prefixes links.  In a more complex situation, objects may be nested 
deeper,  for example, 

obj1`obj2`obj3~linkname 

                                                      
30  Unless the probe statement is used (Section 3.8). 

  62 Advanced Language Topics 
 



SPARK 2.0 Reference Manual 

Also, as mentioned in Section 5.2, links within a macro class are often unnamed.  In this case, SPARK will use 
a generated string of the form “NONAMEn” where n is an integer.  Thus you might see: 

obj1`obj2`obj3~NONAME7 

in SPARK equation files. 

An additional complication is introduced when macro links are used (see Section 8.1).  Since macro links may 
have several subports, the link name must be qualified with the name of the particular port of interest.  For 
example,  

obj1`obj2`obj3~linkname.p1 

refers to the p1 port of link linkname in obj3 that is part of obj2 that is part of obj1.  And if the p1 port itself 
was in fact a macro port, we could go on with: 

obj1`obj2`obj3~linkname.p1.a 

to refer to the a subport of the p1 port of the link linkname in obj3 which is part of obj2 which is part of obj1.  
Fortunately, since you are primarily concerned with higher level problem variables, you don’t often have to 
cope with this complexity. 

8.3 PREVIOUS-VALUE VARIABLES, OR UPDATING VARIABLES FROM LINKS 
As discussed in Section 7.4, most SPARK variables are determined by solution of the problem equations at the 
current simulation time.  This means that each variable gets assigned a value that is calculated from an inverse 
of one of the problem equations.  There are situations, however, when a variable in a simulation must 
represent the previous value of some other variable.  Such a variable needs no equation since its value is 
determined merely by assignment of the value of some variable at the previous point in time.  A variable of 
this nature can be called a Previous-Value Variable. 

Since SPARK variables are carried on links, Previous-Value Variables are viewed as receiving values by 
inputting from specified links.  Consequently, SPARK provides INPUT_FROM_LINK31 as an optional 
keyword in a LINK statement, taking the form: 

LINK linkName <connections> INPUT_FROM_LINK = FromLinkName; 

At the beginning of the time step, before solving the problem equations, the saved previous value of 
FromLinkName is assigned to linkName.  As discussed in Section 7.1 initializing a Previous-Value 
Variable must come from the INIT= keyword in the FromLinkName, not in the Previous-Value Variable 
link itself.  Indeed, it is an error to place the INIT keyword in a LINK statement that contains the 
INPUT_FROM_LINK keyword.  Alternatively, the initial value can come from .inp files as discussed in 
Section 7.1. 

As an example we shall revisit the Euler integration formula discussed in Section 6.4.  For simplicity there we 
implemented the Euler integration formula as a SPARK atomic class with a port xdot representing the time-
derivative of the dynamic variable, and the name of this port was used in the argument list of the euler__x 
callback function, i.e., 

x = euler__x(xdot, dt); 

However, as explained in Section 6.4.4 this results in unnecessary iteration since the SPARK parser will not 
know that, internal to the function, only the past value of xdot is used.  We can use the INPUT_FROM_LINK 

                                                      
31  The keyword INPUT_FROM_LINK had been named UPDATE_FROM_LINK in previous version of SPARK up to 1.0.1  The name was changed to 
INPUT_FROM_LINK to better reflect the behavior. 

  63 Advanced Language Topics 
 



SPARK 2.0 Reference Manual 

keyword to correct this deficiency as follows.  First, we rename the atomic class as euler_formula.cc and the 
callback function as euler_formula__x. 
/*          euler_formula.cc             */ 
#ifdef spark_parser 
 
PORT x;        // Dynamic variable 
PORT xdot;     // Previous-value variable updated with INPUT_FROM_LINK 
PORT dt;       // Time increment 
 
EQUATIONS { 
 x = x[1] + dt*xdot[1] ; 
 bad_inverses = xdot, dt ; 
} 
 
FUNCTIONS { 
 x = euler_formula__x( xdot, dt); 
} 
 
#endif // spark_parser 
#include "spark.h" 
 
EVALUATE( euler_formula__x ) 
{ 
   ARGUMENT( 0, xdot ) ; 
   ARGUMENT( 1, dt ) ; 
   TARGET( 0, x ) ; 
   double result; 
     
   if ( ACTIVE_PROBLEM->IsStaticStep() ) {  // No integration 
      result = ( 
     ACTIVE_PROBLEM->IsInitialTime() ?  
     x.GetInit() // Initial time solution special case 
     : 
     x[1] // Past value for restart after initial time solution 
    ); 
 } 
 else {  // Perform the actual integration 
      result = x[1] + dt*xdot[1]; 
 } 
 x = result ; 
} 

Note that we renamed this atomic class euler_formula in order to be able to define a new macro class called 
euler which conceals the complexity of the INPUT_FROM_LINK considerations and preserves the 
convenient interface used in the Section 6.2 examples.  Here is the euler macro class: 
/*          euler.cm             */ 
PORT x;  
PORT xdot; 
PORT dt; 
 
DECLARE euler_formula e; 
LINK  DT     .dt    e.dt; 
LINK  X      .x     e.x; 
LINK  XDOT   .xdot; 
LINK  XDOT_p        e.xdot  INPUT_FROM_LINK = XDOT; 

  64 Advanced Language Topics 
 



SPARK 2.0 Reference Manual 

Internal to the macro class we create links for both the current and previous values of �x .  The previous-value 
variable XDOT_p is updated from the current-time variable XDOT.   

Note that a link name, not a port name, must follow the INPUT_FROM_LINK keyword.  Due to this 
requirement we define the links XDOT, connect it the port xdot, and use it as argument to the 
INPUT_FROM_LINK keyword.   

Finally, note that it is not necessary to initialize the previous-value variable in this example because, as a 
consequence of the if-statement in the function definition, they are not used at InitialTime, but only at 
the solution points after InitialTime. 

There are uses for previous-value variables other than in integrators for solution of differential equations. For 
example, simulation of discrete time controllers requires past values, both to calculate controller “integral 
action” and to determine when to update the controller output.  An additional usage is for introduction of an 
artificial time delay in a troublesome iterative loop.  By simply making some variable in the loop a previous-
value variable the need for iterative solution is removed.  If the time step is short,  the error introduced may be 
acceptable.  

8.4 USAGE OF THE LIKE KEYWORD IN PORT STATEMENTS 
PORT statement can have the LIKE keyword to copy the properties of another port, that was previously 
defined.  The subports are also copied.  The usage of the LIKE keyword has the form:  

LIKE = anotherPortName 

Note that any other input that is specified in the current port statement overrides the copied information. In 
the example below the port statements using the LIKE keyword: 
PORT AirEnt1 "Inlet air stream 1"    [airflow] 
                      .m "air mass flow"        [kg_dryAir/s] MIN=0.1 
                    , .w "hum. ratio"           [kg_water/kg_dryAir] 
                    , .h "enthalpy" NOERR       [J/kg_dryAir] ; 
 
PORT AirOutWithT "Outlet air stream" [airflowWithT] 
                       LIKE=AirEnt 
                      .T "air temp"             [deg_C] 
                    , .m  MIN=3.4 ; 

produce the same specifications for port AirOutWithT as:  
PORT AirOutWithT "Outlet air stream" [airflowWithT] 
           .m "air mass flow"        [kg_dryAir/s] MIN=3.4 
         , .w "hum. ratio"           [kg_water/kg_dryAir] 
         , .h "enthalpy" NOERR       [J/kg_dryAir] 
         , .T "air temp"             [deg_C] ; 

Here, when defining the port AirOutWithT, the subports of the port AirEnt1 are copied, the MIN=0.1 
attribute of the subport .m is changed to MIN=3.4, and the new subport .T is added. 

8.5 THE PROBE STATEMENT 
As noted in the section 8.2, there are often SPARK links that are not visible at the next higher level due to not 
having been elevated to a port of the class in which they are defined.  Yet, sometimes it is convenient or 
necessary to be able to gain access to such links from higher levels.  For example, you may want to report the 
c link internal to the mixer class in Section 8.2.  While you could solve this problem by editing the mixer 
class, i.e., adding a new port for c, this is not a good solution.  First, making changes to widely used classes is 

  65 Advanced Language Topics 
 



SPARK 2.0 Reference Manual 

hazardous;  errors might be introduced, or you might cause unwanted behavior in other applications that use 
it.  Another reason to avoid this approach is that if the needed access is several levels up in a hierarchy, you 
will have to edit every class in the hierarchy to elevate the needed link to where it is needed.  The PROBE 
statement is provided to give an easier and better solution to such problems.  It allows you to reach down into 
lower level objects, either to report values or set DEFAULT, INIT, ATOL, MIN, or MAX values.  You can also 
set MATCH_LEVEL and BREAK_LEVEL for the link.  

The PROBE statement has the same general format as the LINK statement.  However, you must use the full 
SPARK-generated name for the low level link, as explained in Section 8.2.  As an example, we will use 
PROBE to set the INIT value and request reporting for the c port of the mixer class in the room class 
mentioned in Section 8.2:  

PROBE mixer_c  r`mix1~c INIT=0.5 REPORT; 

This statement would be put in the problem file in which the room r is declared.  Here mixer_c is a user-
defined name for the probe.  The expanded name of the wanted lower level link is r`mix1~c.  With the INIT 
keyword we set the initial value, to be used if this link was selected as a break variable for iterative solution, 
to 0.5.  Finally, the REPORT keyword causes the value of the c link in the mixer class to be reported along 
with other requested report variables during solution.  The probe name mixer_c will be used as the label in the 
requested reporting. 

As an aside, it is interesting to note that the above statement could also be written as:  
PROBE mixer_c  r`mix1`sp.c INIT=0.5 REPORT; 

or as: 
PROBE mixer_c  r`mix1`s.c INIT=0.5 REPORT; 

In these alternative forms, we set the probe to point at the c ports of either the sp or s objects to which the c 
link is connected.  Since the values on the ports will be the same as the value on the link at run time, the same 
values will be reported. 

8.6 USAGE OF THE CLASSTYPE KEYWORD IN ATOMIC CLASSES 
In SPARK, atomic classes are typed. An atomic class can be: 

• an integrator class,  

• a sink class, or 

• a default class. 

The class type is specified using the CLASSTYPE statement in the atomic class. If no CLASSTYPE 
statement is specified, parser assumes that the class type is DEFAULT.  
 
 CLASSTYPE [SINK | INTEGRATOR | DEFAULT]; 
 

Typing the atomic classes allows to provide special processing for these classes during the graph analysis 
and/or the numerical solution phase at runtime. 

  66 Advanced Language Topics 
 



SPARK 2.0 Reference Manual 

8.6.1 INTEGRATOR classes 

INTEGRATOR classes implement an integrator object whereby a dynamic variable32 connected to the x port is 
integrated using its time-derivative variable connected to the xdot port and the global time step connected to 
the port dt. A dynamic variable can only be connected to one INTEGRATOR object to ensure well-posedness 
of the DAE33 system. Also, the names of the ports are fixed and cannot be changed for any INTEGRATOR 
class or it will generate a parsing error. 

Usually, an INTEGRATOR class also provides a specific behavior for the initial time solution that consists in 
solving a static problem to ensure a consistent initial calculation. Typically, the EVALUATE callback returns 
the initial condition for the dynamic variable instead of computing the solution of the integration scheme (See 
Section 6.4). 

Since all INTEGRATOR classes have the same port interface and define a unique inverse that is assigned to 
the port x, they all can be represented with the same directed graph shown in Figure 8-1. 

x
xdot

dt 
x xdot dt= ⋅∫

 

Figure 8-1: Directed graph representing an INTEGRATOR object. 

8.6.2 SINK classes 

A SINK class does not calculate any values. It acts as a sink node in the directed, computational graph from 
which no edge leaves. It allows you to define classes that do not directly participate in the calculation process. 
Therefore they are invoked at the very end of the solution sequence. Also, a SINK class can implement 
neither the EVALUATE nor the PREDICT callbacks (see Section 9).  

The FUNCTIONS {…} statement for a sink class looks a bit different than for the other class types because 
there are intrinsically no target ports and there can be only one inverse per class, called the sink inverse. 
Furthermore, all the ports defined at the interface the atomic class must be listed as arguments of the callbacks 
comprising the inverse of the SINK atomic class. If some ports do not appear in any argument lists of the 
callback functions, then parser will generate an error.  Finally, the unique inverse of a SINK class is named 
after the class name since we cannot use the name of the EVALUATE callback as with the other class types 
(See Section 3.1.3). 

This following code snippet shows the class definition of a SINK class that only defines the CONSTRUCT and 
DESTRUCT callbacks. 
CLASSTYPE SINK; 
 
PORT x; 
 
FUNCTIONS {  

                                                      
32 Also called a differential variable. The other problem variables are referred to as algebraic variables. 
33 DAE stands for Differential-Algebraic Equation. 

  67 Advanced Language Topics 
 



SPARK 2.0 Reference Manual 

 CONSTRUCT  = fn_construct( x ) 
 DESTRUCT   = fn_destruct( x ) 
 ; 
} 
 
This class definition results in the directed graph without outgoing edge shown in Figure 8-2. SINK objects 
are treated as directed objects by the setupcpp program during the matching phase. 

    sink x

 

Figure 8-2: Directed graph representing a SINK object defining only the port x. 

8.6.3 DEFAULT classes 

The role of the default classes is to calculate the values for the target ports defined with each inverse. In 
particular, any atomic class from SPARK 1 falls into this category as well as the classes defined in the HVAC 
ToolKit library. 

8.7 USAGE OF THE RESIDUAL KEYWORD IN EVALUATE CALLBACKS 

8.7.1 Motivation 

For complex equations, some inverses may be difficult or impossible to obtain as functions in explicit form.34  
Or, it may be that special knowledge about the problem under investigation suggests that a particular inverse 
should not be used, because, for example, it might lead to numerical difficulties such as: 

• a division by zero resulting in an infinite number, or  

• an invalid domain for a mathematical function (e.g., square root of a negative number), or 

• an infinite partial derivative that would make the resulting Jacobian matrix badly conditioned. 

Another situation where it is not desired to express an inverse in explicit form occurs when the inverse acts as 
a wrapper around a third-party program that calculates residual equations. Such a program, typically a legacy 
code, cannot easily be changed to return the values of the target ports. Instead you can embed it unchanged in 
a residual inverse. Note that it is also possible to define multi-valued inverses in residual form. 

To deal with such situations, it is possible to specify inverses that do not return the values of the target ports 
but instead return the residual values for the equations assigned to each target port. Such an inverse is said to 
be expressed in residual form.  

Clearly, this affects the way the EVALUATE callback defined for the residual inverse has to be implemented. 
Also, defining a residual inverse forces its target ports to be break variables because they must also appear as 
argument ports, therefore creating a de-facto algebraic loop in the resulting computational graph generated by 
the setupcpp program.  

                                                      
34 This is achieved by symbolically rearranging the terms in the equation in order to produce an functional form that solves for the target variable, i.e. 
the target variables appear on the left-hand sign of the = sign. The terms defined on the right-hand side of the = sign then correspond to the function in 
explicit form for this target variable.  

  68 Advanced Language Topics 
 



SPARK 2.0 Reference Manual 

8.7.2 Implications for the Graph-Theoretic Analysis 

For the graph-theoretic processing, a residual inverse is defined with a default match level of 4, as opposed to 
5 for the other inverses in explicit form. This makes it less likely for the inverses in residual form to be chosen 
during the matching process. The rationale behind this design decision is that usually residual inverses are 
numerically less efficient to solve than their counterpart in explicit form because they tend to increase the 
resulting number of break variables.  

Therefore, setupcpp favors using inverses in explicit form to inverses in residual form whenever possible. It is 
of course possible to overload this default match level in any LINK statement connected to the port assigned 
to the residual inverse (See Section 12.2). 

8.7.3 Mathematical Example 

As an example of a residual inverse we use the square_robust.cc atomic class that is part of the global classes 
found in the globalclass subdirectory.  
/*+++ 
  Identification:  Square root of a value using a residual form to avoid 
                   numerical problems due to badly-conditionned jacobian matrix  
                   for small values of the square port. 
---*/ 
#ifdef SPARK_PARSER 
 
 
PORT root "square^0.5" ; 
PORT square "root^2"  MIN = 0 ; 
 
EQUATIONS { 
    square = root * root ; 
} 
 
FUNCTIONS { 
 root   = RESIDUAL square_robust__root( root, square )  ; 
 square  = square_robust__square( root ) ; 
} 
 
#endif /* SPARK_PARSER */ 
#include "spark.h" 
 
// Residual form that is numerically more stable than the direct 
// inverse (see square_root() in square.cc) for values of 
// the port square close to zero. 
// 
// Also, the sign of the port square depends on the sign 
// of square in the following way : 
// 
//           sign(root) = sign(square) 
// 
// Make sure that this convention is respected. 
// 
EVALUATE( square_robust__root ) 
{ 
 ARGDEF(0, root); 
 ARGDEF(1, square); 
     
 double residual = SPARK::sign(root)*pow(root, 2.0) - square; 
  
 RETURN( residual ); 
} 

  69 Advanced Language Topics 
 

 



SPARK 2.0 Reference Manual 

// Same direct inverse as square_square() in square.cc 
EVALUATE( square_robust__square ) 
{ 
    ARGDEF(0, root) ; 
    double square  ; 
 
    square = SPARK::sign(root) * root * root; 
 
    RETURN( square ); 
} 

The square_robust class calculates the square root of the value of the port square from the value of the port 
root. When the square value is negative the class models the symmetric function for the square root of the 
absolute value. Figure 8-3 shows the graphical representation of the equation modeled by the class. 

-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1 2root

sq
ua

re

 

Figure 8-3: Graphical representation of the equation modeled by the square_robust class. 

This approach makes the resulting function valid over the entire domain of the real numbers, and not just the 
positive real numbers. It also prevents the discontinuity at zero for the root inverse that would result from 
piecing together two square root functions, one for the positive domain and  its reverse function for the 
negative domain. A typical application of the square_robust class would be to implement the power law 
equation that calculates the airflow as a function of the pressure difference across an opening. 

The mathematical relation modeled by this class is: 

 
, 0

, 0

root square if square

root square if square

 = ≥


= − <
  (8.1) 

The inverse for the port square is expressed in explicit form by: 

   (8.2) 
, 0

, 0
square root root if root
square root root if root

= ⋅ ≥
 = − ⋅ <

  70 Advanced Language Topics 
 



SPARK 2.0 Reference Manual 

This is a clear case where using a residual inverse to calculate the  square root is more efficient because it 
allows to express the inverse equation in a numerically more robust functional form. The inverse for the port 
root is expressed in residual form by: 

  (8.3) ( )0 ( )sign root root root square= ⋅ ⋅ −

The residual form enforces the exact same mathematical relation between the variables square and root as 
expressed in Equation (8.1) when it is transformed with the root square operator. It is a more robust 
expression because the partial derivative with respect to square no longer tends to infinity when the value of 
square approaches zero. The resulting numerical behavior is better suited for solution with the Newton-
Raphson method, which is typically the way strongly-connected components are solved in SPARK. Of course, 
this matters only if the inverse for the port root is defined as part of a strongly-connected component and if 
the variable connected to the port square is selected as a break variable.  

To compare the partial derivatives for each functional form, we first have to express the Equation (8.1) in 
residual form, as solved in the Newton-Raphson iteration: 

 ( )1

, 0
,

, 0

square root if square
F root square

square root if square

 − ≥= 
− − <

 (8.4) 

Then the partial derivative for Equation (8.4) with respect to the variable square is: 

 1

1 , 0
2

1 , 0
2

root if square
squaresquareF
rootsquare if square

squaresquare

∂ − ≥ ∂∂ =  − ∂∂  − <
 ∂

 (8.5) 

When the variable square tends to zero, the partial derivative for  will tend to infinity as observed in 
Equation (8.5). This compares to the partial derivative obtained for the functional form  of Equation (8.3): 

1F

2F

 
( ) ( )2

2

, ( )

( ) 2 1

F root square sign root root root square
F rootsign root root

square square

= ⋅ ⋅ −

∂ ∂
= ⋅ ⋅ ⋅ −

∂ ∂

 (8.6) 

Clearly, the partial derivative for  is numerically better as there is no longer a problematic division by zero 
when the variable square is equal to zero. 

2F

8.7.4 Class Definition 

A residual inverse is defined in the FUNCTIONS {…} block by using the RESIDUAL keyword after the 
equal sign introducing the EVALUATE callback function.  

 
FUNCTIONS { 
 root   = RESIDUAL square_robust__root( root, square )  ; 
 square  = square_robust__square( root ) ; 
} 

The square_robust class defines two inverses, one for each port. For each inverse only the EVALUATE 
callback function is specified. 
  71 Advanced Language Topics 
 



SPARK 2.0 Reference Manual 

• The inverse assigned to the port root is defined as a residual inverse by adding the RESIDUAL 
keyword in front of the name of the EVALUATE callback square_robust__root.   

• The inverse assigned to the port square is by default an inverse in explicit form since no keyword is 
specified in front of the name of the EVALUATE callback square_robust__square.   

Note that the target port root appears also as an argument port in the EVALUATE callback 
square_robust__root as required by any inverse expressed in residual form. If you omit to declare the 
target port(s) also as argument port(s) of the EVALUATE callback for a residual inverse, it will generate a 
parsing error. 

8.7.5 Inverse Function Definition 

The EVALUATE callback square_robust__root implements the residual inverse for the target port root 
by calculating the residual value using the Equation (8.3). Finally, the residual value is returned using the 
preprocessor macro RETURN.  Here the returned value must be the residual value for the EVALUATE 
callback. This is to contrast with an EVALUATE callback expressed in explicit form, whereby the result value 
of the explicit functional form is returned (See Section 3.2.5). 
EVALUATE( square_robust__root ) 
{ 
 ARGDEF(0, root); 
 ARGDEF(1, square); 
     
 double residual = SPARK::sign(root)*pow(root, 2.0) - square; 
  
 RETURN( residual ); 
} 

8.8 USAGE OF THE DEFAULT RESIDUAL INVERSE IN THE FUNCTIONS STATEMENT 
A default residual inverse can be specified at the class level using the DEFAULT_RESIDUAL keyword before 
the = sign in the FUNCTIONS {…} block, in place of the list of target ports. A default residual inverse must 
be a single-valued inverse that returns the value of the residual equation modeled by the class. This method is 
equivalent to populating the atomic class with the same residual inverse for these ports with no inverse yet.  

By defining a default inverse for the ports for which no inverse is explicitly specified, the default residual 
inverse mechanism provides the matching algorithm in setupcpp with alternatives in case no complete 
matching can be obtained with the normal inverses (See Section 12.2).  

The following rules apply to default residual inverses. 

• A default residual inverse is not assigned to any target ports in the FUNCTIONS {…} statement of 
the atomic class.  

• The argument list of the EVALUATE callback must mention every single port defined in the class to 
ensure correct variable dependency during the graph analysis.  

• A default residual inverse cannot define a PREDICT callback as it very unlikely that the same 
predictor function can apply to each port defined in the class. 

• A default residual inverse must be a single-valued inverse in order to be a valid default inverse that 
can be assigned to each individual port defined at the interface. Therefore it can be used only in 
single-valued classes. 

• The default residual inverse is defined with a default match level of 1 to make it the least likely 
alternative to choosing any other “dedicated” inverse specified in the class. 

  72 Advanced Language Topics 
 



SPARK 2.0 Reference Manual 

• The default residual mechanism is supported only with the DEFAULT and INTEGRATOR atomic 
classes, since the SINK atomic classes cannot define EVALUATE callbacks. 

The following code snippet shows an atomic class that defines an inverse in explicit form for the port x and a 
default residual inverse for the other ports y and z. The class models a mathematical expression that does not 
lend itself very well to finding closed-form equations for each variable through symbolic manipulation.  
#ifdef SPARK_PARSER 
 
PORT x; 
PORT y; 
PORT z; 
 
EQUATIONS { 
    x = exp(y)*cos(1/z) ; 
} 
 
FUNCTIONS {  
 DEFAULT_RESIDUAL = default_residual( x, y, z ) ; 
 x = inverse__x( y, z ); 
} 
 
#endif /* SPARK_PARSER */ 
#include "spark.h" 
 
EVALUATE(inverse__x) 
{ 
 ARGDEF(0, y); 
 ARGDEF(1, z); 
 double result = exp(y)*cos(1.0/z); 
 RETURN( result ); 
} 
EVALUATE(default_residual) 
{ 
 ARGDEF(0, x); 
 ARGDEF(1, y); 
 ARGDEF(2, z); 
 double residual = x - exp(y)*cos(1.0/z); 
 RETURN( residual ); 
} 

Clearly, it is difficult to produce closed-form inverses for the port y and z that are expressed in explicit form 
and that are numerically robust. Instead, we define a default residual inverse with the EVALUATE callback 
default_residual. Note that all the ports of the class appear in the argument list of the callback. This 
default inverse will be assigned to either the port y or the port z, were they to be selected during the matching 
phase of  the setupcpp program.  

The EVALUATE callback of a DEFAULT_RESIDUAL inverse is implemented in the same manner as the 
EVALUATE callback expressed in residual form for a single-valued inverse, whereby the residual value is 
returned using the RETURN preprocessor macro (See Section 8.7).  

 

 

  73 Advanced Language Topics 
 



SPARK 2.0 Reference Manual 

9 THE CALLBACK FRAMEWORK 

9.1 OVERVIEW AND TERMINOLOGY 
An important modeling feature of SPARK is to be able to associate private data with each inverse comprising 
an atomic class in order to hold state information or temporary calculations between successive calls. The 
internal mechanism that enables to support private data while providing backward compatibility with SPARK 
1 is the callback framework.35  

The callback framework adds object-oriented capabilities to SPARK by providing data encapsulation and 
polymorphic behavior for each inverse through a collection of callback functions implemented as C++ free 
functions (i.e., normal C functions). Each callback function is invoked by the SPARK solver engine at 
predetermined points of the simulation task, therefore allowing the user to implement specific operations for 
each inverse beside calculating the values of the target port(s). 

9.1.1 Inverse Type 

An atomic class consists of a set of inverses. Each inverse implements a directed data flow through the port 
interface. The ports assigned to an inverse are called the target ports. Clearly, each inverse in a class is 
associated with a set of mutually exclusive target ports. In turn, an inverse consists of a set of callback 
functions. The computational graph produced by the setupcpp program is derived from the topological 
information described by the EVALUATE callback functions. 

Single-valued inverse 

A single-valued inverse returns the value for one target port only. At most one single-valued inverse can be 
specified for each port defined at the interface of the atomic class. All inverses defined in SPARK 1 were 
single-valued inverses. 

Multi-valued inverse 

A multi-valued inverse returns the values for more than one port simultaneously. Only one inverse can be 
specified for an atomic class that defines a multi-valued inverse. This limitation facilitates the matching 
operation performed by setupcpp by forcing the data flow through the directed multi-valued objects. Future 
versions of SPARK might support more than one multi-valued inverse per class as long as they are each 
assigned to mutually exclusive sets of ports. 

Default residual inverse 

A default residual inverse can be defined at the class level. A default residual inverse must be a single-valued 
inverse that returns the value of the residual equation for the class. It provides an default inverse for the ports 
for which no inverse is explicitly specified, thus providing the matching algorithm in setupcpp with 
alternatives in case of incomplete matching with the other inverses.  

9.1.2 Inverse Instance 

A problem consists of a collection of inverse instances defined during the matching operation in setupcpp. 
One inverse instance is defined for each occurrence of a class in the problem definition. There are as many 
inverse instances as there are atomic objects in the problem. 

  74 The Callback Framework 
 

                                                      
35 The callback framework is an extension of the EVALUATE and PREDICT functions defined for each inverse in SPARK 1. 



SPARK 2.0 Reference Manual 

Evaluating the collection of inverses for the variables connected to the matched ports in each class solves the 
problem for the unknown variables. The inverse instances are invoked in a specific order that implements the 
solution sequence derived by setupcpp. The ordered set of inverse instances is also decomposed in 
independent components identified by a topological sort of the directed computational graph.  

An inverse is represented internally in the SPARK solver with the TInverse class whereas an inverse 
instance is represented with the TObject class. We also refer to the instance of an inverse as an object. 

9.1.3 Callback Function 

An inverse consists of a collection of callback functions. A callback function is implemented as a simple C++ 
free function with a predetermined prototype depending on the type of the callback (See Section 9.1.2). Each 
callback defined in an inverse is identified by a keyword which precedes the callback function name in the 
FUNCTIONS {…} statement of the atomic class (See Section 9.2). Each inverse can define at most one 
callback of each type. Other restrictions apply for certain callback functions depending on the type of the 
inverse. 

Callback classification 

Callback functions belong to one of the following categories.  

Table 9-1: Callback categories and function types. 

Callback 
Category 

Callback  
Function Types 

Instance 
Callback 

Static 
Callback 

construct yes yes 
structors 

destruct yes yes 

evaluate yes no 
modifier 

predict yes no 

prepare step yes yes 

commit yes yes non-modifier 

rollback yes yes 

predicate check integration step yes yes 

Detailed description of the callback functions in each category is provided in the Sections 9.4, 9.5, 9.6 and 
9.7. 

Static and instance callbacks 

We distinguish between static callbacks and instance callbacks. Static callbacks apply to an inverse type, 
whereas instance callbacks apply to each particular instance of an inverse. Static callbacks defined for an 
inverse are invoked only once whereas the instance callbacks are invoked for each instance of the inverse in 
question.  

Using the analogy with the C++ programming language, static callbacks can be viewed as the static methods 
of the inverse class, whereas the instance callbacks can be viewed as the methods of the object instantiated 
from this inverse class. For example, if there are N instances of an inverse, then the static callbacks will be 
invoked only once per simulation step but the instance callbacks will be invoked for each instance, namely N 
times. 

  75 The Callback Framework 
 



SPARK 2.0 Reference Manual 

Typically, static callbacks deal with managing private data that is shared by all instances of the same inverse. 
Note that static modifier callbacks cannot be defined for an inverse. Also, static callbacks cannot have 
arguments.  

9.1.4 Private Data 

It is possible to associate private data with each inverse instance by implementing appropriate data 
management through the different callbacks that the user can define for each inverse. In particular, the 
structor callbacks can be used to allocate and deallocate the private memory required by each inverse 
instance. SPARK provides the user with a data management API36 defined in the classapi.h header file. It is the 
user’s responsibility to implement the appropriate operations in the corresponding callback functions using 
this API (See Section 9.8). 

9.2 CALLBACK ENTRY POINTS IN SIMULATION LOOP 
Figure 9-1 shows the entry points in the simulation loop where the callback functions are invoked to interact 
with the solution process. The dotted boxes indicate the different phases of the solution process. First, the 
problem under study is initialized, then it is solved for each step until the simulation end time is reached or 
some other condition stops the run. Finally, the problem solver is terminated. The gray boxes represent the 
entry points where the different types of callback functions are invoked.  

                                                      
36 API stands for Application Programming Interface. 

  76 The Callback Framework 
 



SPARK 2.0 Reference Manual 

 

Figure 9-1: Callback entry points in simulation loop. 

construct

reject

accept

commit 

rollback 

retry 
step 

iterate in 
nonlinear  

solver 

destruct

prepare step

predict / evaluate 

check step

step 

initialize 

terminate 

more steps?

The evaluate callbacks are invoked when evaluating the components comprised in the problem. The strongly-
connected components typically require iterative solution performed in the SPARK nonlinear solver. 
Therefore, the evaluate callbacks might be invoked multiple times over the same step until convergence is 
obtained in the nonlinear solver. The predict callbacks are invoked only if their target ports are connected to 
break variables, and they are invoked only once before starting the iterative solution. 

The rollback callbacks are invoked only following a rejected step. The commit callbacks are invoked only 
after an accepted step. The check step entry point is where the check integration step callback functions are 
invoked whenever the solver is computing a dynamic step. 

9.3 SPECIFYING THE CALLBACK FUNCTIONS  

9.3.1 The FUNCTIONS Statement 

Callbacks are declared in the FUNCTIONS {…} statement of an atomic class for each inverse using 
keywords that identify the various callback types. The following code snippet shows the general syntax of the 

  77 The Callback Framework 
 



SPARK 2.0 Reference Manual 

FUNCTIONS {…} statement where callbacks can be declared either for a default residual inverse or an 
inverse assigned to target port(s). Elements specified within < > are optional.  
FUNCTIONS { 
 DEFAULT_RESIDUAL = residual_function( port1,...,portN ) 
         <method1 = method1_function( port2,...) 
          method2 = method2_function( ... ) 
                  ....> 

; 
 
 port1 <,port2,port3,...> = <RESIDUAL> evaluate_function ( port2,...) 
                 <method1 = method1_function( port2,...) 
                  method2 = method2_function( ... ) 
                  ....> 
 ; 
} 

Note that the keyword DEFAULT_RESIDUAL indicates the inverse type, and not the callback type, although 
this inverse type implies that the evaluate callback function be expressed in residual form (See Section 8.8). 

9.3.2 Callback Keywords 

Here method1, method2... are keywords that uniquely specify the type of the callback function along with 
the expected prototype of the C++ function that implements the callback. 

Table 9-2: Keywords for the instance callbacks. 

Keywords for instance callbacks Description 

EVALUATE Used to specify a evaluate callback in explicit form (single-valued 
or multi-valued inverse). Implied if not specified. 

RESIDUAL  Used to specify an evaluate callback in residual form (single-
valued or multi-valued inverse). Optional. 

PREDICT  Used to return predicted values before the first iteration of the 
nonlinear solver. 

CONSTRUCT Used to specify the construct callback function. 

DESTRUCT Used to specify the destruct callback function. 

PREPARE_STEP Used to specify the prepare step callback function. 

COMMIT Used to specify the commit callback function. 

ROLLBACK Used to specify the rollback callback function. 

CHECK_INTEGRATION_STEP Used to specify the check integration step callback function. 

  78 The Callback Framework 
 



SPARK 2.0 Reference Manual 

Table 9-3: Keywords for the static callbacks. 

Keywords for static callbacks Description 

STATIC_CONSTRUCT Used to specify the static construct callback function. 

STATIC_DESTRUCT Used to specify the static destruct callback function. 

STATIC_PREPARE_STEP Used to specify the static prepare step callback function. 

STATIC_CHECK_INTEGRATION_STEP Used to specify the static check integration step callback 
function. 

STATIC_COMMIT Used to specify the static commit callback function. 

STATIC_ROLLBACK Used to specify the static rollback callback function. 

Preprocessor macros named after the callbacks keywords are defined in the file spark.h to facilitate the 
implementation of each callback function by hiding the prototype and argument declarations. 

9.4 STRUCTOR CALLBACKS 
As described in detail in Section 9.8, the structor callbacks are used to allocate and deallocate memory for 
private data: 

• specific to each inverse instance using the CONSTRUCT and DESTRUCT callbacks, or 

• shared by all inverse instances using the STATIC_CONSTRUCT and STATIC_DESTRUCT callbacks. 

Constructor callbacks are called before solving the first step during the problem initialization phase and 
destructor callbacks are called after solving the last step during the problem termination phase (See Figure 
9-1). One time initialization of private data can also be performed in the constructor callbacks. 

9.4.1 Syntax 

Structor callbacks cannot modify the solution values of the target ports associated with the inverse. 

The structor callback functions are specified with the following keywords in the FUNCTIONS {…} statement 
of the atomic class. Homonymous preprocessor macros can be used to implement the C++ functions for each 
structor callback.   

Table 9-4: Structor callbacks. 

Callback Type Callback Keyword C++ Function Prototype 

CONSTRUCT void f(TObject* object, ArgList args) 
construct 

STATIC _CONSTRUCT void f(TInverse* inverse) 

DESTRUCT void f(TObject* object, ArgList args) 
destruct 

STATIC _DESTRUCT void f(TInverse* inverse) 

9.4.2 Rules 

• If the CONSTRUCT callback is defined then the DESTRUCT callback must also be provided and 
vice-versa to ensure that memory allocated in the constructor callbacks is properly freed in the destructor 
callback. 

  79 The Callback Framework 
 



SPARK 2.0 Reference Manual 

• If the STATIC_CONSTRUCT callback is defined then the STATIC_DESTRUCT callback must also be 
provided and vice-versa to ensure that memory allocated in the static constructor callbacks is properly 
freed in the static destructor callback. 

Table 9-5: Keyword table by inverse type for the structor callbacks. 

Structor Callbacks 

Inverse Types 

in
st

an
ce

 
co

ns
tr

uc
t 

st
at

ic
 

co
ns

tr
uc

t 

in
st

an
ce

 
de

st
ru

ct
 

st
at

ic
 

de
st

ru
ct

 

sink CONSTRUCT STATIC_CONSTRUCT DESTRUCT STATIC_DESTRUCT 

integrator CONSTRUCT STATIC_CONSTRUCT DESTRUCT STATIC_DESTRUCT 

explicit form CONSTRUCT STATIC_CONSTRUCT DESTRUCT STATIC_DESTRUCT 

residual form CONSTRUCT STATIC_CONSTRUCT DESTRUCT STATIC_DESTRUCT 

si
ng

le
-v

al
ue

d 

default residual  CONSTRUCT STATIC_CONSTRUCT DESTRUCT STATIC_DESTRUCT 

explicit form CONSTRUCT STATIC_CONSTRUCT DESTRUCT STATIC_DESTRUCT 

de
fa

ul
t 

m
ul

ti-
va

lu
ed

 

residual form CONSTRUCT STATIC_CONSTRUCT DESTRUCT STATIC_DESTRUCT 

 

9.5 MODIFIER CALLBACKS 
Modifier callbacks are used to compute the value(s) of the target port(s) assigned to the inverse. Modifiers are 
the only callback functions that can return solution values for the target ports. They are called by the SPARK 
solver at each time step, possibly many times in order to obtain convergence.  

There are two types of modifier callbacks: the EVALUATE callback and the PREDICT callback. The 
EVALUATE callback “evaluates” the object to produce the values for the target ports. The PREDICT callback 
is only invoked if the associated port(s) is connected to a break variable in a strongly-connected component. 
Then the PREDICT callback produces the predicted values for the target ports before starting the iterative 
solution process. 

There can be no static modifier callbacks because static callbacks are not assigned to any target ports in 
particular but refer to all instances of the same inverse.  

9.5.1 Syntax 

The evaluate callback can be implemented in two different forms:  

  80 The Callback Framework 
 



SPARK 2.0 Reference Manual 

• The explicit form specified with the optional keyword EVALUATE returns the solution value(s) of the 
inverse equation(s) for the associated target port(s) as a double. 

• The residual form  specified with the keyword RESIDUAL returns the value(s) of the residual equation(s) 
for the associated target port(s) as a double. 

The values returned by the modifier callback functions are copied to the list of target ports implemented with 
type ResList.  

Table 9-6: Modifier callbacks. 

Callback 
Type 

 Callback    
 Keyword C++ Function Prototype 

 EVALUATE void f(TObject* object, ArgList args, ResList results) 
evaluate 

 RESIDUAL void f(TObject* object, ArgList args, ResList residuals) 

predict  PREDICT void f(TObject* object, ArgList args, ResList predictors)

9.5.2 Rules 

• The inverse for a sink atomic class defines neither an evaluate callback nor a predict callback since it 
cannot return any solution values.  

• All other atomic classes must define an evaluate callback. The predict callback is optional. 

• To enforce the proper data dependency in the graph-theoretic processing, a residual evaluate callback 
(i.e., defined with the keyword RESIDUAL) must also declare in its argument list the target port(s) it is 
associated with. 

In the next example we show a FUNCTION {…} statement for a residual inverse where the target ports 
o1 and o2 are correctly specified in the argument list. 
 PORT o1; 
 PORT o2; 
 PORT i1; 
 PORT i2; 
 FUNCTIONS {  
 
 } 

 o1,o2 = RESIDUAL residual_fn(i1,i2,o1,o2 ) ; 

• The default residual callback (i.e., the evaluate callback defined with a default inverse) must be a single-
valued inverse. Also, it cannot define a predict callback and all the class ports must appear in the 
argument list. 

In the next example we show a FUNCTION {…} statement for a default residual inverse where all class 
ports are correctly specified in the argument list. 
 PORT o1; 
 PORT o2; 
 PORT i1; 
 PORT i2; 
   FUNCTIONS {  
  DEFAULT_RESIDUAL = default_residual_fn(i1,i2,o1,o2 ) ; 
  … 
 } 

  81 The Callback Framework 
 



SPARK 2.0 Reference Manual 

Table 9-7 shows the list of keywords by inverse type for the modifier callbacks. Keywords within parenthesis 
indicate that the keywords are implied if not explicitly specified in the FUNCTION {…} statement. The only 
such keyword is the EVALUATE keyword that declares an evaluate callback function in explicit form. This is 
the default callback that is always specified for the DEFAULT classes. 

Table 9-7: Keyword table by inverse type for the modifier callbacks. 

Modifier Callbacks 

Inverse Types 

in
st

an
ce

 
pr

ed
ic

t 

in
st

an
ce

 
ev

al
ua

te
 

sink no no 

integrator PREDICT (EVALUATE) 

explicit 
form PREDICT (EVALUATE) 

residual 
form PREDICT RESIDUAL 

si
ng

le
-v

al
ue

d 

default 
residual  no DEFAULT_RESIDUAL 

explicit 
form PREDICT (EVALUATE) 

de
fa

ul
t 

m
ul

ti-
va

lu
ed

 

residual 
form PREDICT RESIDUAL 

 

9.6 NON-MODIFIER CALLBACKS 
The non-modifier callbacks deal with private data management at different phases of each time step. They are 
invoked in the stepping method of the problem simulator.  

Non-modifier callback functions can be specified for each inverse type (static callbacks) or for each inverse 
instance (instance callbacks). 

• The prepare step callback is invoked before starting the evaluation of each step, therefore allowing the 
user to prepare the private data for the current step. 

• The commit callback is invoked when the current step has been accepted, therefore allowing the user to 
update the private data of the inverse for the next step. 

• The rollback callback is invoked when the current step has been rejected, therefore allowing the user to 
reset the private data like it was at the beginning of the current step, thus allowing for a fresh step. 

9.6.1 Syntax 

Non-modifier callbacks cannot modify the solution values of the target ports associated with them. Hence 
their name. 

  82 The Callback Framework 
 



SPARK 2.0 Reference Manual 

Table 9-8: Non-modifier callbacks. 

Callback 
Type Callback Keyword C++ Function Prototype 

PREPARE_STEP void f(TObject* object, ArgList args) 
prepare step 

STATIC_PREPARE_STEP void f(TInverse* inverse) 

COMMIT void f(TObject* object, ArgList args) 
commit 

STATIC_COMMIT void f(TInverse* inverse) 

ROLLBACK void f(TObject* object, ArgList args) 
rollback 

STATIC_ROLLBACK void f(TInverse* inverse) 

9.6.2 Rules 

None of the non-modifier callbacks are required. No specific rules need to be enforced. 

Table 9-9: Keyword table by inverse type for the non-modifier callbacks. 

Non-modifier Callbacks 

Inverse types 

in
st

an
ce

 
pr

ep
ar

e 
st

ep
 

st
at

ic
 

pr
ep

ar
e 

st
ep

 

in
st

an
ce

 
co

m
m

it 

st
at

ic
 

co
m

m
it 

in
st

an
ce

 
ro

llb
ac

k 

st
at

ic
 

ro
llb

ac
k 

sink PREPARE_STEP STATIC_PREPARE_STEP COMMIT STATIC_COMMIT ROLLBACK STATIC_ROLLBACK 

integrator PREPARE_STEP STATIC_PREPARE_STEP COMMIT STATIC_COMMIT ROLLBACK STATIC_ROLLBACK 

explicit 
form PREPARE_STEP STATIC_PREPARE_STEP COMMIT STATIC_COMMIT ROLLBACK STATIC_ROLLBACK 

residual 
form PREPARE_STEP STATIC_PREPARE_STEP COMMIT STATIC_COMMIT ROLLBACK STATIC_ROLLBACK 

si
ng

le
-v

al
ue

d 

default 
residual  PREPARE_STEP STATIC_PREPARE_STEP COMMIT STATIC_COMMIT ROLLBACK STATIC_ROLLBACK 

explicit 
form PREPARE_STEP STATIC_PREPARE_STEP COMMIT STATIC_COMMIT ROLLBACK STATIC_ROLLBACK 

de
fa

ul
t 

m
ul

ti-
va

lu
ed

 

residual 
form PREPARE_STEP STATIC_PREPARE_STEP COMMIT STATIC_COMMIT ROLLBACK STATIC_ROLLBACK 

 

9.7 PREDICATE CALLBACKS 
The predicate callbacks return a boolean value to the solver that is interpreted to decide whether to accept the 
current step or reject it.  

In the current version, only INTEGRATOR classes can specify predicate callbacks, namely the callback used 
to check the integration step. Returning false means that the current step must be rejected, whereas returning 
the value true means that the current step should be accepted. 

  83 The Callback Framework 
 



SPARK 2.0 Reference Manual 

The check integration step callback is invoked after the current step has been successfully computed, 
therefore allowing the user to accept or reject the current solution using solver requests. If the step is accepted 
then the commit callbacks will be invoked next before going to the next step. If the step is rejected then the 
rollback callbacks will be invoked before re-trying the same step (probably with a different time step 
though!). 

9.7.1 Syntax 

Predicate callbacks cannot modify the solution values of the target ports.  

Table 9-10: Predicate callbacks. 

Callback 
Type Callback Keyword C++ Function Prototype 

CHECK_INTEGRATION_STEP bool f(TObject* object, ArgList args) check 
integration 
step 

STATIC_CHECK_ 
INTEGRATION_STEP37 bool f(TInverse* inverse) 

9.7.2 Rules 

Only integrator classes (i.e., classes define with CLASSTYPE INTEGRATOR) can define the check 
integration step callbacks. 

The only predicate callback function is the check integration step callback. It can be defined only for 
INTEGRATOR classes. 

Table 9-11: Keyword table by inverse type for the predicate callbacks. 

Predicate Callbacks 

Inverse types 

in
st

an
ce

 
ch

ec
k 

in
te

gr
at

io
n 

st
ep

 

st
at

ic
 

ch
ec

k 
in

te
gr

at
io

n 
st

ep
 

sink no no 

integrator CHECK_INTEGRATION_STEP STATIC_CHECK_INTEGRATION_STEP 

explicit 
form no no 

residual 
form no no 

si
ng

le
-v

al
ue

d 

default 
residual  no no 

explicit 
form no no 

de
fa

ul
t 

m
ul

ti-
va

lu
ed

 

residual 
form no no 

 

  84 The Callback Framework 
 

                                                      
37 Unlike the way if shows in the table the callback keyword STATIC_CHECK_INTEGRATION_STEP is one word. 



SPARK 2.0 Reference Manual 

9.8 DEFINING PRIVATE DATA FOR AN INVERSE 
This section explains how to define private data for an inverse using the callback mechanism. Private data 
attached to an inverse instance, also referred to as an object, is called instance private data as it is unique to 
each instance of an inverse. Private data attached to an inverse type is called static private data as it is shared 
by all instances of the same inverse type.  

Instance static data is allocated in the CONSTRUCT callback and is deallocated in the DESTRUCT callback. 
Static private data is allocated in the STATIC_CONSTRUCT callback and is deallocated in the 
STATIC_DESTRUCT callback. 

9.8.1 Private Data Mechanism 

The atomic classes in SPARK are not implemented as C++ classes, therefore it is not possible to rely on the 
C++ language to support the private data mechanism as a built-in feature. The rationale behind this design 
decision was to avoid the performance penalty incurred by the virtual function call mechanism that would be 
needed to provide the desired polymorphic behavior for each atomic class.  

Instead, the atomic class “methods” are implemented as C++ free functions, the callback functions, specified 
for each inverse. The private data mechanism is then enabled by passing pointers to the SPARK classes, which 
describe each inverse type and its instances, to the callback functions. Internally to the SPARK solver, an 
inverse type is described with the TInverse class, whereas an inverse instance is defined with the 
TObject class. Each inverse type is uniquely identified at runtime through the instance of the TInverse 
class attached to the static callbacks. Similarly, each inverse instance is uniquely identified at runtime through 
the instance of the TObject class attached to the instance callbacks.  

The htm/chm tutorial SPARK Atomic Class API should be consulted for more information on the TInverse 
and TObject classes. 

Instance Private Data 

In order to encapsulate private data with each inverse instance, SPARK defines a void pointer in the 
TObject class that describes an inverse instance in the solver. This void pointer can be used to store the 
address of any data38 that is used to implement the instance callbacks defined for this inverse. The pointer to 
the TObject class describing each inverse instance is then passed as the first argument to each instance 
callback function. See the instance callback prototypes in Table 9-4, Table 9-6, Table 9-8 and Table 9-10. 

Static Private Data 

Similarly, SPARK defines a void pointer in the TInverse class that describes an inverse type in the solver. 
This void pointer can be used to store the address of any data that is used to implement the static callbacks 
defined for this inverse. The pointer to the TInverse class describing each inverse is then passed as the first 
argument to each static callback function. See the static callback prototypes in Table 9-4, Table 9-6, Table 9-8 
and Table 9-10.  

                                                      
38 By data we refer here to an instance of any C++ type, such as a class, a struct, a function, or any fundamental type. 

  85 The Callback Framework 
 



SPARK 2.0 Reference Manual 

 

Fig

 TObject  TInverse

 

Instance Callback Static Callback 

Figure 9-2 s
in memory w
flow from th

The pointer 
of this inver
callback. 

The “this”

The void p
paradigm in
merely serve
private data 
member dat

The TObje
define as me
get method i
Table 9-12 a
TInverse

  
 

void* Data
ur

ho
h

e 

to
se

 P

oi
he
 t
co
a d

ct
m
s u
nd

 cl
TInverse* Inverse
e 9

In

w
er
in

 th
. T

oi

nt
re
o d
rr
ef

 a
be
s
 T

as
TComponent* Component
-2: Schematic representation of the relations

stance Private Data 

s the void pointers defined in the TObject
e the instance private data and static private d
stance callbacks, whereas the red arrows indic

e TInverse class is also available from the
his makes it possible to access the void poi

nter 

ers stored in the TObject and TInverse c
nt to the concept of classes in the C++ langua
istinguish between the instance of an inverse

esponds to the member data of a C++ class, w
ined as static in a C++ class. 

nd TInverse classes define get/set method
r data. The set method is used to store the ad
ed to retrieve the address of the private data t
able 9-13 show the prototypes of the get/set 

ses. 

86 
TProblem* Problem
void* StaticData
hips between callbacks and private data. 

Static Private Data 

 and TInverse classes that point to the areas 
ata are stored. The blue arrows indicate the data 
ate the data flow from the static callbacks. 

 TObject classes that represent the instances 
nter to the static private data from each instance 

lasses essentially model the this pointer 
ge. The TObject and TInverse classes 
 and the type of an inverse. Thus, instance 
hereas static private data corresponds to the 

s to operate on the void pointers they each 
dress of the newly allocated private data. The 
hat was stored previously with the set method. 
methods defined in the TObject and 

The Callback Framework 



SPARK 2.0 Reference Manual 

Table 9-12: Get/set methods of the TObject class. 

Method Description 

void  TObject::SetData(void* data) Stores the address to the instance private data in the 
void pointer member data. 

void* TObject::GetData() Retrieves the address of the instance private data as a 
void pointer. 

Table 9-13: Get/set methods of the TInverse class. 

Method Description 

void  TInverse::SetStaticData(void* data) Stores the address to the static private data in the 
void pointer member data. 

void* TInverse::GetStaticData() Retrieves the address of the static private data as a 
void pointer. 

Note that the names of the get/set methods differ between the TObject and TInverse classes in order to 
distinguish at compile time between operations intended on instance private data or on static private data. This 
naming convention avoids possible confusions due to the lack of available type information implied by the 
use of the void pointer. Indeed, the C++ compiler will complain if you try to retrieve instance private data 
with the GetData() method from a static callback that carries the pointer to a TInverse class. 

The address of the private data is implemented as a void pointer in the SPARK classes in order to achieve 
maximum generality in terms of what type of C++ objects can be used to represent private data. This results 
in the get method returning the address of an un-typed C++ object. Therefore, the retrieved address must be 
cast to a pointer to the original type of the C++ object used to implement this specific private data. It is the 
user’s responsibility to perform this type cast in the body of the callback functions whenever the void 
pointer is retrieved.  

If Object represents a pointer to a TObject class, the void pointer is cast to the original type TData 
using the C++ construct static_cast< > as shown in the following code snippet. 

TData* MyData = static_cast<TData*>( Object->GetData() ); 

If Inverse represents a pointer to a TInverse class, the void pointer is cast to the original type 
TStaticData using the C++ construct static_cast< > as shown in the following code snippet. 

TStaticData* MyData = static_cast<TStaticData*>( Inverse->GetStaticData() ); 

Note that no type casting is required when using the set methods. 

Preprocessor Macros 

Preprocessor macros are used to hide the implementation details pertaining to the callback function prototypes 
in the SPARK atomic classes. Compatible preprocessor macros are defined in the spark.h file to operate on 
static private data and instance private data from within the body of the callback functions. 

Table 9-14: List of preprocessor macros operating on static private data. 

Macro Description 

THIS Returns the pointer to the TInverse class this static callback is defined for. 

ACTIVE_PROBLEM Returns the pointer to the TProblem class the current inverse belongs to. 

  87 The Callback Framework 
 



SPARK 2.0 Reference Manual 

 

Table 9-15: List of preprocessor macros operating on instance private data. 

Macro Description 

THIS Returns the pointer to the TObject class this instance callback is defined for. 

ACTIVE_PROBLEM Returns the pointer to the TProblem class the current inverse instance belongs 
to. 

ACTIVE_INVERSE Returns the pointer to the TInverse class this instance callback belongs to. 

ACTIVE_COMPONENT Returns the pointer to the TComponent class the current inverse instance 
belongs to. 

Using the ACTIVE_INVERSE macro in an instance callback returns the pointer to the TInverse class 
describing this inverse type. This pointer can then be used to operate on the void pointer that stores the static 
private data, thus granting access to static private data from the instance callbacks. 

The htm/chm tutorial SPARK Atomic Class API should be consulted for more information on the TProblem 
and TComponent classes. 

9.8.2 Example of an Inverse with Private Data 

The atomic class analytical_frst_ord uses an instance of the class TData to compute the analytical solution 
of a first order homogenous ODE with constant, linear coefficients. Since the ODE coefficients are assumed 
to remain constant for the simulation run, it is possible to derive the equations for the analytical solution of 
the dynamic variable and its time derivative at the onset of the simulation, when the coefficient values are first 
known at runtime. 

The analytical_frst_ord class defines a multi-valued inverse that returns the values of both the dynamic 
variable, assigned to the port x, and its time-derivative, assigned to the port xdot, as a function of the current 
time, assigned to the port time. Along with the multi-valued EVALUATE callback, the inverse defines a 
CONSTRUCT callback and a DESTRUCT callback where the private data management is performed. 

The values for the analytical solution are actually computed by the instance of the class TData that is 
attached as instance private data to the multi-valued inverse in the CONSTRUCT callback. The methods 
TData::x() and TData::xdot() are called in the EVALUATE callback to return the values of the 
analytical solution at the current time for the dynamic variable and its time-derivative. Finally, the instance 
private data that was allocated in the CONSTRUCT callback is deallocated in the DESTRUCT callback. 

The class also defines two ports A and B for the ODE coefficients, as well as another port x_IC for the initial 
value of the dynamic variable. These ports are used only in the CONSTRUCT callback to initialize the TData 
instance. Note that the port time is also mentioned in the CONSTRUCT callback to obtain the value of the 
initial time. 

/// analytical_frst_ord.cc 
/// Atomic class that computes the analytical solution (a.k.a. closed-form solution) 
/// of the first-order, constant coefficient, linear, homogeneous ODE. 
/// 
/// ODE: 
/// xdot = B - A*x 
/// 
/// Initial conditions: 
/// x(t_IC) = x_IC 
/// 
/// Analytical solution: (can be used to compute the true integration error) 

  88 The Callback Framework 
 



SPARK 2.0 Reference Manual 

/// For more details consult 
/// http://oregonstate.edu/dept/math/CalculusQuestStudyGuides/ode/first/linear/linear.html 
/// 
/// x(t) = C * exp(-A*(t-t_IC)) + B/A 
/// where: 
///   C + b/a = x_IC 
///   b/a = lim x (t->inf) 
/// 
/// where : 
///    x    : dynamic variable 
///    xdot : first derivative of x 
/// 
///    A   : constant coefficient 
///    B   : constant coefficient 
/// 
/////////////////////////////////////////////////////////////////////////////// 
 
#ifdef SPARK_PARSER 
 
PORT time "time" [s]; 
PORT A    "A"; 
PORT B    "B"; 
PORT x    "x"; 
PORT xdot "xdot"; 
PORT x_IC "initial condition for x"; 
 
EQUATIONS { 
 x, xdot = analytical_frst_ord( time, x_IC, A, B ); 
} 
 
FUNCTIONS { 
 x, xdot = analytical_frst_ord__evaluate( time ) 
  CONSTRUCT = analytical_frst_ord__construct( time, x_IC, A, B ) 
  DESTRUCT  = analytical_frst_ord__destruct( ) 
  ; 
} 
 
#endif  /*SPARK_PARSER*/  
 
 
#include <strstream> 
using std::ostrstream; 
using std::ends; 
 
#include "spark.h" 
 
 
// Class that calculates the analytical solution of a 1st-order ODE with constant,  
// linear coefficients. The equations describing the analytical solution are constructed 
// in the class constructor. 
class TData { 
public: 
 // Structors 
 TData(double t_IC, double x_IC, double a, double b) 
  : T_IC(t_IC), C(x_IC - B/A), A(a), B(b) 
 {} 
 ~TData() 
 {} 
 
 // Main methods 
 double x(double time) { return C * exp(-A*(time-T_IC)) + B/A; } 
 double xdot(double time) { return -A * C * exp(-A*(time-T_IC)); } 
 
 double GetA() const { return A; } 
 double GetB() const { return B; } 
 double GetC() const { return C; } 
 double GetT_IC() const { return T_IC; } 
 
private: 

  89 The Callback Framework 
 

 // Private data 



SPARK 2.0 Reference Manual 

 double T_IC; 
 double A ; 
 double B ; 
 double C; 
}; 
 
 
EVALUATE( analytical_frst_ord__evaluate ) 
{ 
 ARGUMENT( 0, time ); 
 TARGET( 0, x ); 
 TARGET( 1, xdot ); 
 
 // Cast void* to private data type 
 TData* MyData = static_cast<TData*>( THIS->GetData() ); 
 
 // Set target values 
 x    = MyData->x( time ); 
 xdot = MyData->xdot( time ); 
} 
 
CONSTRUCT( analytical_frst_ord__construct ) 
{ 
 ARGUMENT( 0, time ); 
 ARGUMENT( 1, x_IC ); 
 ARGUMENT( 2, A ); 
 ARGUMENT( 3, B ); 
 
 // Allocate instance private data 
 TData* MyData = new TData( time, x_IC, A, B ); 
 
 // Check whether memory was allocated correctly or not 
 if ( MyData == 0 ) { 
  REQUEST__ABORT( "Could not allocate instance private data!" ); 
 } 
 
 // Store pointer to private data within this object 
 THIS->SetData( MyData ); 
 
 // Report equation string for analytical solution to error log file 
 ostrstream Text; 
 Text << "x(t) = " << MyData->GetC() << " * exp(" << MyData->GetA()  

     << "*( time - " << MyData->GetT_IC() << ") ) + "  
      << MyData->GetB()/MyData->GetA() << ends; 
 
 ERROR_LOG( Text.str() ); 
} 
 
DESTRUCT( analytical_frst_ord__destruct ) 
{ 
 // Cast void* to private data type 
 TData* MyData = static_cast<TData*>( THIS->GetData() ); 
 
 // Release allocated memory 
 if ( MyData ) { 
  delete MyData; 
 } 
} 

Allocate and Attach Private Data in CONSTRUCT Callback 

The following code snippet from the CONSTRUCT callback shows how the instance private data, described by 
the C++ class TData, is first allocated on the heap using the C++ operator new and then attached to the 
pointer to the TObject class by invoking the SetData() method.  
 // Allocate instance private data 

TData* MyData = new TData( time, x_IC, A, B ); 
 

  90 The Callback Framework 
 



SPARK 2.0 Reference Manual 

 // Check whether memory was allocated correctly or not 
 if ( MyData == 0 ) { 
  REQUEST__ABORT( "Could not allocate instance private data!" ); 
 } 
 
 // Store pointer to private data within this object 

THIS->SetData( MyData ); 

Before storing the instance private data within this object, we verify that the allocation operation succeeded 
by checking the returned address MyData of the allocated instance private data. If it failed, we send a request 
to abort the simulation (See Section 10.2). This is good practice as it prevents memory access problems when 
the pointer is dereferenced later. 

Deallocate and Detach Private Data in DESTRUCT Callback 

The following code snippet from the DESTRUCT callback shows how the instance private data, described by 
the C++ class TData, is first retrieved from the TObject class by invoking the GetData() method and 
then deallocated using the C++ operator delete.  
 // Cast void* to private data type 
 TData* MyData = static_cast<TData*>( THIS->GetData() ); 
 
 // Release allocated memory 
 if ( MyData ) { 
  delete MyData; 
 } 

Before calling the delete operator, the void pointer returned by the method GetData()is cast to the a 
pointer to the original type TData. This prevents memory leaks as the delete operator frees the memory 
occupied by the original C++ type. 

Retrieve Private Data in EVALUATE Callback 

The following code snippet from the EVALUATE callback shows how the instance private data is retrieved 
from the TObject class by invoking the GetData() method. Like in the DESTRUCT callback the returned 
pointer is cast to its original type before being used. Then, the TData::x() and TData::xdot()methods 
are invoked to calculate the analytical solution for both target ports using the private data stored with this 
inverse instance. 
 // Cast void* to private data type 
 TData* MyData = static_cast<TData*>( THIS->GetData() ); 
 
 // Set target values 
 x    = MyData->x( time ); 
 xdot = MyData->xdot( time ); 

 

 

  91 The Callback Framework 
 



SPARK 2.0 Reference Manual 

10 THE REQUEST MECHANISM 

10.1 CONCEPT 
Requests can be sent from the callback functions to influence the behavior of the problem simulator at 
runtime. The SPARK solver pools all requests received from the callbacks over the current step. Then, the 
requests are processed to identify whether they are valid or not depending on the current context of the 
simulator. Finally, the valid requests are dispatched to the solver managers that will perform the associated 
operations. Thus, the execution of the actions implied by a request is deferred to the appropriate moments of 
the simulation.  

Some requests hold data that is used to perform the associated task in the solver. Thus, the request mechanism 
can be viewed as another way to transferring data from the callbacks back to the solver. The other main data 
exchange between the callbacks and the solver happens through the target values returned from the modifier 
callbacks and the boolean values returned by the predicate callbacks. 

Requests can be classified in four categories: 

• Utility requests  

• Requests that trigger the state transitions of the simulator  

• Requests that support the time event mechanism 

• Requests that support the integration process 

The request mechanism is also used internally in the solver to perform the associated tasks, such as restarting 
or aborting the simulation, generating a snapshot or a report, … . This design approach allows to conveniently 
implement the problem simulator as a finite-state machine, whereby the state transitions are triggered by the 
execution of the corresponding requests.  

Requests sent from callbacks are called external requests, whereas requests sent from the solver are called 
internal requests. The operation of the request mechanism can be traced at runtime in the run log file using the 
SPARK diagnostic mechanism (See Section 12.5). 

Requests are sent from the body of the callback functions using the preprocessor macros specified in the file 
spark.h. All request macros are prefixed with the string REQUEST__. Also, all request macros expect a 
const char* string as the first argument used to identify the calling context. The context string is then 
used by the diagnostic mechanism. 

Note that the graph-theoretic analysis is unaware of which classes send requests since the requests are 
specified only in the callback functions and not in the class definition. Indeed, requests do not modify the 
computational graph but only the behavior of the solver at runtime. 

10.2 UTILITY REQUESTS 
Utility requests trigger actions that do not directly influence the operation of the solver. They are executed 
only after a successful step following the call to the commit callbacks (See Figure 9-1).  

  92 The Request Mechanisms 
 



SPARK 2.0 Reference Manual 

Table 10-1: List of utility requests. 

Request name Preprocessor macro Description 

report REQUEST__REPORT( context ) Generates a report in the output file at 
the end of the current step. If there is no 
output file used in this simulation run, 
then no action is taken. 

snapshot REQUEST__SNAPSHOT( context, filename ) Generates a new snapshot file at the end 
of the current step from the path 
filename specified as const 
char*. If filename is not a valid file 
name, then no snapshot is generated.  

10.3 STATE TRANSITION REQUESTS 
The state transition requests interact with the finite-state machine that performs the tasks needed to solve the 
problem under study from the initial time to the final time. Simulating a problem consists in executing the 
finite-state machine until the end state is reached, whereby successive static and dynamic steps are taken 
according to the transitions triggered at runtime either by external requests or by the solver’s built-in rules. 
Table 10-2 describes the state transition requests and the actions triggered by them.  

Table 10-2: List of state transition requests. 

Request name Preprocessor macro Description 

abort REQUEST__ABORT( context ) Forces to abort the simulation first by terminating 
the problem and then by exiting the process. It is 
executed regardless of whether the current step is 
accepted or not. 

stop REQUEST__STOP( context )  Executed only after a successful step. Stops the 
simulation and returns from the solver normally, 
albeit before the specified final time. 

restart REQUEST__RESTART( context ) Forces the simulator to restart the simulation by 
solving a single static step (i.e., the global time is 
not advanced). It is executed only after a successful 
step. 

 

Figure 10-1 shows the state-machine implementing the solution process. The arrows indicate the state 
transitions. The dotted, red arrows refer to the state transitions triggered by the requests, whereas the plain, 
black arrows represent the built-in state transitions enforced by the solver. The rounded boxes designate the 
different states of the simulator. The lozenge boxes designate conditional rules which trigger different state 
transitions depending on the boolean value produced by the evaluation of the rule. In particular, the 
conditional rule labeled IC? refers to whether or not to perform an initial consistent calculation as specified in 
the run-control file (See Section 18). The other conditional rule deals with detecting whether the simulation 
final time has been reached. Finally, the state labeled set time step implements the task of estimating the 
time step to use for the next dynamic step.  

  93 The Request Mechanism 
 



SPARK 2.0 Reference Manual 

Figure 10-1: State-machine an

o 

yes 

 

Start 
0 Initialt t=  

Static 
step 

Dynamic step 

1 1n n nt t h+ += +  

restart 

stop / abort 

requests 

Set time step 

1nh +   

IC? 

built-in transition rules 

y

conditional rules 

10.4 TIME EVENT REQUESTS 
The time event requests deal with synchroniz
meeting points. The meeting points are then 
dynamic step.  

Table 10

Request name Preprocessor macro 

set meeting 
point 

REQUEST__SET_MEETING_

clear meeting 
points 

REQUEST__CLEAR_MEETIN

  
 

n

no
 

d transitions implementing the simulation process. 

End 

es 

1n finalt t+ =

stop / abort 

ing the time-stepping operation in solver with user-specified 
taken into account when deriving the time step for the next 

-3: List of time event requests. 

Description 
POINT( context, time ) Requests solver to synchronize its 

global time with the meeting point 
time specified as double. If the 
meeting point does not lie ahead of 
the current time, then the request 
will not be processed. 

G_POINTS( context )  Clears the list of all meeting points 
requested so far in solver. 

94 The Request Mechanism 



SPARK 2.0 Reference Manual 

The meeting points can only be synchronized with in the solver if variable time stepping is allowed. If the 
variable time step mode is not selected in the run-control file (See Section 18), then the time event requests 
are discarded because the time step cannot be adapted. 

Future versions of SPARK will define new requests to support the state event mechanism that will add a 
discrete solving capability to the continuous solver. 

10.5 INTEGRATION REQUESTS 
The integration events can be requested by INTEGRATOR classes only. They provide support for the 
integration process by interacting with the solver’s stepping operation and the time step selection process. The 
only integration request implemented so far is the request to set the global time step. More requests will be 
defined in future versions to support integration schemes such as the Runge-Kutta schemes, which require 
changing the way a dynamic step is performed. 

Table 10-4: List of integration requests. 

Request name Preprocessor macro Description 

set time step REQUEST__SET_TIME_STEP( context, h )  If executed following a rejected step, 
indicates to the solver which time step to 
use to retry the current dynamic step. If 
executed after an accepted step, indicates 
to the solver which time step to use for the 
next dynamic step. The candidate time 
step h is specified as double. 

The time step selected by the solver takes into account the smallest candidate time step obtained from 
processing all the time step requests sent over the current step. Note that the time step requests can only be 
sent from the commit and rollback callbacks. Due to other constraints, such as synchronizing with meeting 
points, the actual time step used for the next step could be smaller than the candidate time step, but never 
larger. 

Finally, we note that thanks to the time step request, integrator classes can monitor the integration error and 
adapt the time step accordingly in order to satisfy the integration error prescribed by the user. The classes 
integrator_euler and integrator_trapezoidal located in the globalclass directory are examples of predictor-
corrector integration schemes that provide error control through adaptive time step operation. 

 

  95 The Request Mechanism 
 



SPARK 2.0 Reference Manual 

11 SOLUTION METHOD CONTROLS 
While the fundamental, graph-theoretic methodology in SPARK is always the same, there are some options 
you can set to control the actual numerical methods employed.  The VisualSPARK and WinSPARK graphical 
user interfaces provide menus for setting these options.  If you are working at the command line, you can set 
these options by editing the probName.prf file.  However, to explain these options we must first review the 
fundamental SPARK methodology. 

11.1 SOLUTION METHODOLOGY 
As noted previously, SPARK generates a C++ program to solve the problem expressed in your probName.pr 
file.  To generate this program, graph-theoretic methods are used to decompose the problem into a series of 
smaller problems, called components, that can be solved independently.  A component might be a sequence 
of atomic inverse functions39 that need to be executed in order;  this is the case if no iteration is required in 
that particular component.  On the other hand, iteration may be required, in which case the component, in 
graph theoretic terms, is a strongly connected component.  While all equations in a strongly connected 
component are involved in the iterative solution, usually not all variables need be iterates.  Therefore SPARK 
uses graph algorithms to determine a small set of so called break variables that break all cycles in the 
component;  these variables constitute a cut set. 

By default, SPARK will attempt to solve each strongly connected component using the Newton-Raphson 
method, treating the cut set as the vector of independent variables (see Section 2.5).  If your problem solves 
correctly with the default method for the tolerance specified in the global settings, it is probably best not to 
change it.  However, if it fails to solve, it will probably be due to either non-convergence of the 
Newton-Raphson iteration, or numerical exceptions (i.e., values of problem variables that exceed the 
capabilities of the computer).  In either case, it is usually possible to determine which component is having 
difficulty by looking at the run log file.  You may then want to change the solution method for that 
component from among the options discussed below. 

Solving method options fall into two categories: Component Solving Methods, and Matrix Solving Methods.  
Component Solving Methods refer either to modifications of the Newton-Raphson method, or a completely 
different method of finding values for the break variables that satisfy the component equations.  Matrix 
Solving Methods refers to the way in which the next estimates of the break variables are determined from the 
current values using the Jacobian matrix. 

Full explanation of the advanced methods is beyond the scope of this manual.  The cited references were 
consulted in the SPARK implementation.  

11.2 PREFERENCE SETTINGS 
This section describes the preference settings used by SPARK to solve the components at runtime. Preference 
settings fall into two categories: global settings specific to all components and component settings specific to 
each component. The preference settings are specified in a preference file with extension .prf. 

11.2.1 Default Preference File  

The program setupcpp produces the solution sequence for the SPARK problem under study (See Figure 1-1).  
It also generates the probName.prf file that contains the list of preference settings for each component 
comprising the problem.  The default settings written out to the probName.prf file come from hard-coded 

  96 Solution Method Controls 
 

                                                      
39 The solution sequence is derived by the setupcpp program from the topological information contained in the EVALUATE callback functions defined 
for each inverse, except for the SINK inverses that are automatically invoked last. 



SPARK 2.0 Reference Manual 

values unless a file named default.prf containing customized default values can be located in the current 
working directory. 

The default.prf file defines the default global settings to be used within a segment starting with the 
GlobalSettings key. It also defines the default preference settings to be used for each 
strongly-connected component within a segment starting with the DefaultComponentSettings key.  
Note that no default settings need to be specified for component-specific entries such as the names of the trace 
files.  

The following example shows a default.prf file with modified default values for the keys 
ComponentSolvingMethod, MaxIterations and MatrixSolvingMethod. 
( 
 GlobalSettings ( 
  Tolerance ( 1e-006 ()) 
  MaxTolerance ( 0.001 ()) 
  PredictionSafetyFactor ( 0.01 ()) 
  IterationSafetyFactor ( 0.9 ()) 
 ) // End of GlobalSettings section  
 
 DefaultComponentSettings ( 
 // Settings for component solving method 
  ComponentSolvingMethod (4 ()) 
  MinIterations ( 1 ()) 
  MaxIterations ( 1000 ()) 
 // Settings for Jacobian evaluation 
  TrueJacobianEvalStep ( 0 ()) 
  JacobianRefreshRatio ( 0.1 ()) 
  Epsilon ( 0 ()) 
 // Settings for step control method 
  StepControlMethod ( 1 ()) 
  RelaxationCoefficient ( 1 ()) 
  MinRelaxationCoefficient ( 1e-006 ()) 
 // Settings for matrix solving method 
  MatrixSolvingMethod ( 4 ()) 
  ScalingMethod ( 0 ()) 
  PivotingMethod ( 1 ()) 
  RefinementMethod ( 0 ()) 
 ) // End of DefaultComponentSettings section  
) 

If no default.prf file resides in the current working directory, then setupcpp will generate a template default.prf 
file with the hard-coded default preferences for possible future modification by the user.  Thus, specific 
default values for the component preference settings that differ from the hard-coded ones can be chosen for 
specific problems. 

11.2.2 Global Settings 

The global settings in the preference file are specified within a segment starting with the key 
GlobalSettings. They define the parameters used in the convergence check that must be satisfied by all 
components, such as the prescribed tolerance and various safety factors. 
( 
 GlobalSettings ( 
  Tolerance ( 1e-006 ()) 
  MaxTolerance ( 0.001 ()) 
  PredictionSafetyFactor ( 0.01 ()) 

  97 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

  IterationSafetyFactor ( 0.9 ()) 
 ) // End of GlobalSettings section  
 … 
) 
 

Table 11-1:  Global preference settings. 

Parameter 
[key in preference file] 

 
Allowed values 

 
Notes 

Tolerance  
[Tolerance] 

A floating point 
number>0.0 

Solution relative tolerance.  In iterative 
solution, iteration will continue until no 
variable y changes by more than Tolerance*|y| 
between two successive iterations. Default = 
1.E-6.   
See Section 11.6 for more details. 

Maximum Tolerance 
[MaxTolerance]  

A floating point 
number > Tolerance 

Maximum Tolerance used for a “relaxed” 
tolerance check instead of Tolerance in case 
of no convergence after maximum iterations  
(see Tolerance definition above).  
Default = 1.E-3 

Safety Factor for Break Unknowns 
[BreakUnknownSafetyFactor] 

0 < floating point 
number 

Safety factor applied to the convergence check 
for the break unknowns. Default = 1. 

Safety Factor for Normal Unknowns 
[NormalUnknownSafetyFactor] 

0 < floating point 
number  

Safety factor applied to the convergence check 
for the normal unknowns. Default = 1. 

Prediction Safety Factor  
[PredictionSafetyFactor] 

0 < floating point 
number  ≤ = 1.0 

Safety factor applied during prediction 
convergence check.  Default = 0.01 
See Section 11.6 for more details. 

Iteration Safety Factor  
[IterationSafetyFactor] 

0 < floating point 
number  ≤ = 1.0 

Safety factor applied during iteration 
convergence check.  Default = 0.9 
See Section 11.6 for more details. 

11.2.3 Default Component Settings 

The default component settings are specified within a segment starting with the 
DefaultComponentSettings key. They define the default values for the settings that will be used when 
solving each component unless some settings are overloaded later in the preference file for the component in 
question. If no other settings are specified, then the default component settings will be used.  
 ( 
 … 
 DefaultComponentSettings ( 
  ComponentSolvingMethod ( 0 ()) 
  MinIterations ( 1 ()) 
  MaxIterations ( 50 ()) 
  … 
 ) // End of GlobalSettings section  
 … 
) 

The default component settings define the parameters used by the component solving methods (See Section 
11.3), the matrix solving methods (See Section 11.4), and the Jacobian evaluation methods (See Section 
11.5). 

  98 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

11.2.4 Component Settings 

The component settings are specified within a segment starting with the ComponentSettings key. Then, 
the settings for each component are specified in a separate segment starting with the evaluation order of the 
component, zero indicating the first component.  

Any of the default component settings can be overloaded for each individual component by specifying a new 
value for the key. For example, the following code snippet showing the portion of a preference file overloads 
the maximum number of iterations allowed in component 0, i.e., the first component of the solution sequence. 
The settings for the component 0 becomes 100, from the default value of 50 in Section 11.2.3. 
( 
 … 
 ComponentSettings ( 
  0 ( 
   MaxIterations ( 100 ()) 
   … 
  ) 
  … 
 ) // End of GlobalSettings section  
 … 
) 

11.2.5 Changing the Preference Settings 

When the problem is executed the solving method settings and associated parameters are taken from the 
problem preference file probName.prf.  

If you use WinSPARK or VisualSPARK graphical user interface, you can use provided menus for setting the 
solving methods and parameters, and the settings you specify will be transferred to the problem preference 
file. 

You can also edit the problem preference file generated by setupcpp with any text editor.  However, you have 
to be careful to respect the format of the preference file where an entry ENTRY for a key KEY is specified 
with the following syntax (See Appendix C): 

KEY  ( ENTRY ( ) ) 

If for any reason the preference file does not define a particular method or parameter, default settings built 
into the source code are used.  These default settings are given in the tables below.  These are “safe” but not 
necessarily recommended settings, so you should normally provide appropriate settings for your problem. 

11.3 COMPONENT SOLVING METHODS  
The available methods for solving the component are listed in Table 11-2.  The code numbers are needed only 
if you want to set the option by editing the probName.prf file.  To set the component solving method in the 
preference file, the ComponentSolvingMethod key must be set to the desired code number under the 
ComponentSettings key for the component in question.  When using a graphical user interface the 
available choices are on a selection menu.  Note that the solving method chosen will depend on the 
component.  For example, non-iterative components do not need any solution method.  You can examine the 
probName.eqs file to see how many break variables there are for each component. 

  99 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

Table 11-2:  Component Solving Methods  

Method Code Notes Reference 
Newton-Raphson 0 With or without relaxation (default). (Conte and de Boor 1985) 
Perturbed Newton 1 Solves a perturbed nonlinear model with 

Newton-Raphson. Very computationally 
expensive but effective with badly-
conditioned systems. 

(Dennis and Schnabel 1996) 

Fixed point iteration 2 Successive substitution  
Secant 4 Multidimensional secant (using 

Broyden’s update formula). 
(Press, Flannery et al. 1988) 
(Dennis and Schnabel 1996) 

 

In addition to the basic solution method for a component, there may be parameters that control how the 
method behaves.  Available control parameters as shown in Table 11-3.  For example, with Newton-Raphson 
method you may want to use relaxation, whereby the calculated corrections to the break variables are only 
partially applied.  This is achieved by using a fractional relaxation coefficient.  Additionally, in some cases it 
may be beneficial to scale the Jacobian matrix. 

The default values in the table are used only if the parameter in question is not defined in the probName.prf 
file. 

Table 11-3:  Component Solution Parameters 

Parameter 
[key in preference file] 

 
Allowed values 

 
Notes 

Minimum Iterations  
[MinIterations] 

An integer >=0 Minimum number of iterations to perform when 
iterative solution is used. Default = 1 

Maximum Iterations  
[MaxIterations] 

An integer >0 Maximum allowed iterations when iterative 
solution is used. Default = 50 

Jacobian Evaluation Step  
[TrueJacobianEvalStep] 

Integer >= 0 The Jacobian will be re-evaluated only after this 
number of iterations.  Default = 0 (Automatic 
Jacobian evaluation). See Section 11.5. 

Epsilon 
[Epsilon]  

A floating point 
number >= 0.0 

Change in independent variable used to evaluate 
the partial derivatives for Jacobian calculation. 
Default = 0 (see Section 11.5.1). 

Step Control Method 
[StepControlMethod]  

Integer >= 0 Controls the length of the step computed by the 
component solving method to achieve “global” 
convergence. 
0 = (Default) Fixed relaxation;  
1 = Backtracking, with basic halving strategy, 
attempting to decrease the scaled Euclidean norm 
of residuals; 
2 = Backtracking with line search.40 
3 = Affine invariant backtracking strategy. 

                                                      
40  (Dennis and Schnabel 1996) should be consulted for more details on the backtracking step control algorithm with line search. 

  100 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

Relaxation Coefficient  
[RelaxationCoefficient] 

0 < Floating point 
number <= 1.0 

This is a multiplier applied to the Newton-
Raphson calculated change to get the actual 
change during the iteration. 
• Fixed relaxation coefficient used with the step 
control method 0. 
• With the other step control strategies, this is the 
initial relaxation coefficient used to start the 
backtracking method. 
Default = 1.0 

Minimum Relaxation Coefficient  
[MinRelaxationCoefficient] 

0 < floating point 
number ≤ 1.0  

Minimum relaxation allowed with the 
backtracking step control methods. 
Default = 10-6 

Scaling Method  
[ScalingMethod] 

Integer >= 0 Scales the Jacobian before using it. Default = 0. 
0 = No scaling;  
1 = full affine invariant scaling (row and column 
scaling). See Section 11.7.3 for more details. 

11.4 MATRIX SOLVING METHODS  
In Newton-Raphson and related component solving methods a linear set of equations must be solved at each 
iteration (see Section 2.5), yielding a correction to the current estimate of the cut set variables.  By default, 
SPARK will use Gaussian elimination to effect this solution.  However, other options are available as shown 
in Table 11-4.  The code numbers are needed only if you want to set the option by editing the probName.prf 
file.  To set the matrix solving method in the preference file, the MatrixSolvingMethod key must be set 
to the desired code number under the ComponentSettings key for the component in question. 

Table 11-4:  Matrix Solving Methods 

Method Code Notes Reference 
Gaussian Elimination 0 Default (Conte and de Boor 1985) 
Singular Value Decomposition (SVD) 1 Poorly conditioned matrix. (Press, Flannery et al. 1988) 
Lower-Upper Factorization (LU) 2  (Conte and de Boor 1985) 
Sparse LU 4 Sparse Matrix http://www.cise.ufl.edu/rese

arch/sparse/umfpack/ 

The sparse linear solution method is selected by specifying the value 4 for the key 
MatrixSolvingMethod in the problem.prf file.  This solution method uses the C library UMFPACK 4.0 
developed by Tim Davis.  The library implements the LU solution technique with column reordering for 
sparse linear systems.  The linear solver does not rely on vendor-specific BLAS routines but instead on 
vanilla C code, thus ensuring portability of the SPARK program.  Gains in calculation speed by many orders 
of magnitude have been observed on large problems for which the Jacobian matrix is typically more than 90% 
sparse.  

  101 Solution Method Controls 
 

http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.cise.ufl.edu/research/sparse/umfpack/


SPARK 2.0 Reference Manual 

Table 11-5: Matrix Solving Method Parameters 

Parameter 
[key in preference file] 

Values Notes 

Pivoting Method 
[PivotingMethod] 

0, 1, 2 Only used with the Gaussian Elimination matrix 
solving method. 
0 = No pivoting; 
1 = (default)  Partial pivoting, row pivots; 
2 = Total pivoting, rows and columns.41 

Refinement Method 
[RefinementMethod] 

0 < Integer < 5 Only used with the LU solving matrix solving method. 
Indicates the number of refinement iterations. 

11.5 JACOBIAN EVALUATION METHODS 
The following keys specified in the problem preference file allow you to control the evaluation methods for 
the Jacobian matrix required by the various Newton-based iterative solution methods. 

11.5.1 Scaled Perturbation for the Numerical Approximation of the Partial Derivatives 

In SPARK, Newton-based iterative solution methods (i.e., Newton-Raphson) require the Jacobian matrix to be 
computed.  This matrix consists of the partial derivatives of the iterated system of equations with respect to 
the break variables.  These partial derivatives are approximated by forward finite differences.   

For example, the partial derivative of the equation f(t, x, y) with respect to the break variable y is 
approximated using the following formula:  

( , , ) ( , , )( , , ) FD

FD

f t x y y f t x yf t x y
y y

+ ∆ −∂
≈

∂ ∆
 (11.1) 

Here,  is called the perturbation value of the variable y.  You can specify the value of the perturbation 
value for each component using the keyword Epsilon in the problem preference file (see Section 11.2.2). 

FDy∆

The differencing procedure in digital computation is sensitive to roundoff error.  The main source of difficulty 
in computing the Jacobian matrix by finite differencing is the choice of the perturbation .  Consequently, 
SPARK provides the option to use a scaled perturbation value to compute the partial derivatives.  This is 
done by specifying a 0 value for the Epsilon component setting in the preference file for the component in 
question.   

y∆

For example, if you wish to use scaled perturbation in Component 0, the preference file should include: 
ComponentSettings ( 
 0  ( 
    Epsilon ( 0 ()) 
    … 
    ) 
) 
 

When Epsilon is specified as zero, SPARK computes the scaled perturbation value for the variable y as: 

                                                      
41  The Gaussian elimination solving method with full pivoting is also referred to as the Gauss-Jordan elimination solving method in (Press, Flannery et 
al. 1988). 

  102 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

( )( )( ) max , ,FDy sign y y y h y atol y URound∆ = ⋅ + ⋅ ⋅� �  (11.2) 

Here, URound  is the machine unit round-off error.  The derivative, , with respect to the independent 
variable (usually time) is approximated using the explicit Euler scheme.  The term 

y�
yhy �⋅+  is included to 

represent the predicted value for y at the next step.  This is because even if y  happens to be near zero, it is 
quite possible that a nearby value of y is not so small, and selecting yh �⋅y +  will prevent a near zero 
perturbation from being used.  In the event that y  and yhy �⋅+  are both near zero, the absolute error 
tolerance atol  is used as a lower bound in the formula to prevent using too small a perturbation.  Indeed, 
by setting the error tolerance, you tell the SPARK solver that it is the smallest number which is relevant with 
respect to the break variables y in this component. 

( )y

The formula in Equation (11.2) perturbs about half of the digits of the variable y when y is significantly larger 
than .  Finally, note that the sign of the perturbation ( )atol y FDy∆  computed with Equation (11.2) will be 
negative if the solution is decreasing.  Unfortunately, this choice is a potentially source of difficulty for 
problems where some functions are undefined for 0y <  or not differentiable at . 0y =

11.5.2 Jacobian Refresh Strategy 

The key TrueJacobianEvalStep in the problem preference file specifies the iteration frequency at 
which the Jacobian matrix is evaluated.  For example, setting  

TrueJacobianEvalStep  ( 1 ( )) 

indicates that the Jacobian matrix for the strongly-connected component in question will be evaluated at each 
iteration.  

For example, setting the value to 5 indicates that the Jacobian matrix will be refreshed after 5 iterations, 
starting at the first iteration of each new time step. 

11.5.3 Automatic Jacobian Refresh Strategy 

Refreshing the Jacobian matrix is a costly operation that requires firing the system of equations as many times 
as there are break variables in the strongly-connected component.  Therefore, an efficient solver should try to 
minimize the number of times the Jacobian matrix needs to be refreshed in order to still achieve fast 
convergence of the solution methods. 

By setting in the problem preference file  
TrueJacobianEvalStep  ( 0 ( )) 

the Jacobian will be refreshed automatically and “optimally” by the SPARK solver whenever it is needed to 
ensure satisfactory convergence.  

By default, the SPARK solver uses the automatic Jacobian refresh strategy unless specified otherwise in the 
problem preference file. 

The automatic refresh strategy is based on the convergence behavior of the scaled increment norms between 
successive iterations.  The Jacobian matrix is refreshed whenever the convergence rate  becomes 
greater than the user-specified Jacobian refresh ratio 

( 1)k +Θ
JacRefreshΘ : 

  103 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

( )

( )

1 ( 1)
( 1)

1 ( )

k

k

k
xk

JacRefreshk
x

D x

D x

− +
+

−

⋅ ∆
Θ = > Θ

⋅ ∆
 (11.3) 

The value of the Jacobian refresh ratio is set by default to 0.5 in the SPARK solver.  Thus, we request that the 
increment norms be at least halved between successive iterations otherwise the Jacobian matrix is refreshed at 
the next iteration.  

The value of the Jacobian refresh ratio can be changed by specifying a positive floating-point value less than 
or equal to one with the key JacobianRefreshRatio in the problem preference file.  For example, 
setting in the problem preference file 

JacobianRefreshRatio  ( 0.01 ( )) 

forces the Jacobian matrix to be refreshed at every iteration for which the increment norm has not been 
decreased by at least two orders of magnitude since the previous iteration.  

11.6 CONVERGENCE CHECK STRATEGY  

11.6.1 Notation 

We introduce the notation ( )kx  to refer to the values of the vector x at the iteration k.  

The notation ( )k
ix  refers to the i-th element of the vector x at the iteration k.  

However, a superscript not enclosed within brackets refers to a normal power applied to the variable, e.g. 2x  
refers to the square of the vector x. 

The notation  refers to the element in row i and column j of the matrix D. ijD

Finally, the notation x  refers to the norm of the vector x. 

11.6.2 Scaled Stopping Criterion for Iterative Solution 

Consider the natural stopping criterion for a Newton method in its unscaled form.  That is, at iteration (k+1), 
for the vector x of the unknown variables, the convergence criterion requires that the iteration error err be 
smaller than the prescribed tolerance tol .  The iteration error err  is reasonably estimated by the 
iteration increment 

* (kx x= − )

( ) ( 1)k k ( )kx x + − x∆ =  since the Newton method converges quadratically near the solution 
*x . 

( ) ( 1) ( )

,
: ( ) (

k k kerr x x x

stop if err tol
tol prescribed required tolerance accuracy

+∆ = −

≤

�

)
 (11.4) 

In this unscaled form, err is a measure of the absolute error of the numerical solution ( 1)kx + . 

Note that ( )kx∆  is the true iteration increment that factors in the effect of any relaxation coefficient.  Thus, if 
we apply a relaxation coefficient  at the current iteration (k), the iteration increment used in the 
convergence check would be related to the Newton step  through : 

( )0 kλ< ≤1
( )k
Newtonx∆

  104 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

( ) ( )1( ) ( ) ( ) ( ) ( ) ( )k k k k k k
Newtonx x J x Fλ λ

−
∆ = ⋅∆ = − ⋅ ⋅ x  (11.5) 

A proper internal scaling procedure plays an important role for the efficiency and robustness of any 
algorithm.  A desirable property of an algorithm is the so-called scaling invariance.  This means, e.g., 
rescaling of some or all components of the vector of unknowns, x, (say, from mm to km) should not affect the 
algorithmic performance, although the problem formulation may change. 

SPARK employs a scaled tolerance test as the stopping criterion used to decide when to terminate the iterative 
solution of a strongly connected component.  The scaled tolerance test for the problem variable ix , at the 
iteration (k+1), is  

( ) ( )
( 1) ( )

( 1)
( )

k k
k i i

i k
i

x xerr x tol
scale x

+
+ −

≤�  (11.6) 

where  is the scale for the variable ( ( )k
iscale x ) ix  based on the value at the iteration (k).  In this scaled form, 

 becomes a measure of the relative error in ( )( 1)k
i

+err x ( 1)k
ix + . 

The value of the relative tolerance tol  is specified with the key Tolerance in the problem preference file 
for each strongly connected component. 

It is recommended to use the same value of the relative tolerance for all strongly connected components to 
ensure that the global relative tolerance achieved in the solution of the entire problem is consistent.  If one 
component is solved with a larger relative tolerance then the accuracy achieved in all components 
downstream will be limited by this larger value no matter what their individual, possibly stricter, relative 
tolerance is. 

11.6.3 Prediction Convergence Check 

Before the first iteration, the residual function ( )(0)F x  is evaluated with the predicted values for the break 

variables (0)x .  If the following condition  

( )( ) ( )
( )
(0)

(0)
(0)

, 1i
i pred

i

F x
err F x safety tol i n

scale x
≤ ⋅ =� …  (11.7) 

holds for the residual function associated with the break variables, then the predicted solution (0)x  is accepted 
as the converged solution without proceeding with any further iteration.  Because the convergence test occurs 
in the residual space, the tolerance test is typically made stricter by multiplying with 1edprsafety ≤ .  By 

default,  in the solver. 0.01predsafety =

This test is intended to avoid iterating when the predicted state of the underlying system is already very close 
to the solution because: 

• the prediction is very good (e.g. when restarting from a snapshot file), or  

• the dynamic problem has almost the same solution as at the previous time step (e.g. steady state solution). 

This prediction convergence check has two main disadvantages: 

  105 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

• the non-break variables are not checked against their individual scaled tolerance, which can lead to a loss 
of accuracy (depending on the requested tolerance on the non-break variables and on the transfer function 
from the break variables to the non-break variables); and 

• hidden residual inverses of the form ( , , )i i ix x residual x= + … …  may be scaled improperly with 

 if ( )(0)
iscale x ( , , )i

i

residual x
x

∂
∂
… … 1� , which in turn might lead to undesirable early convergence 

during the prediction. 

To avoid these situations, it is possible to set the prediction safety factor  in the problem preference 
file using the key PredictionSafetyFactor.  For example, setting in the problem preference file 

predsafety

PredictionSafetyFactor ( 0 ()) 

ensures that the convergence check will never be satisfied during prediction unless the residual function 
 is exactly null. ( (0)F x )

11.6.4 Iteration Convergence Check 

The solution at the iteration (k+1) in a strongly-connected component is accepted if the following conditions  

( ) ( )

( ) ( )

( 1) ( )
( 1) ( )

( )

( 1) ( )
( 1)

( )

) ,

) ,

k k
k ki i

i xk
i

k k
j jk

j yk
j

x xa err x safety tol i n
scale x

y y
b err y safety tol j m

scale y

λ
+

+

+
+

−
≤ ⋅ ⋅ =

−
≤ ⋅ =

� …

� …

1

1

 (11.8) 

hold for each break variable ix  and each non-break variable , where jy ( )kλ  is the relaxation coefficient for 
the current iteration.  

Factoring in the relaxation coefficient in the convergence test a) for the break variables ensures that 
convergence will not be wrongly detected due to the application of a small relaxation coefficient when 
updating the iterate (k+1). 

11.6.5 Safety Factors 

The iteration safety factors appearing in Equation (11.8) for the break unknowns x and the normal unknowns 
y can be set using the safety factor parameters defined in the problem preference file. The safety factors 

 and  are computed from the preference parameters with the following equations: xsafety ysafety

)
)

x

y

a safety BreakUnknownSafetyFactor IterationSafetyFactor
b safety NormalUnknownSafetyFactor IterationSafetyFactor

= ⋅
= ⋅

 (11.9) 

The iteration safety factor IterationSafetyFactor is set to 0.9 by default. It can be changed using the key 
IterationSafetyFactor in the problem preference file .  

The two other parameters BreakUnknownSafetyFactor and NormalUnknownSafetyFactor let you control the 
convergence check for each type of unknowns. Default values for these parameters are 1, as by default 
SPARK applies the same safety factor in the convergence check for all unknowns. However, if you want to 

  106 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

relax the convergence check performed on the normal unknowns, you can simply set the entry for the key 
NormalUnknownSafetyFactor to a value bigger than 1. Similarly, the safety factor for the break 
unknowns can also be changed using the key BreakUnknownSafetyFactor in the preference file. 

11.6.6 Relaxed Convergence Check 

If convergence is not achieved after the maximum number of iterations specified with the key 
MaxIterations in the problem preference file, then SPARK performs a relaxed convergence check.  The 
relaxed convergence check consists of using the maximum relative tolerance specified with the key 
MaxTolerance in the problem preference file in place of the normal relative tolerance specified with the 
key Tolerance. 

( ) ( )
( 1) ( )

( 1) ( )
( )

, 1
k k

k ki i
i relaxedk

i

x xerr x safety tol i n
scale x

λ
+

+ −
≤ ⋅ ⋅ =� …

)

 (11.10) 

where  is set to the value of MaxTolerance.   relaxedtol

The scales  are not re-computed to reflect the new relative tolerance requirement based on 

.  Thus, the relaxed convergence check also relaxes the accuracy requirement with respect to the 
absolute tolerance for each problem variable. 

( ( )k
iscale x

relaxedtol

If tol , then the number of significant digits achieved in the solution for the variables not too near 

to their respective absolute tolerance specifications will be reduced from 
relaxed tol>

( )10log tol−  to ( )10log relaxedtol− . 

The relaxed convergence test is based on the break variables only as opposed to the iteration convergence 
check, which also enforces the convergence check on the non-break variables. 

If the previous condition for the relaxed convergence test holds, then SPARK writes a warning to the error log 
file and proceeds with the simulation; otherwise SPARK terminates with a convergence error message. The 
relaxed convergence check mechanism lets you carry out a dynamic simulation over multiple time steps until 
the final time even though a few time steps might not have been computed with the full desired accuracy. 

The relaxed convergence check can be turned off by setting MaxTolerance to a value smaller or equal to 
Tolerance in the problem preference file. 

11.7 SCALING METHODS 

11.7.1 Variable Scaling Procedure 

To achieve scaling invariance in the error estimation and to avoid the difficulties arising from near-zero 
problem variables the following scaling strategy is applied: 

• initial update 

( )(0) (0)
ityp x x= i  (11.11) 

• iteration update (taking into account two successive iterates) 

( ) (( ) ( ) ( 1)1
2

k k k
i i ityp x x x −= + )  (11.12) 

  107 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

• scaling procedure 

( ) ( ) ( ){ }( ) ( ) ( )max ,k k
i iscale x typ x threshold x= k

i

)

 (11.13) 

where the threshold value threshold  for scaling must be strictly positive and is specific to each 

variable 

( ( )k
ix

ix . 

Note that the actual value of ( )( )k
ixthreshold  determines a switch from a pure relative norm to a modified 

absolute norm for each problem variable. 

As long as (( ) ( )k
i )k

ix threshold x> , this problem variable contributes 

 
( )

( )

( )

k
i

k
i

x
typ x

∆
 

to the norm, whereas for ( )( ) ( )k
i

k
ix threshold x≤  this problem variable contributes  

 
( )

( )

( )

k
i

k
i

x
threshold x

∆
 

to the norm. 

Defining the Absolute Tolerance for Each Problem Variable with the ATOL Property  

The threshold value threshold  is specific to each problem variable and is derived from the absolute 

tolerance value  specified for each unknown variable with the ATOL keyword in the LINK, PORT or 
PROBE statements. 

( )ix

( )ixatol

( ) ( )i
i

atol x
threshold x

tol
=  (11.14) 

The ATOL property should be set to the absolute value at which the variable in question is essentially 
insignificant, i.e. it is no longer necessary to request further accuracy in terms of significant digits for values 
smaller than the absolute tolerance.  By default, the ATOL property is set to 10-6 if it is not explicitly specified 
for a variable. 

For example, the following statement in a SPARK class file or problem file indicates that the absolute 
tolerance for the variable massFlow is to be set to 10 10−  : 

LINK massFlow   o1.m  io2.m  INIT=0   ATOL=1.0E-10  [kg/s]; 

Of course the value of the absolute tolerance depends on the physical units used in the problem formulation.  
However, changing the requested relative tolerance with which to solve the problem does not impact the 
choice of the absolute tolerance since the threshold value is automatically adjusted to reflect the new 
prescribed relative tolerance. 

Achieved Accuracy 

  108 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

Such a scaled tolerance requirement is necessary to achieve convergence with a consistent number of 
significant digits, p, for variables with different orders of magnitude. 

For a problem variable ( )i ix threshold x> , the relationship between the relative tolerance and the number 
of significant digits, p (indicating the number of correct decimal leading digits in the mantissa of each 
problem variable ix  independent of the actual exponent) achieved in the solution is: 

(10log )p tol= −  (11.15) 

For a problem variable ( )i ix threshold x≤ , the number of correct digits p in the mantissa is: 

( ) ( ) ( )( )10 10 10log log logip tol x scale x = − − − i


i

 (11.16) 

In other words, the absolute error for each problem variable, in both cases, is approximately given by: 

( ) ( )_ iabs err x tol scale x≈ ⋅  (11.17) 

11.7.2 Scaled Norms and Implications for the Solution Methods 

In SPARK, we use scaled norms in place of the usual unscaled norm in order to obtain norms that are scaling 
invariant.  The scaling matrix and norm used in the code are given by: 

( )1

2
1

1

) , ,

)

n

n
i

scaled
i ii

a D diag scale scale

vb v D v
D

−

=

=

 
= ⋅ =  

 
∑

…

 (11.18) 

In SPARK all vector norms v  are Euclidean norms (a.k.a. 2-norms) unless specified differently. 

In the Variable Space 

The described scaling procedure yields reasonable values for the scaled norms used in SPARK in the variable 
space. For example, when we report the variable increments norm it is assumed that it is the scaled norm of 
the increments that is computed: 

1
xscaled

x D −∆ = ⋅∆x  (11.19) 

where the scaling matrix  is the diagonal matrix with the scales xD ( )iscale x  for each problem variable ix  
(See Equation (11.13)). 

In the Residual Space 

However, norms computed in the residual space tend to be more difficult to make scaling invariant.  An 
unscaled termination criterion in the space of the residuals  

( )F x tol≤  (11.20) 

neither controls the error in the computed solution nor shows any invariance property.  In order to realize 
invariance against a rescaling of the residuals, one may use a scaled check, e.g. 

  109 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

( ) ( )1
Fscaled

F x D F x tol−= ⋅ ≤  (11.21) 

where  

( )( ) ( )( )( 1 , ,FD diag typ F x type F x= … )n 0, 1F iiD i> = … with  (11.22) n

However, the selection of the typical values ( )( )ip F xty  for the residuals is arbitrary.  Furthermore, it is not 

obvious how to develop an adaptive selection of further scaling matrices when the residual function ( )F x  
evolves over successive iterations. 

To avoid such a situation, SPARK checks for convergence in the variable space after the prediction step (see 
Section 11.6.4). 

11.7.3 Total Internal Scaling of Linear Systems  

All component solving methods in SPARK except for the fixed point iteration require solving a linear system 
of the following general form in order to compute the Newton step: 

( )J x F x⋅ ∆ = −  (11.23) 

This is solved for the increment vector x∆  using the vector of residuals ( )F x  and the Jacobian matrix  
that contains the partial derivatives of the residuals with respect to the vector of break variables 

J
x . 

In order to have scaling invariance for the linear system solution, the associated linear systems can be 
internally scaled by setting the scaling method to 1 in the problem preference file. 

ScalingMethod  ( 1 ( )) 

The scaling method in SPARK implements a fully affine invariant scaling scheme in both the variable space 
and the residual space by applying column scaling and row scaling to the linear system.  This scaling 
approach makes the solver operation less sensitive to changes in the variables’ units and to equation 
formulations where the variables show very different orders of magnitude.  In particular, a user rescaling of 
the dependent variables does not change the performance of the linear solver. 

The total internal scaling consists in solving the following row- and column-scaled linear system: 

( ) ( ) ( )1 1 1
F x x FD J D D x D F x− − −⋅ ⋅ ⋅ ⋅∆ = − ⋅  (11.24) 

Herein,  is the diagonal matrix with the scales xD ( )iscale x  of the break variables, updated at each iteration 
using the scaling scheme described in Section 11.7.1. 

( ) ( )( 1 , ,xD diag scale x scale x= … )n

)n

)

 (11.25) 

FD  is another diagonal matrix. 

( 1, ,FD diag d d= …  (11.26) 

Let (  denote the elements of the column scaled Jacobian x ij
J D⋅ xJ D⋅ .  Then the residual scale  is 

calculated according to 
id

  110 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

( )
1
max , 1, ,i x ijj n

d J D i
≤ ≤

= ⋅ = … n  (11.27) 

If you encounter convergence difficulties with the solution of a SPARK problem, the fully affine invariant 
scaling scheme should be selected in the problem preference file to improve the operation of the nonlinear 
solver. 

By default, the SPARK solver does not perform the total internal scaling of the linear systems in order to 
avoid the associated performance penalty. 

11.7.4 Detection of an Ill-Conditioned Problem 

Assume that the nonlinear problem  

( )
(0)

) 0,

)

na F x x

b x given initial guess

= ∈\
 (11.28) 

is well-scaled, i.e., unscaled norms yield meaningful numbers.  If the situation  

( )with "large"x tol F x∆ ≤  (11.29) 

holds, the underlying problem is said to be ill-conditioned.  That means that a large value for ( )F x  may 

occur even for ( * )x float x=  since *x  can’t be represented exactly due to the finite length of the mantissa. 

For a badly-scaled problem, a check for the condition of the problem must rely on scaled norms.  The 
following situation 

( )1 1with "large"x FD x tol D F x− −⋅∆ ≤ ⋅  (11.30) 

indicates an ill-conditioned problem, provided that the scaling matrices are properly chosen.  Ill-conditioned 
problems are numerically difficult to solve because the achievable precision might be limited. 

In the case of a non-converging, ill-conditioned problem, you should consider relaxing the tolerance 
requirement (the relative tolerance and the absolute tolerances for the worst offending variables) in order to 
obtain a trustworthy solution albeit with less accuracy. 

11.7.5 Implication for the Backtracking Step Control Methods 

The step control methods based on the backtracking approach (i.e., the basic halving strategy and the line 
search strategy) aim at minimizing a cost function f based on the norm of the residuals by adapting the 
relaxation coefficient to be applied at each iteration. 

( ) ( ) 21min
2nx

f x F x
∈

=
\

 (11.31) 

It is clear that if the units and/or orders of magnitude of two components of the residual function ( )F x  are 
widely different, then the smaller component function will be virtually ignored by not contributing much to 
the norm of the residual function. 

  111 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

For this reason, the backtracking algorithms in SPARK use a positive diagonal matrix D  on the dependent 
variables .  The diagonal matrix is chosen so that all the components of  will have about the 
same typical magnitude at points not too near the root.  Thus, the cost function defined in SPARK is  

( )F x ( )F x

( ) ( ) 211min
2nx

f x D F x−

∈
= ⋅

\
 (11.32) 

The residual functions  are derived from the directed inverses inve  assigned to each break 

variable 

( )iF x ( )irse x

ix  in the atomic classes: 

( ) ( ) , 1i i iF x inverse x x i n= − = …  (11.33) 

Because each residual function  depends on the break variable ( )iF x ix , the default choice in SPARK for the 

matrix D  is the variable scaling matrix . xD

However, if the linear system is scaled using the total internal scaling scheme (see Section 11.7.3), then 
SPARK uses the internally computed, row scaling matrix  in place of the matrix FD D  to compute the cost 
function.  This is a better choice as it takes into account the dependency on all x’s and not just on ix  for each 
inverse inve . ( )irse x

Thus, selecting the total internal scaling scheme impacts the operation of the nonlinear solver by modifying 
the cost function used with the backtracking step control methods. Therefore,  if a problem fails to converge 
with the scaling method turned off, convergence can sometimes be achieved when re-computing the same step 
with the scaling method turned on (and vice versa). 

 

  112 Solution Method Controls 
 



SPARK 2.0 Reference Manual 

12 DEBUGGING SPARK PROGRAMS  
Often SPARK will find calculation sequences leading to successful problem solution without intervention.  
However, solution of nonlinear differential and algebraic equations is not easy, even for SPARK, and in some 
cases you may get error messages.  These may be during the initial processing where your input is being 
parsed, while executing the setup program that converts it to a solver program, or during execution of the 
solver program, i.e., at run time. 

12.1 PARSING ERRORS  
Parsing errors are usually syntax errors, as in any programming language.  These errors are reported in the 
parser.log file, normally placed in your project directory.  They should be easy to interpret, but if not the 
command reference in Section 19 may be helpful. 

12.2 SETUP ERRORS 
During the setup phase SPARK may have other difficulties due to input errors.  For example, you may have 
specified a problem for which no matching can be found between equations and variables.  This can happen 
even if you have an equal number of equations and free variables (i.e., links).  As an example of this, consider 
the 4sum problem when x1, x5, x6, and x7 are specified as inputs.  This is not well-posed because it over-
determines the equation for s3 while under-determining s2.  SPARK will report such errors as “unable to find 
a matching”.  Subtle errors of this nature can occur in development of complex models.  Setup errors are 
reported in the setup.log file. 

Unfortunately, lack of matching can also arise for well-posed problems if you have not provided enough 
inverses for your atomic objects.  Complex models involve equations that maybe difficult to invert,  even with 
symbolic algebra tools.  Consequently, it is common for SPARK users to omit the difficult inverses for some 
equations, providing only those easily come by.  Usually, this is acceptable practice since SPARK explores 
many paths to a get a solution sequence and usually finds one.   

However, if you are experiencing matching problems and have omitted some inverses you may want to 
consider using residual inverses (See Section 8.7) or default residual inverses (See Section 8.8) to facilitate 
the matching process.   

12.3 SOLUTION DIFFICULTIES 
Even after SPARK has successfully created a solver program there can be difficulties in finding a solution.  
This is because of the nature of nonlinear systems of equations, with which  numerical analysts have been 
struggling for many years.  Here we are referring to convergence difficulties; the solver iterates the maximum 
allowed number of times (set by default to 50) without bringing the solution into the error tolerance (default 
value is 10 ).  If you work with complex systems, resolving these difficulties is the greatest challenge you 
will face.  Run time errors are reported to the run log file.  More detailed error messages and diagnostic can be 
found in the error log file (see Section 16.1). 

6−

With SPARK, you attack convergence problems in two basic ways: estimating better values to start the 
iteration, and by trying to alter the solution sequence.  The importance of good iteration initial values is well 
known; in this regard, the only difference between SPARK and other simulation tools is with SPARK, due to 
reduction in the number of iteration variables, you do not have to specify as many guess values.  We discuss 
how to set initial iteration values in Section 7.2. 

The second strategy, controlling the solution sequence, is based on the observation that iteration can usually 
be done many different ways, often differing in the direction in which calculations flow around cycles in the 
  113 Debugging SPARK Programs 
 



SPARK 2.0 Reference Manual 

problem graph.  Sometimes convergence can be achieved by calculating in the opposite direction.  
Consequently, SPARK provides syntax in the definition of problems and classes in order to control, indirectly, 
the calculation direction.  You can always see the solution sequence chosen by SPARK in the .eqs file 
produced by the setup program.  Open this file with a suitable viewer or editor and use it as guide in 
understanding and improving your problem solution sequence. 

MATCH_LEVEL is very effective in reversing the direction of calculations in SPARK.  By default, matchings 
are found based only on order of objects and links found in the problem specification file. By forcing or 
encouraging a different matching you can often improve numerical performance, and perhaps achieve 
convergence.   

The relevant keywords are MATCH_LEVEL and BREAK_LEVEL.  Each can be set to a value between 0 and 
10.  When left unspecified, these levels default to 5.  The MATCH_LEVEL keyword is placed in a LINK or 
PORT statement, and specifies the relative desirability of matching that link variable to a particular object in 
the LINK statement.  For example, 

LINK  x  a_obj.p1 MATCH_LEVEL = 10, b_obj.p3; 

tells SPARK that you would prefer that object a_obj should be matched with the x problem variable.  You 
could say somewhat the same thing by the statement 

LINK  x  a_obj.p1, b_obj.p3 MATCH_LEVEL = 0; 

which says you would prefer that x not be matched with object b_obj.  Provided that you not simply 
encourage selection of the matching that would be found by default, the direction of calculations in the 
problem will be reversed.  Currently,  the second form is stronger that the first due to the implementation of 
the matching algorithm used in SPARK. 

BREAK_LEVEL parallels the MATCH_LEVEL idea, but applies to the discovery of a cut set, i.e., selection of 
variables to break cycles in the problem graph.  When there is a cycle,  usually many problem variables are 
encountered as you work your way around the loop.  It is easy to see that any of these variables will break the 
loop.  By default, SPARK sets break preference to 5 for all variables, so the break selected is determined 
solely by order in the problem definition.  Yet, there are sometimes arguments for preferring one over 
another.   

A simple example is based on starting value availability.  If you have the choice of breaking on enthalpy or 
temperature, you may prefer the latter simply because you are likely to be able to better estimate iteration 
starting values for temperature.  Some analysts also feel that different break variables lead to better 
convergence.  However, the “gain” around the loop is going to be the same regardless, so this may not be a 
strong argument.  Nonetheless,  if you have any reason or hunch that a particular variable would be a better 
break, give it a high BREAK_LEVEL.  To do so,  include it in the LINK statement: 

LINK  x a_obj.p1 BREAK_LEVEL = 7, b_obj.p3 MATCH_LEVEL = 10; 

In the current implementation, matching and break levels only encourage SPARK to match or break the way 
you wish.  This is because we wanted to give SPARK maximum opportunity to find solution sequences,  and 
denying certain matchings and breaks may prevent any solution at all.  In later versions we may also provide 
forced matchings and breaks.   

Finally, it should be noted that these are only indirect tools, sometimes having little or no effect on the 
solution sequence.  For example, setting BREAK_LEVEL on a link that does not happen to be in a cycle will 
have no effect, and as already noted setting a MATCH_LEVEL to force a match that is selected by default is 
also ineffective. 

  114 Debugging SPARK Programs 
 



SPARK 2.0 Reference Manual 

12.4 TRACE FILE MECHANISM  
Sometimes it may be helpful to see intermediate results of the iterative solution process.  This is especially 
important when your problem is experiencing convergence difficulties.  You can get such output by using the 
TraceFiles segment under the key ComponentSettings for the component in question in the 
probName.prf file.  This is done for individual components.   

As with solution control parameters (see Section 11), setting this flag is done most conveniently with the aid 
of a SPARK graphical user interface.  Otherwise, you can edit the probName.prf file directly with any text 
editor.  

The TraceFiles segment has five allowed values as shown in Table 12-1. 

Table 12-1:  Keys and Values for the TraceFiles Segment 

TraceFiles Key and Value Meaning 
( ) No trace output. 
Jacobian (fileName () ) Jacobian of residual functions printed whenever it is recomputed. 
Increments (fileName () ) Increments of all variables printed at every iteration. 
Residuals (fileName () ) Break residuals printed at every iteration. 
Variables (fileName () ) All problem variables printed at every iteration. 
 

Within each component, you can specify up to four trace files entries with the name of each file preceded by 
one of the keys listed in Table 12-1.  Each key specifies the type of the trace file that will be written to the file 
following the type key.  For example, the following segment could be inserted in ComponentSettings 0 
of a problem preference file: 
ComponentSettings ( 
 0 ( 
   … 
   TraceFiles (   
    Jacobian   ( spring_jac.trc ()) 
    Increments ( spring_inc.trc ()) 
    Residuals  ( spring_res.trc ()) 
    Variables  ( spring_var.trc ()) 
   ) 
   … 
 ) 
) 
 

Any file name with the extension .trc can be used, except it cannot be repeated.  That is, you cannot use the 
same file name for tracing in the same component, or in a different component. 

If no trace files are wanted, the TraceFiles segment for the component should be: 
TraceFiles ( ) 

Finally, note that only the variable tracing option is available with weak components. 

  115 Debugging SPARK Programs 
 



SPARK 2.0 Reference Manual 

12.5 PROBLEM-LEVEL DIAGNOSTIC MECHANISM  
In addition to the trace facility (see Section 12.4), SPARK has a problem-level diagnostic facility.  To use this 
feature, the DiagnosticLevel keyword must be set to something higher than 0 in the problem run-control 
file (see Section 18).  The different modes trigger increasing level of diagnostic to the run log file.   

The default mode is the silent mode. To combine diagnostic modes, you add the corresponding flag values 
and specify the resulting value for the DiagnosticLevel key. For example, to produce diagnostic about 
the input mechanism, the report mechanism and the simulation statistics, the value 2+4+16=22 should be 
specified for the DiagnosticLevel key. 

Table 12-2:  Problem-level Diagnostic Flag Values 

Mode Flag value Description 
Silent  0  No diagnostic. Default mode if no diagnostic level is 

specified. 
Show convergence 1  At each iteration, the convergence progress is reported for 

each component. Includes scaled residuals’ norm, 
convergence error, requested tolerance, name and value of 
the worst-offender variable. 

Show inputs 2  All variables read from input files or URL are listed 
before the beginning of the simulation. 

Show reports 4  All variables tagged as REPORT are reported with their 
names and values at each step. 

Show preference settings 8 Loaded preference settings are written out before the 
beginning of the simulation. 

Show simulation statistics 16 Simulation statistics is produced at the end of the 
simulation. 

Show requests 32 Internal and external requests are traced over the course of 
the simulation. 

12.5.1 Description of the Inputs Diagnostic Mode 

When the inputs diagnostic mode is selected, the variables for which values are specified in input files or 
through Read URLs are written to the run log file before the start of the simulation, listed with the associated 
input information: 

• the name of the file where the variable name is referenced; and  

• the column number containing the values for the variable, starting with column 1 for the first column 
after the time stamp. 

12.5.2 Description of the Reports Diagnostic Mode 

Similarly, when the reports diagnostic mode is selected, the variables defined with the keyword REPORT in 
the problem description and/or the map file (See Section 14.4) are listed with the associated reporting 
information: 

• the name of the file where the variable name is written to; and  

• the column number containing the values of the reported variable, starting with column 1 for the first 
column after the time stamp. 

Then, at each report time, the values for the REPORT variables are written out to the run log file at the end of 
the step. 

  116 Debugging SPARK Programs 
 



SPARK 2.0 Reference Manual 

12.5.3 Description of the Convergence Diagnostic Mode 

When the convergence diagnostic mode to show the convergence process is selected, SPARK writes to the run 
log file information about the convergence process for the solution of each strongly connected component.  
The next screenshot shows the convergence diagnostic typically displayed for the solution of a strong 
component at one time step. 
STATIC STEP: Problem(room_fc), StepCount(3), Time(360), TimeStep(180) 
 
 --- Component(0) : tol(1e-006), maxtol(0.001), iteration(1...50) --- 
  #      Residuals   Increments    Relaxation #Break #Normal Error        Test    Worst-offender variable 
P 0      6.0074e-002  N/A          N/A        2      0       6.0000e-002  8e-009  [break] Ta           = 2.500000e+001 
  1      2.0262e-010  3.0014e-001  1.00e+000  2      4       2.0598e-001  8e-007  Q_floor              = -2.582216e+002 
  2      0.0000e+000  9.5479e-010  1.00e+000  0      0       6.5125e-010  8e-007  T_floor_dot          = -2.582216e-004 

Step Stamp  

The first line is called the step stamp of the diagnostic report: 
STATIC STEP: Problem(room_fc), StepCount(3), Time(360), TimeStep(180) 

It indicates: 

• the type of step currently being solved, i.e., either a static step or a dynamic step; 

• following the tag Problem, the name of the problem being solved; 

• following the tag StepCount, the step count starting at one for the first computed step (usually the 
initial time solution); 

• following the tag Time, the current value of the GLOBAL_TIME link; and 

• following the tag TimeStep, the current value of the GLOBAL_TIME_STEP link. 

Diagnostic reported at a new step always starts with such a step stamp. 

Component Stamp 

Following the step stamp, diagnostic about the convergence process is reported for each strongly connected 
component in the order in which they are solved.  It starts with the component stamp  
--- Nonlinear solver for Component(0) : tol(1e-006), maxtol(0.001), iteration(1...50) --- 

which indicates: 

• the evaluation order of the component in the solution sequence generated by setupcpp, starting at zero 
for the first component;  

• following the tag tol, the value of the prescribed relative tolerance – specified with the key 
Tolerance in the problem preference file –; 

• following the tag maxtol, the value of the relaxed relative tolerance – specified with the key 
MaxTolerance in the problem preference file –; and 

• following the tag iteration, the minimum number of iterations to be performed and the maximum 
number of iterations allowed in the nonlinear solver – specified respectively with the key 
MinIterations and MaxIterations in the problem preference file. 

Prediction Diagnostic 

Then, the convergence diagnostic is reported on a different line for each iteration of the nonlinear solver 
shown in the column ‘#’. 

  117 Debugging SPARK Programs 
 



SPARK 2.0 Reference Manual 

The diagnostic begins by reporting the prediction state of the component, identified with the iteration count 0 
preceded by the letter ‘P’.  

P 0      6.0074e-002  N/A          N/A        2      0       6.0000e-002  8e-009  [break] Ta          = 2.500000e+001 

The prediction state is computed by firing the system of directed inverses comprising the current component, 
using the predicted values for the break variables.  For the prediction iteration, the following diagnostic data 
is reported: 

• shown in the column ‘Residuals’, the scaled Euclidean norm of the residual function; 

• shown in the column ‘#Break’, the number of break variables that failed the prediction convergence 
test; 

• shown in the column ‘#Normal’, the number of non-break variables that failed the prediction 
convergence test; and 

• the worst-offender variable during the prediction convergence test with: 

o in the column ‘Error’, its convergence error; 

o in the column ‘Test’, the tolerance test to be satisfied by the convergence error; and finally  

o in the column ‘Worst-offender variable’, its name and current value. 

If the worst-offender variable is a break variable, then the variable name is preceded by the tag ‘[break]’. 

The tag ‘N/A’ in some of the columns indicates diagnostic data that does not apply because it does not make 
sense in the present context or cannot be calculated for this iteration. 

Iteration Convergence Diagnostic 

After the prediction diagnostic, the convergence process is reported for each successive iteration of the 
nonlinear solver. 
  1      2.0262e-010  3.0014e-001  1.00e+000  2      4       2.0598e-001  8e-007  Q_floor              = -2.582216e+002 
  2      0.0000e+000  9.5479e-010  1.00e+000  0      0       6.5125e-010  8e-007  T_floor_dot          = -2.582216e-004 

The following diagnostic data is displayed: 

• the iteration count in the column ‘#’; 

• in the column ‘Residuals’, the scaled Euclidean norm of the residual function for the current 
iteration; 

• in the column ‘Increments’, the scaled Euclidean norm of the iteration increments for both the 
non-break variables and the break variables; 

• in the column ‘#Break’, the number of break variables that failed the iteration convergence test; 

• in the column ‘#Normal’, the number of non-break variables that failed the iteration convergence 
test; and 

• the worst-offender variable during the iteration convergence test with: 

o in the column ‘Error’, its convergence error; 

o in the column ‘Test’, the tolerance test to be satisfied by the convergence error; and finally  

o in the column ‘Worst-offender variable’, its name and current value. 

Relaxed Convergence Diagnostic 

  118 Debugging SPARK Programs 
 



SPARK 2.0 Reference Manual 

If convergence against the relative tolerance is not achieved after the maximum number of iterations allowed, 
SPARK performs a convergence test using the relaxed relative tolerance to decide whether or not to proceed 
with the simulation.  The diagnostic report for the relaxed convergence test begins with the letter ‘R’ and 
shows the iteration diagnostic data again but for the relaxed relative tolerance. 

12.5.4 Description of the Statistics Diagnostic Mode 

The statistics diagnostic mode provides information at the end of the simulation on: 

• the problem topology (i.e., decomposition of the solution sequence in weak and strong components, 
number of unknowns and break variables, etc.); 

• the numerical performance of the nonlinear solver called by each strong component; 

• the numerical performance of the linear solver used by each nonlinear solver; and 

• the preference settings used for the solution of each strongly-connected component. 

Information such as the number of function evaluations and the average solution times can be used to 
compare the computational efficiency of the solver.  This can be useful to assess the best numerical 
formulation for a physical model (e.g., generated with different MATCH_LEVEL and BREAK_LEVEL 
specifications) or the best preference settings to solve a problem. 

The number of function evaluations required for the solution of a problem is independent of the hardware 
configuration and therefore offers a good basis for comparison across multiple platforms, unlike the statistics 
about the average solution times.  However, it should be noted that the computational load associated with a 
function evaluation depends on the implementation of the inverse function in question.  Thus, the statistics 
about the number of function evaluations do not always reflect the overall solution time.  This explains why 
the statistics log file reports both data to produce an accurate picture of the numerical performance. 

 

  119 Debugging SPARK Programs 
 



SPARK 2.0 Reference Manual 

13 THE NATIVE INPUT FILE MECHANISM 
Values for problem variables can be provided in SPARK input files for discrete time stamps specified in 
strictly increasing order.  This mechanism is referred to as the native input file mechanism because it provides 
supports for reading from SPARK input files (See Section 13.3).   

To read values from files in a different format, you should use the Read URL mechanism (See Section 14). 
By default, input values required at runtime will be obtained with the native input file mechanism. However, 
if a valid Read URL string is specified for a variable, the URL mechanism supercedes the native mechanism 
for this variable. 

It is sometimes more convenient to use multiple input files, thus allowing different time stamp sequences for 
different set of variables.  See Section 7.6 for examples of when this might be useful.  The input files are 
specified in the InputFiles segment of the probName.run file.  See Section 18 for more details on the 
format of the run-control file.  

At runtime, the SPARK input manager opens each of the listed input files and identifies where to search for 
values for each variable.  Then, at every time step the input values are read from the input files and assigned 
to the variables at the discrete time stamps. 

13.1 PRECEDENCE RULE 
The input manager does not distinguish between constant and time-varying values.  All variables will be 
sought from the input files specified for the problem. 

If a variable does not appear in any input files, then its default value as specified in the problem description 
will be used instead. 

If a variable appears in more than one input file, then the value for the variable will be read from the last 
occurrence in the list of input files.  Therefore, the order in which you specify the input files in the run-control 
file is important. 

13.2 EVALUATION RULE 
The input manager always interpolates linearly between the values corresponding to the time stamps specified 
in the input file around the desired time.  

If the desired time is past the last time stamp specified in the input file, then the input manager returns the last 
specified value without extrapolating. 

If the desired time is prior to the first time stamp specified in the input file, then the input manager returns the 
first specified value without extrapolating. 

13.3 FILE FORMAT 
To accommodate time-varying inputs, an input file has the tabular form :  

N var1 var2 var3 … varN 

t0 val1_0 val2_0 val3_0 … valN_0 

t1 val1_1 val2_1 val3_1 … valN_1 

t2 val1_2 val2_2 val3_2 … valN_2 

*      

  120 Native Input File Mechanism 
 



SPARK 2.0 Reference Manual 

Here vari  are the variable names and vali_j are their values at times tj, where i indicates the column 
number where to read the value (starting at 0 for the first column containing the time stamps) and j indicates 
the position of the time stamp in strictly increasing order.  The entry N in the first column of the first row 
indicates the number of variables for which values are specified in each following row of the input file.  

The final line with only ‘*’ in it is optional and indicates that all values remain fixed from that point forward.  
This means that the last values defined in the file will be read at each time step past the last time stamp. 
However, if there is no final line with ‘*’ in the input file, then the input manager will not read the values in 
the file after the last time stamp. 

Constant values have the same value repeated at each time stamp. 

13.4 PROPERTY READER 
The input manager also allows reading in the properties MIN, MAX, INIT and ATOL from input files for 
each problem variable, at specified time stamps.  

It is recommended to write the values for the different property types in multiple files, where each file 
contains values only for one property type.  Writing the values for the properties in an input file prevents you 
from having to rebuild the problem when changing the values of an INIT property or of an ATOL property 
for some variables between successive simulation runs of the same problem. 

13.4.1 How to Specify a Property in an Input File 

In an input file, the syntax required to indicate a property consists in the name of the variable followed by ‘:’ 
and the name of the property in question.  For example, X:ATOL refers to the property ATOL of the problem 
variable named X. 

Following is an example of an input file that specifies the absolute tolerance values of three variables for the 
time stamp 0. 

3 X:ATOL Y:atol Z:Atol 

0 1.0E-6 1.0E-12 1.0E-4 

The name of the variable is case sensitive whereas the name of the property is not case sensitive.  The 
property qualified variable names that cannot be parsed for a valid property name by the input manager are 
reported to the file error.log as warnings.  This file should be consulted by the user to identify possible typing 
mistakes. 

13.4.2 When Properties Are Read from Input Files 

The input manager reads in the values for the INIT properties for all problem variables only once at the 
initial time.  

The input manager attempts to read in the values for the other properties (i.e., the properties MIN, MAX and 
ATOL) at the beginning of each time step until the final simulation time is reached. 

For example, if the simulation cannot converge because the absolute tolerances specified for some unknown 
variables appear to be too strict, then it is possible to relax these ATOL values for the time interval in question 
in order to allow the simulation to proceed past this numerically sensitive phase.  The following input file 
illustrates how to relax the absolute tolerance for the variable X from 10-6 to 10-4 between the time stamps 10 
and 20. 

  121 Native Input File Mechanism 
 



SPARK 2.0 Reference Manual 

1 X:ATOL 

0.0 1.0E-6 

9.9999 1.0E-6 

10.0 1.0E-4 

20.0 1.0E-4 

20.0001 1.0E-6 

In order to produce step-like profiles we specify two successive entries for very near time stamps for each 
change in ATOL values.  Note that the difference between the time stamps around the occurrence of the step 
profile should be smaller than the time increment indicated in the run-control file. 

 

  122 Native Input File Mechanism 
 



SPARK 2.0 Reference Manual 

14 THE READ URL MECHANISM  

14.1 OVERVIEW AND TERMINOLOGY 
The native SPARK input file mechanism presented in Section 13 is limited because it only supports reading 
files with a predetermined format, namely the SPARK file format, which places the burden on the user to 
specify the values using this file format. Sometimes, you want to be able to read values from a file defined 
using a different format. This situation occurs if the file is readily available from another application and you 
don’t want to or cannot translate it. For example, some application fields might define standard file formats 
that you need to use in your SPARK simulation runs, e.g. such as the weather files in the field of building 
simulation. 

To address these limitations, the native SPARK input file mechanism has been extended with the Read URL 
mechanism.  The Universal Resource Locator mechanism is a generalized way of specifying where and how 
input values are to be obtained at runtime. It is string-based and easily extensible to support more URL 
handlers that implement new data exchange mechanisms. 

Both input mechanisms can be used in the same simulation run, but each variable will seek its input values 
from either one.  If a valid Read URL is specified for a variable then it has priority over the native input file 
mechanism.  Conversely, if no Read URL is specified for a variable, input values will be seeked from SPARK 
input files by default.  

Static Read URLs, i.e. URLs specified as part of the problem definition, are specified in the LINK statement 
following the INPUT keyword. They can only define for input variables. E.g.,  

LINK X … INPUT="a valid Read URL string"; 

It is also possible to specify URLs at runtime using a URL map file (See Section 14.4). 

There are two main read URL types, file and string.  The subcategories for file are DOE-2, TMY and 
EnergyPlus weather files, columnar file, named column file and formatted file. For the string type the 
subcategories are schedule and algebraic expression. 

All types may be followed with the keyword interpolate preceded by the separator ‘:’ to force the 
solver to linearly interpolate between the previous and current values. 

In all types, options and specifiers are separated by colons, and with the exception of file names, are case 
insensitive. 

It is the user’s responsibility to verify that the units of the data are consistent with their model. 

The URL mechanism will be extended in future versions to support Write URLs that will allow reporting 
values in a different format than with the native SPARK output file mechanism (See Section 15.1). 

14.2 READ URL FILE TYPE 
Following the literal "file" in the first field are the subspecifiers for the file URL type. In the following table, 
italicized values would be replaced by the desired value, e.g. the actual file name would replace filename, and 
text not in italics is literal, e.g. doe2bin.   

  123 Read URL Mechanism 
 



SPARK 2.0 Reference Manual 

Table 14-1: Subspecifiers and associated fields for the Read URL file type. 

Field 2 (type) Field 3 Field 4 Field 5 Field 6 Field 7 
doe2bin filename varname1    
tmyascii filename varname1    
eplusweather filename varname1    
column filename # headers2 column sep.3 column #5  
namedcolumn filename # headers2 column sep.3 # nameline6 varname1 
format filename # headers2 format string4   

Notes: 

1. Name of variable desired 

2. Number of header lines in file 

3. Column separator character 

4. String describing output format 

5. Desired column number from file 

6. Header line containing names of variables 

14.2.1 DOE-2 Weather file (doe2bin) 

This type will read the DOE-2 binary weather file format.  Following the literal doe2bin are the file name 
and the variable name desired, e.g. dbt for the dry bulb temperature.  The following example would read the 
air density, rho from the DOE-2 weather file for Chicago and interpolate the values from one point to the 
next: 

INPUT="doe2bin:chicagotry.bin:rho:interpolate" 

Table 14-2: Variable names for DOE-2 weather file. 

Name Description Units 
wbt wet bulb temperature C 
dbt dry bulb temperature C 
barom barometric pressure Pa 
wdir wind direction degrees 
hum humidity ratio - 
rho density of air kg/m3 

enth specific enthalpy J/kg 
horzrad total horizontal radiation W/m2 

dirnrad direct normal radiation W/m2 

wspd wind speed m/s 

 

 

  124 Read URL Mechanism 
 



SPARK 2.0 Reference Manual 

14.2.2 TMY Weather file (tmyascii) 

This type will read the TMY (Typical Meteorological Year) ASCII weather file format. Following the literal 
tmyascii are the file name and the variable name desired, e.g. diffrad for the diffuse radiation. The 
following example would read the dry bulb temperature, dbt from the ASCII TMY weather file for Boston: 

INPUT="tmyascii:boston.tmy:dbt" 

Table 14-3: Variable names for TMY weather file. 

Name Description Units in file Units returned 
extrrad extraterrestrial radiation kJ/m2 J/m2 

dirnrad direct normal radiation kJ/m2 J/m2 

diffrad diffuse radiation kJ/m2 J/m2 

netrad net radiation kJ/m2 J/m2 

globradtlt global radiation on tilted surface kJ/m2 J/m2 

globradhor global radiation on horizontal surface kJ/m2 J/m2 

sunshine seconds of sunshine min s 
barom barometric pressure at sea level kPa Pa 
stabarom barometric pressure at station kPa Pa 
dbt dry bulb temperature degrees C x 10 C 
dewpt dew point temperature degrees C x 10 C 
wdir wind direction degrees degrees 
wspd wind speed m/s x 10 m/s 

 

14.2.3 EnergyPlus Weather File (eplusweather) 

This type will read the EnergyPlus weather file format.  Following the literal eplusweather are the file 
name and the variable name desired, e.g. zenithlum for the zenith illumination. The following example 
would read the dew point temperature, dewpt from the Energy Plus weather file for Los Angeles: 

INPUT="eplusweather:CA_Los_Angeles_TMY2.epw:dewpt" 

Table 14-4: Variable names for EnergyPlus weather file. 

Name Description Units in file Units returned 
year year - - 
month month - - 
day day - - 
hour hour - - 
minute minute - - 
dbt dry bulb temperature C C 
dewpt dew point temperature C C 
rh relative humidity % % 
barom barometric pressure at station Pa Pa 

  125 Read URL Mechanism 
 



SPARK 2.0 Reference Manual 

Name Description Units in file Units returned 
exthorrad extraterrestrial horizontal radiation Wh/m2 J/m2 

extdirrad extraterrestrial direct normal radiation Wh/m2 J/m2 

horinfrad horizontal infrared radiation from sky Wh/m2 J/m2 

glohorrad global horizontal radiation Wh/m2 J/m2 

dirnorrad direct normal radiation Wh/m2 J/m2 

difhorrad diffuse horizontal radiation Wh/m2 J/m2 

glohorill global horizontal illuminance lux lux 
dirnorill direct normal illuminance lux lux 
difhorill diffuse horizontal illuminance lux lux 
zenithlum zenith luminance Cd/m2 Cd/m2 

wdir wind direction degrees degrees 
wspd wind speed m/s m/s 
totalsky total sky cover - - 
opaquesky opaque sky cover - - 
visibility visibility km m 
celheight ceiling height m m 
precwater precipitable water mm m 
opticdepth aerosol optical depth thousandths thousandths 
snowdepth snow depth cm m 
lastsnow days since last snowfall days s 

14.2.4 Column File 

Following the literal column are the file name, the number of lines in the header, the column separator and 
the column number of the data for the variable. For example the following would read column 3 from the file 
named mydata.txt that has 2 header lines with all data separated by commas: 

INPUT="file:column:mydata.txt:2:,:3" 

14.2.5 Named Column File 

The difference between the column and named column file types is that the "#nameline" (from field 6 in the 
URL)  line of the header names the variables in each column.  In the following example, the first 2 is the 
number of header lines in the file and the second 2 says that the 2nd header line contains the variable names.  
So this URL would read the 3rd column (because insolar is the 3rd variable in the file) from the data file 
mydata.txt with all columns separated by commas: 

INPUT="file:namedcolumn:mydata.txt:2:,:2:insolar" 

with the first few lines of the file containing: 
The second header line in this file names the variables 
time, dbt, insolar, wdir 
3:00, 3.4, 33.1, 320 

  126 Read URL Mechanism 
 



SPARK 2.0 Reference Manual 

14.2.6 Format File 

The format file type uses a format string with the same syntax as the scanf format string in the C computer 
language to describe the layout of the data file.  In the following example the 3rd column is read by skipping 
over the first two columns (in this case separated with one or more blanks) by using the %*s directive and 
reading the 3rd column with %lf (long or double precision floating point): 

INPUT="file:format:mydata.txt:0:%*s %*s %lf" 

The percent % signals that a formatting character follows.  The only format characters that should be used are 
s for string and lf for double precision.  The asterisk * says to skip that field. 

14.3 READ URL STRING TYPE 
The two read URL string types are schedules and algebraic expression.  They are called string types because 
the data is in the URL string and not read from a file. For this implementation only the DOE-2 type 
(doe2sch) is available for schedule types. 

14.3.1 DOE-2 Schedule Type (doe2sch) 

The DOE-2 schedule type allows the user to specify different values for a variable in a schedule.  For example 
you may want the lighting level to be a certain value on Monday through Friday from 8am to 5pm and 
another value the rest of the time and on holidays. 

Syntax examples: 
THRU mon1 day1 (dow1) (h1,h2) (v1,v2,v3) (h3) (v4) 
   (dow2) (h4,h5) (v5) 
THRU mon2 day2 (dow3) (h6,h7) (v6) 
 

Where: 

mon = Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

dow = ALL HOL WD WE WEH  Mon Tue Wed Thu Fri Sat Sun 

HOL = Holiday 

WD = WeekDay 

WE = WeekEnd 

WEH = WeekEnd + Holiday 

(h1,h2) means all the hours between h1 and h2. e.g. (1,3) means hours 1, 2, 3. 

(v1, v2, v3) are the values that correspond to the (h1, h2) hours list.  If the (v...) list is shorter 
than the number of hours given by the (h1, h2) list, the last value of the (v...) list fills the missing hour 
slots. 

Table 14-5: Holidays in DOE-2 schedule type. 

Date Holiday 
January 1 New Year 
The third Monday in January Martin Luther King Jr. 
The third Monday in February President's day 

  127 Read URL Mechanism 
 



SPARK 2.0 Reference Manual 

Date Holiday 
The last Monday in May Memorial Day 
July 4 Independence Day 
The first Monday in September Labor Day 
The second Monday on October Columbus Day 
November 11 Veteran's Day 
The last Thursday in November Thanksgiving 
December 25 Christmas 

Example: 
INPUT="string:schedule:doe2sch: 
      thru dec 31 (all) (1,24) (0.1) 
      thru jun 30 (wd) (8,17) (0.3) 
      thru dec 31 (hol)(1,24)(0.05)" 

This will give the value of 0.05  for the holidays in the whole year, 0.3 for the hours between 8:00 and 17:00 
on weekdays, and 0.1 for the rest of the time.  Note the order of the specification is important.  The first 
specification says to use 0.1 for the whole year, but that is overridden for weekdays between 8:00 and 17:00 
with 0.3 then any holidays are overridden with 0.05. 

The whole URL should be on one line in the .pr, .cc or .cm file.  Here it is shown on four lines for visual 
clarity. 

14.3.2 Algebraic Expression Type (expr) 

The last string type is the algebraic expression.  This provides a fairly versatile way of specifying values that 
change with time using functions and/or mathematical operators. Here is a table of available mathematical 
constants, operators and functions.  They are all case sensitive. 

Table 14-6: Functions in Read URL algebraic expression type. 

Name Description 
acos arc cosine 
asin arc sine 
atan arc tangent 
atan2 arc tangent of y/x 
log log base e 
log10 log base 10 
sin sine 
tan tangent 

 

Table 14-7: Operators in Read URL algebraic expression type. 

Name Description 
+ addition 
- subtraction 
* multiplication 

  128 Read URL Mechanism 
 



SPARK 2.0 Reference Manual 

Name Description 
/ division 
( ) subexpression grouping 
^ power 
% modulus or remainder (e.g. 37 % 7 = 5) 

 

Table 14-8: Constants in Read URL algebraic expression type. 

Name Value Units Description 
ABS_ZERO -273.16 C absolute zero 
BOLTZ 5.67x10-8 W/(m2*K4) Stefan-Boltzmann's 

constant  
CP_AIR 1006.0 J/(kg*K) specific heat capacity of 

dry air 
CP_VAPOR 1805.0 J/(kg*K) specific heat capacity of 

water vapor 
CP_WATER 4186.0 J/(kg*K) specific heat capacity of 

liquid water 
M_G 9.8 m/s2 gravitational constant 
KELV_ZERO 273.16 K 0 degrees C in Kelvin 
M_E 2.7182818284590452354 - e 
M_LN10 2.30258509299404568402 - loge(10)  
M_LN2 0.69314718055994530942 - loge(2) 
M_PI 3.14159265358979323846 - Π 
MW_AIR 0.0289645 kg/mol molar weight of dry air 
MW_WATER 

0.01801528 kg/mol molar weight of liquid 
water 

MW_RATIO 0.62197 - ratio of molar weights of 
liquid water over dry air 

P_ATM Pa atmospheric pressure at 
sea level 

101325 

RHO_AIR kg/m  1.2 3  density of air 
RHO_WATER 998.0 kg/m  3  density of water 
VISC_WATER kg/(m*s) viscosity of liquid water  0.001 

 

  129 Read URL Mechanism 
 



SPARK 2.0 Reference Manual 

Table 14-9: Special variables in Read URL algebraic expression type. 

Name Value Units Description 
GLOBAL_TIME - seconds current relative SPARK time 

Example: 
INPUT="string:expr:sin(3*(GLOBAL_TIME* M_PI/180)+5)" 

The above will multiply the current relative time in seconds by Π, divide by 180, multiply that by 3, add 5 
and take the sine of that. 

14.4 URL MAP FILE 
The map file is used to translate URLs that are defined in the SPARK model to new URLs. This process is 
referred to as URL string substitution, whereby the URL string specified in the SPARK model is substituted 
with the mapped URL string. 

The map file is also used to specify URL strings for the prolem variables at runtime. This is achieved by 
assigning a new URL string to the name of the variable in question. Conversely, it can be used to clear a URL 
specification for a variable in order to revert back to the native mechanism for input/report processing (i.e., 
using the SPARK input/report file format). This is done by specifying the empty string "" after the variable 
name. 

The map file has the name probName.map where probName is the name of the problem being solved. It is read 
and processed at run time before the simulation phase starts. If no map file exists in the current working 
directory, then SPARK does not perform URL mapping. 

14.4.1 The Map File Syntax 

The map file contains lines of the form: 
// Comments 
model_url = new_url 
variable_identifier = new_url 

Here model_url, variable_identifier and new_url are quoted strings, or non-quoted strings 
without spaces in them. If the line starts with a //, it is ignored. 

URL String Substitution 

The field model_url contains a valid URL that is specified in the model. It will be substituted with the 
URL string on the right-hand side, namely new_url. 

URL String Specification 

The field variable_identifier contains a variable name prefixed with r: or w: to indicate read or 
write context. The field new_url contains a valid URL specification or an empty string "" or the tag 
"REPORT". The URL specified here becomes the new URL for the variable with the corresponding read/write 
context. When the new_url contains an empty string, it removes the URL that was specified in the model, 
and reverts the read/write processing to native input/report file format. 

The following code snippet shows the possible content of a map file. The first entry specifies a string 
substitution rule for the model URL "string:expr:sin(3*(GLOBAL_TIME*M_PI/180)+5)" that 
will be replaced with the new URL string "string:expr:cos(2*(GLOBAL_TIME/180))". 

  130 Read URL Mechanism 
 



SPARK 2.0 Reference Manual 

Next are two URL string specifications, one for the write context, one for the read context. The variable 
mass_flow will be reported to the output file and the variable obj1~Tin will get its value from the field 
dbt in the EnergyPlus weather file named USA_NV_Las.Vegas_TMY2.epw.  
// comment line 
"string:expr:sin(3*(GLOBAL_TIME*M_PI/180)+5)" = "string:expr:cos(2*(GLOBAL_TIME/180))" 
"w:mass_flow" = "REPORT" 
"r:obj1~Tin" = "file:energyplusweather:USA_NV_Las.Vegas_TMY2.epw:dbt:interpolate" 
// end 

14.4.2 Loading Rules 

In the map file processing, the following rules are applied: 

1. If the variable has a model URL (i.e., a URL string is specified for this variable in the *.pr or *.cm files): 

• The map file is searched for model_url. 

• If a match is found the replacement new_url is substituted. 

• If new_url is an empty string, the rule 2 is also tried. 

• Otherwise, new_url becomes effective. 

2. The variable name together with its read or write context is searched in the map file entries for 
variable_identifier with r: or w: prefixes. If a match is found, the replacement new_url is 
substituted. 

The current version of SPARK does not implement any Write URL handlers yet. Therefore, the only reporting 
mechanism that is available is the native reporting mechanism described in Section 15.1. However, the map 
file can be used to tag the problem variables that need to be reported by specifying the string "REPORT" for 
the new_url string in the write context. 

 

 

  131 Read URL Mechanism 
 



SPARK 2.0 Reference Manual 

15 OUTPUT AND POST PROCESSING  

15.1 THE OUTPUT FILE 
When SPARK runs there is output to the screen and to an output file with extension .out.  The screen output is 
primarily for visual feedback, letting you know where SPARK is in processing your problem.  The output file 
contains results of the numerical solution process at each time step.  The format of the output file is exactly 
like that of input files, i.e., 

n label label label 

t0 value value value 

t1 value value value 

etc.    

where n is the number of reported variables, each label is a problem variable with the REPORT keyword 
expressed in the problem file, and each value is the value for the corresponding variable at the time stamp 
ti. 

It is possible to use the URL map file (See Section 14.4) to tag problem variables with the REPORT keyword 
so that they will be reported to the output file. This mechanism lets you specify which variables need to be 
reported without having to re-build the problem. 

15.2 PLOTTING THE OUTPUT FILE 
The output of SPARK can be read by conventional spreadsheet and plotting programs.  If you use Microsoft 
Excel or a similar program, simply open the SPARK output file into a worksheet and use space as the 
delimiting character between fields.  This will place your output neatly into rows and columns, from which 
you can construct plots (charts) in the usual Excel manner.  

VisualSPARK provides options that auto-make the graphing process (see VisualSPARK Users Guide).   If you 
use gnuplot, a program called makegnu is provided with WinSPARK that will generate an input file for that 
program.42  To use makegnu, type:  

makegnu room_fc.out room_fc.plt <enter> 

The output file, room_fc.gnu, will contain the gnuplot commands, e.g.: 
set data style linesset xlabel "time"  
set ylabel "mcp" 
plot "room_fc.out"  using 1:2 notitle  
pause -1 "Press <enter>" 
set ylabel "Q_flow" 
plot "room_fc.out"  using 1:3 notitle  
pause -1 "Press <enter>" 
set ylabel "Ta" 
plot "room_fc.out"  using 1:4 notitle  
pause -1 "Press <enter>" 
set ylabel "T_floor" 
plot "room_fc.out"  using 1:5 notitle  
pause -1 "Press <enter>" 

                                                      
42  Although not provided in the VisualSPARK release, makegnu is available free from Ayres Sowell Associates, Inc. and will run on UNIX as well as 
Windows platforms. 

  132 Output and Post Processing 
 



SPARK 2.0 Reference Manual 

 

Then to plot with gnuplot, type 

gnuplot room_fc.plt <enter> 

This assumes you have gnuplot in your command path.  More elaborate plots, combining several results on 
the same plot, for example, can be done by editing the gnuplot input file, or by running gnuplot interactively.  
The gnuplot documentation should be consulted for more information. 

15.3 POST PROCESSING IN MATLAB 
The SPARK distribution comes with MATLAB script files that help loading the SPARK data files into arrays in 
the MATLAB environment. These files are located in the utils/matlab subdirectory where SPARK is installed. 

Table 15-1: MATLAB script files for post-processing of SPARK files. 

Script Name Description 

LoadSPARKFile.m Loads a file in SPARK format (i.e., input, output, trace, or snapshot file) into 
MATLAB arrays with the time stamps (first column), the values at each time 
stamp in each column and the names of the variables in each column. 

DiffSPARKFiles.m Compares the numerical values contained in two files with the same format 
against the prescribed precision and detects the offending entries. 

FindName.m Returns the position in the variable names array of the entry matching the 
target variable name. If not found returns 0. Convenient to identify in which 
column of a SPARK file a particular variable can be found. 

LoadOneJacobian.m Loads the Jacobian matrix contained in a Jacobian trace file at a specific 
iteration into a MATLAB array. 

ComputeJacobianCondition.m Loads the Jacobian matrix contained in a Jacobian trace file at each iteration 
and computes its condition number. 

 

 

  133 Output and Post Processing 
 



SPARK 2.0 Reference Manual 

16 LOG FILES 
SPARK generates various log files over the course of the simulation that contain specific information about 
the solver operation.  These files should be consulted by users to gain deeper knowledge about the internal 
operations and the numerical behavior. 

16.1 RUN LOG FILE 
If the diagnostic level (See Section 12.5) specified in the run-control file is not silent, then SPARK generates a 
file named run.log in the current working directory. This file contains the desired diagnostic information about 
the simulation run. 

16.2 ERROR LOG FILE 
If any errors and/or warnings occur during the simulation, SPARK generates a file named error.log in the 
current working directory.  This file contains detailed explanations for the error/warning, starting with the 
corresponding time stamp.  The cause of an error/warning can be either numerical (e.g., detection of no 
convergence or of a singular linear system) or internal (e.g., cannot open an input file or create an output file, 
cannot parse a variable name in an input file, cannot allocate memory on the heap, etc.). 

A warning indicates a situation that might result in an error and that therefore needs to be brought to the 
attention of the user.  A warning message starts with the tag ‘[WARNING]’. 

An error results in the abnormal termination of the solver.  An error message starts with the tag ‘[ERROR]’. 

If no error occurred, then no error log file is generated.  If an error log file has been generated and the 
simulation run has been successful, then you should consult it and make sure that the reported warning 
messages do not have any impact on the solution.  If the simulation run has not been successful, then the 
messages in the error log file should help you identify the cause of the error. 

16.3 FACTORY LOG FILE 
When the SPARK problem is loaded at runtime from a file, the runtime loader generates a file named 
probName.factory.log in the current working directory, where probName stands for the name of the problem 
being loaded.  This file contains information about the problem description and the loading times for each 
section of the description. 

If the runtime problem loader fails, this file should be consulted to identify the possible cause.  

16.4 DEBUG LOG FILE 
The SPARK solver can be used in debug mode by linking the problem driver to the solver library compiled 
with the preprocessor macro SPARK_DEBUG being defined.  

The SPARK makefile produces a build with debugger information when: 

• the environment variable DEBUG=yes is defined; or  

• the gmake program is run with DEBUG=yes at the command line, 

gmake <target> DEBUG=yes   <enter> 

where <target> stands for any valid target defined in the SPARK makefile. 

  134 Log Files 
 



SPARK 2.0 Reference Manual 

When running in the debug mode, SPARK generates a file called debug.log in the current working directory. 
This file contains detailed information about every phase of the simulation process: 

• loading the problem description, 

• initializing the problem with the specified runtime controls, 

• loading the past values for all problem variables from the input files, 

• solving the problem at the initial time, and 

• solving the problem until the final time. 

In particular, you can trace the operation of the input manager to identify: 

• from which input file and column the problem variables get their values, and  

• which new values and properties are read at each time step for which variables. 

The debug log file should be consulted in case of abnormal termination of the solver operation as it may help 
you find the cause of the error.  Therefore, if a simulation fails, it is recommended to run the simulation again 
in the debug mode to generate the debug log file. 

By default, SPARK does not run in debug mode in order to avoid the performance penalty incurred from the 
extensive output to the log file. 

16.5 BACKTRACKING LOG FILE  
When a strongly-connected component in the SPARK problem is solved using a backtracking method, the 
nonlinear solver generates a file named probName.id.backtracking.log in the current working directory, where 
probName stands for the name of the problem being loaded and id for the evaluation number of the component 
in question (starting at 0 for the first component in the solution sequence).  This file contains self-describing 
information in tabular form about the backtracking process at each step for each iteration. 

If the component in question fails to converge, this file should be consulted to analyze the convergence 
process and possibly identify the cause of the non-convergence. 

Note that the backtracking log file is only generated in the debug mode. 

 

  135 Log Files 
 



SPARK 2.0 Reference Manual 

17 SNAPSHOT FILES 

17.1 WHY SNAPSHOT FILES ARE USEFUL 
There are occasions on which you may want to stop a simulation, then restart it from the same point at a later 
time.  This need can arise when the problem experiences a long run time, or a difficult solution.  Or, you may 
want to repeat a simulation using precisely the same initializations of dynamic and break variables.  These 
techniques are supported in SPARK with the notion of snapshot files.  You can request that snapshot files be 
generated at InitialTime and/or FinalTime (see Section 18) as discussed below. It is also possible to 
generate snapshot file at any other point of the simulation by sending a snapshot request from a callback 
function (See Section 10.2). 

A snapshot file contains the values of all problem variables for the last four time stamps in a format identical 
to that of a normal output report.  And, because SPARK input files and output files have the same format, you 
can specify a snapshot file as an input file in a subsequent run of the same problem to restart the problem. 

Since a snapshot file contains the values for all the problem variables (not just those that were tagged with the 
REPORT keyword in the problem definition file), it is a very powerful reporting and diagnostic mechanism 
as well as serving as initialization files for restarting. 

17.2 GENERATING SNAPSHOT FILES 
You request generation of snapshot files by specifying corresponding keys in the run-control file (see Section 
18), along with the desired name for the snapshot file.  Two keys are available, InitialSnapshotFile 
and FinalSnapshotFile.  The values of these keys should be the paths to the files where you want the 
results saved.  For example, if you want both initial and final snapshot files, your run-control file 
probName.run must contain the following two entries: 
InitialSnapshotFile ( probName.init () )  
FinalSnapshotFile   ( probName.snap () )  

The key InitialSnapshotFile generates a snapshot file with the initial time solution in probName.init, 
whereas the key FinalSnapshotFile generates a snapshot file with the solution at the final time in 
probName.snap. 

Note that the file names, including the extensions, are arbitrary, i.e., you can use whatever extension you 
wish. 

Normally, you will want to include the file path to specify where it is to be saved.  In the example, it is saved 
in the current working directory. 

17.3 USING SNAPSHOT FILES TO INITIALIZE A SIMULATION RUN 

17.3.1 Specifying Snapshot Files as Input Files 

To use a snapshot file for initializing a subsequent run you simply specify it in the InputFiles segment in 
the run-control file, with the other input files. 

For example, to restart your problem initialized from the final solution of the previous run, captured in the file 
probName.snap, in the file probName.run modify the InputFiles segment to read : 
 InputFiles ( 
  probName.snap () 

  136 Snapshot Files 
 

  probName.inp () 



SPARK 2.0 Reference Manual 

 ) 

Also, you will need to set the InitialTime key in the run-control file to the value at which you want to 
restart the simulation, usually the last time stamp appearing in the snapshot file. 

The order in which the input files are specified in the InputFiles segment is important.  Specifying the 
snapshot file first ensures that the values specified in the file probName.inp correctly overwrite the values 
(specified for the same variables) that appear in the previously declared snapshot file probName.snap. 

To satisfy the precedence rule of the input manager (see Section 13.1) and to follow the categorization of the 
different types of inputs proposed in Section 7.6.1, the order in which the different types of input files are be 
specified under the InputFiles segment in the run-control file is: 

1. files with the predicted initial values for the break variables; 

2. files with the initial values for the dynamic variables; 

3. snapshot files with values to restart the simulation; 

4. files with the values for the input variables (constant and time-varying). 

17.3.2 Restarting after a Numerical Error 

If the key FinalSnapshotFile was specified, in the event of a non-convergence or other solution failure 
such as bad numerics, the snapshot file will be generated automatically at the time when the failure occurred 
(instead of the final time) along with the values for the last four time stamps. 

This provides values of all variables at the point of non-convergence, which might be helpful in discovering 
the reasons for the non-convergence.  Also, the snapshot file can be used to restart the simulation with values 
at the last valid time stamp and with modified problem preference settings and/or new predicted values for the 
break variables in an attempt to fix the numerical problem. 

17.3.3 Enforcing Initial Conditions from a Different Problem Definition 

Another way to use a snapshot file to initialize a problem is to first solve a static problem (no integrators) 
derived from the dynamic problem and with initial conditions for some of the unknowns of the dynamic 
problem (specified as inputs to the static problem).  The resulting snapshot file of the solution of the static 
problem can then be used to start the dynamic problem with the desired initial conditions enforced. 

 

  137 Snapshot Files 
 



SPARK 2.0 Reference Manual 

18 RUN-CONTROL FILE 
We introduced the SPARK run-control file, probName.run, in the examples in Section 2.  There, we were 
concerned with only the basic, required elements of this file needed to run simple problems.  In this Section 
we will examine the run-control file further, showing the format as well as all aspects of a SPARK run that can 
be controlled from it. 

The run-control information needed for a SPARK problem comprises the keys and values as shown in Table 
18-1.  Items shown in boldface are required. 

Table 18-1:  Run Controls 

[Key] in run-control file Definition Typical value 
[InitialTime] The time at which the simulation 

begins. 
0.0 

[FinalTime] The time at which the simulation 
ends. 

0.0 

[InitialTimeStep The initial time span between 
solution points. 

1.0 

[VariableTimeStep] ] If set to 1, then the time step will 
be adapted during the course of the 
simulation if necessary. Otherwise, 
the time step remains constant. 

0 

[MinTimeStep] Minimum allowed time step. Only 
used if VariableTimeStep is 
set to 1. 

1.0E-6 

[MaxTimeStep] Maximum allowed time step. Only 
used if VariableTimeStep is 
set to 1. 

+1.0E-6 

[ConsistentInitialCalculation] If set to 1, then SPARK solves a 
static step at the initial time to 
ensure consistent initial values. 

1 

[FirstReport] The time at which the first output 
is desired. 

0.0 

[ReportCycle] The time interval between output 
reports. 

0 (= report all solution 
points) 

[DiagnosticLevel] Level of diagnostic output desired 
(see Section 12.5). 

0 = silent 

[InputFiles] List of input files with paths (see 
Section 7.6). 

probName.inp  
c:\Phoenix\weather.inp 

[OutputFile] Output file with path (see Section 
14). 

probName.out 

[InitialSnapshotFile]  Initial time snapshot file with path 
(see Section 17). 

probName.init 

[FinalSnapshotFile]  Final time snapshot file with path 
(see Section 17). 

probName.snap 

  138 Run-Control File 
 



SPARK 2.0 Reference Manual 

In the current SPARK release, the time step remains constant by default during the course of the simulation. 
Therefore, the value of the key InitialTimeStep reflects the constant time step.  If the key 
VariableTimeStep is set to 1, then the time step will be adapted whenever it is necessary during the 
course of the simulation. In this case, the key InitialTimeStep specifies the time step to use initially. 

Also, when the key ConsistentInitialCalculation is set to 1, then the SPARK solver starts the 
simulation with a static step as explained in Section 10.3.  Setting this key is equivalent to sending a restart 
request before the first simulation step. 

The run-control information is stored in the file probName.run using the preference file format, described in 
Appendix C.  A typical run-control file is then:  
( 
 InitialTime  ( 0.0 ()) 
 FinalTime  ( 5.0 ()) 
 InitialTimeStep  ( 0.1 ()) 
 FirstReport  ( 0.0 ()) 
 ReportCycle  ( 0.1 ()) 
 DiagnosticLevel ( 3 ()) 
 InputFiles  ( frst_ord.inp () 
   frst_ord_ic.inp () 
  ) 
 OutputFile  ( frst_ord.out ()) 
 InitialSnapshotFile  ( frst_ord_dyn.init ()) 
 FinalSnapshotFile  ( frst_ord_dyn.snap ()) 
) 
 
 

  139 Run-Control File 
 



SPARK 2.0 Reference Manual 

19 SPARK LANGUAGE REFERENCE 

19.1 NOTATION USED IN THIS SECTION  
1. KEYWORDS are shown uppercase, although they are case insensitive in the language. 
2.  ♦ means required entry.   
3. name_or_par means a name or parameter name. The parameter name must have a substitution-

value that is a valid name. 
4. val_or_par  means value or parameter name. The parameter name must have a substitution-value 

that is a valid numeric value. 
5. Items separated by | means choose one of the items; for example,  <x|y|z> means x or y or z.  
6. An item inside question marks, e.g., ?connections1?, is defined later in the construct in which it 

appears. 
7. <item> means the item is optional. 
8. Definition of higher level and lower level: Problem level is the highest, any object declared inside the 

problem file is the next lower level, etc. When referring to hierarchy, the problem is the highest level 
and the atomic class is the lowest.  

 

19.2 SPECIAL CHARACTERS  
Special characters are those used by the SPARK parser to identify parts of the language.  They should not be 
part of user names.  

1. Used in SPARK syntax: " # ( ) , . ; = [ ] ' ` { }  ~  SPACE  TAB  NL (newline)  /*  // 
2. Delimiters: SPACE  TAB  NL.  More than one of these characters or combination are ignored. 
3. The statement terminator is the semicolon ( ; ). 
 

19.3 NAMES AND OTHER STRINGS 

19.3.1 Reserved Names   
#endif DECLARE KEYWORDS PORT 
#ifdef DEFAULT LIKE PREDICT_FROM_LINK 
ABSTRACT EQUATIONS LINK PROBE 
ABSTRACT_END FUNCTIONS MATCH_LEVEL REPORT 
ATOL GLOBAL_TIME MAX UPDATE_FROM_LINK 
BAD_INVERSES GLOBAL_TIME_STEP MIN  (same as INPUT_FROM_LINK)
BREAK_LEVEL INIT NOERR VAL 
CLASSTYPE INPUT PARAMETER  
CONNECT_HINT INPUT_FROM_LINK PAST_VALUE_ONLY* (not yet implemented) 
 
Note:  Reserved names are case insensitive, except for #ifdef and #endif.  

 

  140 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

 

19.3.2 Rules for User-Specified Names  

1. They must not contain any reserved characters. 
2. They must not begin with a digit (0 – 9). 
3. They are case sensitive. 
4. They may not be the same as reserved names. 
5. They can be of any length. 

 

19.3.3 Literals   

User-specified literal strings are enclosed inside double quotes, e.g.,  “This is a literal.”  They can 
contain any character except the double quote ("). 

 

19.4 COMMENTS  
There are two kinds of comments: 

1. /*comment...*/ C-like comment 
2. //comment...  C++ style comment to end of line 
 

19.5 STATEMENT TERMINATOR  
Statement terminator is the semicolon (;). 
 

19.6 COMPOUND STATEMENT   
A compound statement is delimited by curly braces: { … }.  Examples of compound statements are 
FUNCTIONS (Section 19.17) and EQUATIONS (Section 19.16). 

  141 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

 

19.7 ATOMIC CLASS  FILE 
The SPARK atomic class is the smallest modeling element.  Atomic classes may be used directly in problem 
files or combined into macro classes to form larger modeling elements. 

File name convention:   class_name.cc 

Format: 

------------------file class_name.cc    begin--------------------- 
/* CLASS  class_name   "description..."  KEYWORDS=keyword1,...; 
 ABSTRACT 
*/ 
#ifdef SPARK_TEXT  ♦ 
CLASSTYPE  statements 
PARAMETER  statements 
PORT       statements  ♦         
EQUATIONS { equation statements } 
FUNCTIONS { function statements }  ♦ 
#endif /*SPARK_TEXT*/  ♦ 
#include "spark.h"  ♦    
   callback c++ functions go here 
------------------file class_name.cc    end----------------------- 
 

Notes: 

1. PARAMETER statements must appear before they are referenced. 
2. PORT statements must appear before EQUATIONS and FUNCTIONS statements.  
3. While the material in the /*...*/ header is ignored by the parser, it may be used by browsers 

and/or utility programs. 

  142 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

 

19.8 MACRO CLASS FILE   
A SPARK macro class connects atomic and other macro classes to form larger modeling elements. 

File name convention:   class_name.cm 

Format: 

------------------file class_name.cm    begin--------------------- 
/* CLASS_MACRO  class_name   "description..."   KEYWORDS=keyword1,...; 
ABSTRACT 
*/ 
PARAMETER  statements 
PORT       statements ♦   
PROBE      statements 
DECLARE    statements ♦   
LINK       statements ♦   
------------------file class_name.cc    end----------------------- 
 
 

Notes: 

1. PARAMETER statements must appear before they are referenced. 
2. PORT statements must appear before any DECLARE or LINK statements. 
3. DECLARE statements must appear before any LINK statements that refer to the objects defined by 

DECLAREs. 
4. While the material in the /*...*/ header is ignored by the parser, it may be used by browsers 

and/or utility programs.  

  143 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

 

19.9 PROBLEM FILE    
The SPARK problem file combines macro and/or atomic classes to form the largest modeling element.   

File name convention:   problem_name.pr. 

Format: 

------------------file problem_name.pr    begin--------------------- 
/* PROBLEM  class_name   "description..."   KEYWORDS=keyword1,...; 
ABSTRACT 
*/ 
PARAMETER  statements 
PROBE      statements 

DECLARE    statements  ♦   
LINK       statements  ♦   
------------------file class_name.cc    end----------------------- 
 
 

Notes:  

1. PARAMETER statements must appear before they are referenced. 
2. DECLARE statements must appear before any LINK statements that refer to the objects defined by 

DECLAREs. 
3. While the material in the /*...*/ header is ignored by the parser, it may be used by browsers 

and/or utility programs. 

  144 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

19.10 PORT STATEMENT   
The PORT statement describes an externally visible connection point (interface variable) of a class.  When an 
object is instantiated from a class by a DECLARE statement, connections can only be made to its ports. 

The PORT statement has two forms : 

1. Atomic port does not have subports. 
2. Macro port has subports. 
 

19.10.1 Atomic port 

An atomic port has the form:  

PORT port_name   ♦   
            [unit] 
            "description..." 
            ATOL=val_or_par 
            BREAK_LEVEL=val_or_par 
            CONNECT_HINT="-class1.portx,class2.porty" 
            DEFAULT=val_or_par 
            INIT=val_or_par 
            LIKE=anotherPortName 
            MATCH_LEVEL=val_or_par  ; 
            MAX=val_or_par 
            MIN=val_or_par 
            NOERR 
 

Here: 
port_name : Name of the port; must not contain any special characters (see Section 

19.2). 
   

[units] : Units of the port.  Used to give a warning if a variable with different units 
is linked to this port. 

   

"description..." : Short description of the port. This field is used by browsers. 
   

BREAK_LEVEL  : The default break level values for connections to this port. 
   

CONNECT_HINT : 
 

Used by browsers to determine acceptable connections. 
"-class1.portx, class2.porty"means that connecting this 
port to portx of any instance of class1 is not permitted, but connecting 
this port to porty of any instance of class2 is encouraged.  For 
acceptability of a connection, first units, then CONNECT_HINTs is 
checked.  

   

DEFAULT : If this subport is not connected, it behaves as if its value is fixed at 
val_or_par. 

   

  145 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

 
LIKE=anotherPortName : All of the properties (except the description fields) from the previously 

defined port named anotherPortName are copied to the current port. 
The copied properties include the subports. 
Note that any other input specified in the current port statement overrides 
the copied information. The example below shows port statements using 
the LIKE keyword: 
 
port  aa  “description of aa” [deg_C] MIN=-5 
MAX=20  ; 
port  bb  “description of bb” [deg_C] LIKE=aa  
MIN=0  ; 
produce the same specifications as: 
port  aa  “description of aa” [deg_C] MIN=-5 
MAX=20  ; 
port  bb  “description of bb” [deg_C] MIN=0  
MAX=20  ; 
 

   

ATOL, INIT, MIN, MAX : Absolute tolerance, initial, minimum, and maximum values assigned to 
variable created by connections to this port.  Higher-level settings will 
take precedence. 

   

MATCH_LEVEL  : The default match level values for connections to this port. 

   

NOERR : Do not give error message if this port is not connected when this class is 
used (instantiated). Allows ports that can be optionally used. 

   

  146 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

 

19.10.2 Macro port 

A macro port is composed of two or more subports (see Section 8.1); it has the form: 

PORT port_name  ♦   
                [unit1] 
                "port description..." 
                CONNECT_HINT="-class1.portx,class2.porty" 
                LIKE=anotherPortName 
                NOERR 
                [unitOfPort] 

       ,  .subport_name1    ♦ 
                [unit2] 
                "subport description..." 
                ATOL=val_or_par 
                BREAK_LEVEL=val_or_par 
                DEFAULT=val_or_par 
                INIT=val_or_par 
                MATCH_LEVEL=val_or_par 
                MAX=val_or_par 
                MIN=val_or_par 
       ,  .subport_name2 
                   ...etc ... 
       , ...            . 
       ; 
 

Here: 
port_name : Name of the port; must not contain any special characters (see Section 

19.2). 
   

[units] : Units of the port.  Used to give a warning if a variable with different 
units is linked to this port. 

   

"description..." : Short description of the port. This field is used by browsers. 
   

CONNECT_HINT : 
 

Used by browsers to determine acceptable connections. 
"-class1.portx, class2.porty"means that connecting this 
port to portx of any instance of class1 is not permitted, but connecting 
this port to porty of any instance of class2 is encouraged.  For 
acceptability of a connection, first units, then CONNECT_HINTs is 
checked.  

   

NOERR : Do not give error message if this port is not connected when this class 
is used (instantiated). Allows ports that can be optionally used. 

   

  147 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

 
   

LIKE = anotherPortName : All of the properties (except the description field) from the port named 
anotherPortName are copied to the current port.  The copied 
properties include the subports.  Any other input that is specified in the 
current port statement overrides the copied information. 

For example, the following two macro port statements: 
PORT AirEnt1 "Inlet air stream 1" [airflow] 
            .m "air mass flow" [kg_dryAir/s] 
          , .w "hum. ratio" [kg_water/kg_dryAir]  
          , .h "enthalpy" NOERR [J/kg_dryAir] ; 
PORT AirEnt2 "Inlet air stream 2"  LIKE=AirEnt1 ; 
are equivalent to: 
PORT AirEnt1 "Inlet air stream 1" [airflow] 
            .m "air mass flow" [kg_dryAir/s] 
          , .w "hum. ratio" [kg_water/kg_dryAir]  
          , .h "enthalpy" NOERR [J/kg_dryAir] ; 
PORT AirEnt2 "Inlet air stream 2"  [airflow] ; 
            .m "air mass flow" [kg_dryAir/s] 
          , .w "hum. ratio" [kg_water/kg_dryAir]  
          , .h "enthalpy" NOERR [J/kg_dryAir] ; 

   

.subport_name : Name of the subport. Note the leading period. If the subport contains 
other subports, this is specified as 
.subport_name.subport_of_subport_name.   
The subport_of_subport_name is specified for each 
subport_of_subport. 
For example, if we have port x with subports a,b and subport a has 
its subports a1,a2 then we write: 

PORT x  ...etc... 
       .a.a1  ...etc... 
       .a.a2  ...etc... 
       .b  ...etc... 

   

.subport_name : Name of the subport.  Note the leading period. If subport contains 
other subports, this specified as 
.subport_name.subport_of_subport_name. Note that 
subport_of_subport_name is specified for each 
subport_of_subport; e.g. If we have port x with subports a,b 
and subport a has its subports a1,a2 we write: 

PORT  x  ...etc... 
        .a.a1  ...etc... 
      , .a.a2  ...etc 
      , .b  ...etc...  ; 

   

BREAK_LEVEL  : The default break-level values for connections to this subport. 
   

DEFAULT : If this subport is not connected, it behaves as if its value is fixed at 
val_or_par. 

   

ATOL, INIT, MIN, MAX : Default absolute tolerance, initial, minimum, and maximum values 
assigned to variables created by connections to this port.   

   

MATCH_LEVEL  : The default match level values for connections to this subport.  
See Section 12.3. 

   

  148 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

19.11 PARAMETER STATEMENT   
The PARAMETER statement is used to assign a numeric or symbolic value to a name.  When this name is used 
in any place that can take the parameter name,  the value of the parameter is substituted in place of the name.  
For example the following two statements: 
PARAMETER abc = 12.3 ; 
PORT      x  INIT=abc ; 
Are equivalent to: 
PORT x  INIT=12.3 ; 

The parameter statement has the form: 
PARAMETER name1 = substitution_value1, name2 = substitution_value2, ...; 

If a problem and one of its classes have parameters of the same name, the value of the problem's parameter is 
used.  Similarly, if a macro and one of its classes have parameters of the same name, the value of the macro's 
parameter is used.  That is, higher level PARAMETER definitions take precedence. 

  149 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

19.12 PROBE STATEMENT   
Without the PROBE statement, lower level links (e.g., those in a macro object) are not visible at higher levels 
(e.g., in the problem file) unless they are connected through ports.  The PROBE statement is provided to allow 
higher-level assignment of values to certain keywords of lower-level links.  It can also be used to report such 
links.  See Section 8.5 for examples. 

The PROBE statement has the form: 

PROBE  name    <?port_resolution? | ?link_resolution?>  ♦   
               ATOL=val_or_par 
               BREAK_LEVEL=val_or_par 
               INIT=val_or_par 
               INPUT 
               MATCH_LEVEL=val_or_par 
               MAX=val_or_par 
               MIN=val_or_par 
               PREDICT_FROM_LINK=<?port_resolution? | ?link_resolution?> 
               REPORT 
               INPUT_FROM_LINK=<?port_resolution? | ?link_resolution?> 
               VAL=val_or_par ; 
 

Here: 
   

name : Name of probe. 
   

?port_resolution? : Concatenated object name followed by port.subport... name that 
uniquely identifies the connection.  It has the form: 
obj1`obj2...port.subport.subport_of_subport... 

   

?link_resolution? : Concatenated object name followed by ~. followed by link name followed by 
subport... of link that uniquely identifies the link. It has the form: 
obj1`obj2...~link5.subport.subport_of_subport... 

For problem level links, it has the form: 
~link5.subport.subport_of_subport... 

   

ATOL, INIT, MIN, MAX, 
BREAK_LEVEL, 
MATCH_LEVEL, INPUT, 
REPORT, 
INPUT_FROM_LINK, 
PREDICT_FROM_LINK, 
VAL  

: Same as for LINK statement (see Section 19.14). 

   

 

  150 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

19.13 DECLARE STATEMENT   
The DECLARE statement is used to instantiate a class,  creating one or more objects.  It has the form: 
DECLARE  name_or_par   obj_name1 

                     , obj_name2  

                     , ... ; 

Here obj_name can be either a valid name or a PARAMETER name that defines a valid name. 

  151 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

 

19.14 LINK STATEMENT   
The LINK statement is used to make connections between ports of objects instantiated in this class and/or 
ports of this class. It has the form: 
LINK  name  "link_description"   ?entries1? , ?entries2? , ... 
                , (.sublink1...){ ?entries3? , ?entries4? , ... } 
                , (.sublinkN...){ ?entriesM? , ... } ; 
The optional (.sublink1...){ ... } form means that the entries inside {} apply to the .sublink1... 
component of the macro-link.  Here, .sublink... is a valid .portal... name for this link.  

The ?entriesX?  contains items from the following: (if the ?connection? item is not present, the 
LINK statement must have one of INPUT, INPUT_FROM_LINK, GLOBAL_TIME, 
GLOBAL_TIME_STEP attributes) where at least the ?connection? item must be present: 
        < ATOL = val_or_par > 
        < INIT = val_or_par > 
        < INPUT > 
        < INPUT_FROM_LINK = linkFrom | linkFrom.sublink... > 
        < GLOBAL_TIME | GLOBAL_TIME_STEP > 
        < MAX  = val_or_par > 
        < MIN  = val_or_par > 
        < PREDICT_FROM_LINK = linkFrom | linkFrom.sublink... > 
        < REPORT > 
        < VAL  = val_or_par > 
      < ?connection? > 
          < BREAK_LEVEL = val_or_par > 
          < MATCH_LEVEL = val_or_par > 
 

Note that: INPUT, PREDICT_FROM_LINK, INPUT_FROM_LINK, GLOBAL_TIME, 
GLOBAL_TIME_STEP qualifiers are mutually exclusive; only one of them may be specified in a LINK 
statement. 

Here: 
   

name : Link name. 
   

"link_description" : Description , used by browsers. 
   

ATOL = val_or_par : The absolute tolerance value specified for the variable created by this link (see 
Section 11.7.1). 

   

INIT = val_or_par : Gives initial value to the variable.  If the variable referenced by this link is a 
break variable the value is used only once, in the first Newton-Raphson 
iteration. 

   

INPUT : Input the variable created by this link, using link name as input variable name. 
   

INPUT_FROM_LINK : Makes the variable that is created by a current link statement a Previous-Value 
Variable, see Section 8.3.  The value of the variable remains the same during 
Newton-Raphson iterations (i.e., it is treated as if input. At the beginning of the 
time step, before solving the problem equations, the saved previous value of 
linkFrom is assigned to a variable defined by the current link statement. 

   

GLOBAL_TIME : Connects the variable that is referenced by this link to the calculation time value 

  152 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

that is specified by run control data. 
   
   

GLOBAL_TIME_STEP : Connects the variable that is referenced by this link to the calculation time step 
value that is specified by run control data. 

   

MIN, MAX : Give min, max values to the variable created by this link. 
   

PREDICT_FROM_LINK= 
linkFrom 

: If the variable referenced by this link is a break variable, give initial value to it 
from the current value of linkFrom. Unlike the INIT keyword, 
PREDICT_FROM_LINK supplies the initial value that is copied from  
linkFrom for Newton-Raphson for every time step. 

   

REPORT : Output the variable referenced by this link, using link name as report variable 
name. 

   

VAL = val_or_par : Set the value of the variable defined by this link to a constant value 
val_or_par.  It assigns the constant value, as if it is input, to the variable 
defined by the LINK statement. If, in the same LINK statement, there are 
connections to the ports of this class then this value can propagate to outside of 
this class. This value can be overridden later by the INPUT, 
GLOBAL_TIME... keywords referencing the same variable at higher levels. 

   

?connection? : This specifies either .port_of_this_class including the resolution of the 
subport if necessary e.g.,  
.port_of_this_class  
.port_of_this_class.subport...  
or connection to a port of an object declared in this class including the 
resolution of the subport, e.g. 
object.port  
object.port.subport  

   

BREAK_LEVEL : Break level given to this connection. 
   

MATCH_LEVEL : Match level given to this connection. 
   

 

  153 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

 

19.15 INPUT STATEMENT   
The INPUT statement is exactly like a LINK statement for which the INPUT keyword has been specified. 

 

19.16 EQUATIONS STATEMENT    
The EQUATIONS statement within an atomic class (see Section 19.7) specifies the equations that are used to 
generate the C++ functions of the class.  This statement is currently used by browsers and symbolic 
processors only.  It is a compound statement (see Section 19.5).  An example is: 
EQUATIONS { 
             p1.a = x ; 
             p1.b = y ; 
             p2   = z ; 
             x = y^2 * z^2 , x > 0 ; 
             BAD_INVERSES = y, z ; 
          } 
 

Notes: 

1. In the above example, x, y and z are “helper” symbols that simplify the equation.  The notation 
p1.a means the a subport of port p1.  The example shows the equation relating x, y and z (i.e., 

2 2x y z= ⋅ ) and indicates that x is restricted to positive values. 

2. An atomic class can only have one equation that shows the relationship between the ports of the class. 

  154 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

19.17 FUNCTIONS STATEMENT   
The FUNCTIONS statement without an atomic class (see Section 19.7) specifies the C++ inverse functions 
associated with the ports of the class.  It is a compound statement (see Section 19.5) of  the form: 
FUNCTIONS { 
            DEFAULT_RESIDUAL=default_residual_fun( port1,....,portN ) ; 
            port1 <,port2,port3,....> = explicit_fun1( port2,.... ) 
                                       <method1 = method_fun1(port2,... ) 
                                        method2 = method_fun2( ... ) 
                                        ....> ; 
          } 
Here method1,method2... are keywords from the following list that specify the callback points during a 
SPARK run. 
 
CHECK_INTEGRATION_STEP PREDICT STATIC_COMMIT 

STATIC_CONSTRUCT 

CONSTRUCT RESIDUAL STATIC_DESTRUCT 

DESTRUCT ROLLBACK STATIC_PREPARE_STEP

EVALUATE STATIC_CHECK_INTEGRATION_STEP STATIC_ROLLBACK 

COMMIT PREPARE_STEP 

 
Some of the methods are as follows: 
 
EVALUATE, PREDICT methods: 
FUNCTIONS { o1 = fn_o1(i1,i2), PREDICT=fn_o1_predict( i1,i2 );} 
FUNCTIONS { o1,o2 = fn_o1o2(i1,i2), PREDICT =fn_o1o2_predict(i1,i2);} 
 
RESIDUAL method: 
FUNCTIONS { o1 = RESIDUAL residual_fn_o1( i1,i2,o1 ) ; } 
FUNCTIONS { o1,o2 = RESIDUAL residual_fn_o1o2(i1,i2,o1,o2 ) ; } 
 
Note that residual methods must specify the target ports (left-hand side) as arguments to the callback to ensure 
correct dependency during the graph-theoretical analysis in setupcpp. Also, you can specify either an 
EVALUATE method or a RESIDUAL method, but not both. 
 
DEFAULT_RESIDUAL method: 
FUNCTIONS { o1 = fn_o1( i1,i2 ) ; 
DEFAULT_RESIDUAL = fn_default_residual(o1,i1,i2) ; } 
 
The default residual method lets you specify an inverse that will be used if no matching can be obtained with 
the explicit inverses. Also, a default residual method must list all the ports defined in the atomic class as 
arguments. 
 
CONSTRUCT method: 
DESTRUCT method: 
PREPARE_STEP method: 
CHECK_INTEGRATION_STEP method: 
COMMIT method: 
ROLLBACK method: 

  155 SPARK Language Reference 

 

STATIC_CONSTRUCT method: 



SPARK 2.0 Reference Manual 

STATIC_DESTRUCT method: 
STATIC_PREPARE_STEP method: 
STATIC_CHECK_INTEGRATION_STEP method: 
STATIC_COMMIT method: 
STATIC_ROLLBACK method: 
 
Example of static methods: 
FUNCTIONS {  
      x = fn_x( x, y )   
      STATIC_PREPARE_STEP = fn_static_prepare_step() 
      STATIC_CONSTRUCT =fn_static_construct() 
      STATIC_DESTRUCT = fn_static_destruct(); 
} 
Note that static methods have no arguments. 
 
Example of an atomic class with multiple single-valued inverses: 
FUNCTIONS { 

port1 = explicit_fun1( port2,port3,... ) ; 
 
port2 = explicit_fun2( port2,port3,... ) 
PREDICT = predictor_fun2( port1,port2,port3,...) 
CONSTRUCT = construct_fun2( port1,...) ; 
 
port3 ; 

} 
 
Example of an atomic class with a multi-valued inverse: 
FUNCTIONS { 

port5,port6 = explicit_multiOutFun1( port1,port2,port3,port4 ) ; 
} 
Note that there can only one multi-valued inverse per atomic class, thus making such a class a directed class. 
 
Here is the example explained in detail: 
FUNCTIONS { 

port1 = explicit_fun1( port2,port3,... ) ; 
 

Here explicit_fun1 is the C++ function that calculates the value of port1 using the values of  
port2, port3,... . 
 

 
port2 = explicit_fun2( port2,port3,... ) 
PREDICT= predictor_fun2( port1,port2,port3,...) 
CONSTRUCT= construct_fun2( port1,...) ; 
 

Here explicit_fun2 is the c++ function that calculates the value of port2 using the values of  
 port2, port3,... .  The PREDICT= is used to specify the predictor C++function  
 (i.e. predictor_fun2( port1,port2,port3,...) ) that calculates the predictor value of  
 the integrators.  The CONSTRUCT= is used to specify the constructor method function (i.e. port1 for  
construct_fun2( port1,...) ) that is used if 'port2' is matched with the explicit function (i.e. 
explicit_fun2( port2,port3,... ) ) for this class by the setupcpp program.  
 

  156 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

port3 ; 
If there is no explicit C++function available for a port, either that port is not mentioned, or only the name  
 of the port specified with the terminating semicolon in the FUNCTIONS statement. Note that if there is no  
 explicit C++specified for a port, the method functions should not be specified. 
 

port5,port6,... = explicit_multiOutFun1( port1,port2,... ) ; 
               } 
Here, the function explicit_multiOutFun1(..) has the arguments port1,port2,... and 
computes the values of port5,port6,...  . 
 

  157 SPARK Language Reference 

 



SPARK 2.0 Reference Manual 

REFERENCES 

Anderson, J. L. (1986). A Network Language for Definition and Solution of Simulation Problems, Lawrence 
Berkeley Laboratory. 
Brandemuehl, M. J. (1993). HVAC 2 ToolKit: A ToolKit for Secondary HVAC System Energy Calculations, 
Joint Center for Energy Management, University of Colorado. 
Brenan, K. E., S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value Problems in 
Differential-Algebraic Equations, Elsevier Science Publishing Co., Inc., 1989. 

Buhl, W. F., A. E. Erdem, et al. (1993). “Recent Improvements in SPARK: Strong Component 
Decomposition, Multivalued Objects, and Graphical Interface.” Proceedings of Building Simulation '93, 
Adelaide, International Building Performance Simulation Association. Available from Soc. for Computer 
Simulation International, San Diego, CA. 

Char, B. W., K. O. Geddes, et al. (1985). First leaves: a tutorial introduction to Maple, in Maple User's 
Guide.  Waterloo, Ontario, WATCOM Publications Ltd. 

Conte, S. D. and C. de Boor (1985). Elementary Numerical Analysis: An Algorithmic Approach. McGraw-
Hill Publishing Co. 

Dennis, J. E. and Schnabel, R. B. (1996). Numerical Methods for Unconstrained Optimization and Nonlinear 
Equations. Classics in Applied Mathematics 16, SIAM. 

LBL (1984). DOE-2 Reference Manual, Lawrence Berkeley Laboratory. 

McHugh, J. (1990). Algorithmic Graph Theory. Englewood Cliffs NJ 07632, Prentice Hall. 

Nataf, J.-M. and F. C. Winkelmann (1994). Symbolic Modeling in Building Energy Simulation. Energy and 
Buildings 21 (1994) 147-153. 

Nierstrasz, O. (1989). “Survey of Object-Oriented Concepts.” Object-Oriented Concepts, Databases, and 
Applications. W. Kim and F. H. Lochovsky. New York/Reading, ACM Press/Addison-Wesley: 3-21. 

Nowak, U. and L. Weimann, A Family of Newton Codes for Systems of Highly Nonlinear Equations, Konrad-
Zuse-Zentrum fuer Informationstechnik Berlin, Technical Report TR-91-10 (December 1991) 

Press, W. H., B. P. Flannery, et al. (1988). Numerical Recipes in C. Cambridge, Cambridge University Press. 

Rand, R. H. (1984). Computer Algebra in Applied Mathematics: An Introduction to MACSYMA. Boston. 

Sahlin, P. and E. F. Sowell (1989). “A Neutral Format for Building Simulation Models.” Proceedings of 
Building Simulation '89, Vancouver, BC, International Building Performance Simulation Association. 

Sowell, E. F. (2003). “Extension of the SPARK kernel.” Proceedings of the IBPSA Conference, Rotterdam, 
Netherlands. 

Sowell, E. F. and W. F. Buhl (1988). “Dynamic Extension of the Simulation Problem Analysis Kernel 
(SPANK).” Proceedings of the USER-1 Building Simulation Conference, Ostend, Belgium, Soc. for 
Computer Simulation International. 

Sowell, E. F., K. Taghavi, et al. (1984). “Generation of Building Energy System Models.” ASHRAE Trans. 
90(Pt. 1): 573-86. 

 

  158 References 

 



SPARK 2.0 Reference Manual 

APPENDIX A: CLASSES IN THE GLOBALCLASS DIRECTORY 

Classes in the SPARK globalclass directory represent general objects that can be applied to a wide range of 
problems.  Each class has internal documentation in the form of a commented header. You should consult the 
header before using one of these classes.  The classes are listed in Table A..   

Table A.1:  SPARK Global Classes 

Class Description 
abm4 Adams-Bashforth-Moulton integration scheme of order 4 

abs1 Absolute value 

bd4 Backward Differences formula of order 4 

bfd Backward-Forward Difference formula of order 2 

bound Bound a value 

clipnorm Bound a value between 0 and 1 

diff Difference 

equal Equality 

euler Explicit Euler integration scheme of order 1 

implicit_euler Implicit Euler integration scheme of order 1 

integrator_euler Euler PC integration scheme of order 1 with error control. 

integrator_trapezoidal Trapezoidal PC integration scheme of order 2 with error control. 

lin Linear relation 1 2 3 0A x B x C x⋅ + ⋅ − ⋅ =  

lintrp Linear interpolation 

Linear interpolation to 1 

log Natural log 

log10 Log base-10 

max2 Larger of 2 values 

min2 Smaller of 2 values 

neg Negation 

polyn3 3rd degree polynomial 

poslim Force to be positive 

pow Exponentiation operator 

propdiff Point-slope equation of straight line 

safprod Safe product 

safquot Safe quotient 

lintrp1 

  159 Appendix A 

 



SPARK 2.0 Reference Manual 

safrecip Safe reciprocal 

select Logical if-then-else construct 

square Square of a value 

sum Sum of 2 values 
 

 

 

 160 Appendix A 

 



SPARK 2.0 Reference Manual 

APPENDIX B: USING THE HVAC TOOLKIT 

THE SPARK HVAC TOOLKIT 
The SPARK HVAC Toolkit is based on the ASHRAE Secondary Systems Toolkit (Brandemuehl 1993), 
supplemented with primary equipment models from the DOE-2 building energy simulation program (LBL 
1984).  This library of HVAC components is limited to steady state models.  The models included are listed in 
Table B.1. 

These classes are located in the SPARK hvactk/class directory.  ach class has internal documentation in the 
form of a commented header.  You should consult this header before using one of these classes. 

Many of these classes are lower-level macro or  atomic classes from which the user-level classes are built.  
These are automatically introduced into your problem as needed when you declare an object of the higher 
level class. 

EXAMPLE USAGE 
Some examples of using these classes have already been seen in examples in this manual.  For example, we 
used the cond class in the room_fc problem in Section 6.5.  In addition, every class has a test driver .pr file 
and associated .inp file in compressed form in pr.exe in the SPARK bin directory.  You can access one of these 
test drivers by executing pr.exe with the class name as an argument, e.g.,  

pr cond.pr <enter> 
pr cond.inp <enter> 

This will place the driver problem and input files for cond.cc in the working directory.  Alternatively, you can 
execute the provided command file called testhvac to extract, build, and execute the driver.  First, you should 
go to the SPARK hvactk directory.  Then type: 

testhvac cond <enter> 

Results can be found in cond.out. 

Note that the system models provided with the library show relatively complex macro classes that have been 
constructed from other Toolkit classes.  These also have test drivers in the pr.exe compressed file. 

 161 Appendix B 
 



SPARK 2.0 Reference Manual 

Table B.1  SPARK HVAC Toolkit Classes 

Class Description 

acdx Direct expansion air-conditioning unit  

airhx Air to air heat exchanger 

balance Transport balance equation 

bf Coil bypass ratio relationship 

bf_adp Bypass factor/apparatus dew point coil  

bf_ntu Coil bypass factor vs. an Ntu-like parameter 

boiler Boiler 

cap_rate Moist air capacitance rate 

capratel Capacitance rate for water 

cchiller DOE-2 single-stage compression chiller 

cclogic Dry vs. wet-coil decision logic 

ccsim Simple cooling coil   

cond Generic conductance relation 

cpair Specific heat of air 

ctfunc Cooling tower model correlation 

ctr1 Cooling tower Fr vs. range dependency 

ctr2 Cooling tower Fr vs. approach dependency 

cvrhsys Constant volume reheat system 

ddhtbal Dual-duct zone convergence enhancer 

ddsys Dual-duct system 

dewp_hw Dew point using Hyland & Wexler saturation correlation 

dewpt Dew point relationship for moist air using Walton's saturation 
correlation 

divsim Diverter (splits a flow stream into two streams) 

drcc1u Dry-coil, cross flow, stream one unmixed 

drccbm Dry-coil, cross flow, both streams mixed 

drccbu Dry-coil, cross flow, both streams unmixed 

drcctr Dry-coil, counter flow 

drcprl Dry-coil, parallel flow 

drywet Dry/wet cooling coil  

dxcap_m Capacity variation with mass for DX AC unit 

dxcap_t DX AC unit capacity variation with outside dry and inside wet-bulb 
temperatures 

dxeir_m EIR variation with mass flow rate 

dxeir_t DX AC unit EIR variation with TWb 

 162 Appendix B 
 



SPARK 2.0 Reference Manual 

econ Economizer 

effc1u Ntu-effectiveness, stream 1 unmixed 

effcbm Ntu-effectiveness, cross flow both mixed 

effcbu Ntu-effectiveness, cross flow both unmixed 

effctr Ntu-effectiveness for counter flow 

effncy Forces two inputs to sum to 1.0 

effntu1 Exponential effectiveness vs. Ntu 

effprl Ntu-effectiveness for parallel flow 

eintrp1 Exponential interpolation 

eir1_oc Curve fit for eir1 in open centrifugal compressor 

eir2_oc Curve fit for eir2 in DOE-2 open centrifugal compressor 

enthalpy Enthalpy, dry-bulb, humidity relation. 

enthsat Dry-bulb vs. enthalpy at saturation 

enthvap Enthalpy of water vapor 

enthwat Enthalpy of water 

enthxc1u Enthalpy exchanger, cross flow, one stream unmixed 

Enthalpy exchanger, cross flow, both streams mixed 

enthxcbu Enthalpy exchanger, cross flow, both streams unmixed 

enthxctr Enthalpy exchanger, counter flow 

enthxprl Enthalpy exchanger, parallel flow 

eq31 Equation 31 of 1993 ASHRAE Handbook of Fundamentals, Ch. 6 

evaphum Evaporative humidifier/cooler 

fan_dd Discharge damper fan, volume flow-temperature interface 

fan_iv Inlet-vane-controlled fan, volume flow-temperature interface 

fan_vsd Variable-speed-drive fan, volume flow-temperature interface 

fann_dd Discharge damper fan, mass flow-enthalpy interface 

fann_iv Inlet-vane-controlled fan, mass flow-enthalpy interface 

fann_vsd Variable-speed-drive fan, mass flow-enthalpy interface 

fansim Simple fan with part-load coefficients in the interface 

fansim_n Simple fan with part-load coefficient and enthalpy/mass interface 

fflp_blr Boiler part-load curve fit 

fflp_dd Fraction of full-load power for discharge damper fan 

fflp_iv Fraction of full-load power for inlet vane fan 

fflp_vsd Fraction of full-load power for variable speed drive fan 

gendiv Generic diverter 

htxc1u Cross flow, stream one unmixed heat exchanger  

enthxcbm 

 163 Appendix B 
 



SPARK 2.0 Reference Manual 

htxcbm Cross flow, both streams mixed heat exchanger  

htxcbu Cross flow, both streams unmixed heat exchanger  

htxctr Counter flow heat exchanger  

htxeff Heat exchanger effectiveness  

htxprl Parallel flow heat exchanger  

htxtemp Temperature vs. capacity flow vs. effectiveness 

humeff Humidity exchanger effectiveness 

humex Humidity exchanger  

humratio Humidity ratio vs. partial pressure of vapor 

idealgas Ideal gas law 

indep_fr Independent fractions 

indevap Indirect evaporative cooler 

lat_rate Latent heat rate 

mixer Mixing box model for moist air 

propcont Proportional controller 

pumpsim Simple pump 

rcap_oc Curve fit for capacity in open centrifugal compressor 

relh_hw Relative humidity (Hyland & Wexler) 

relhum Relative humidity 

rho Moist air density vs. specific volume and humidity ratio 

rhomoist Moist air density vs. dry-bulb and humidity ratio 

room Simple room with heat loss and air mass 

satp_hw Saturated Pressure (Hyland & Wexler) 

satp_r Saturated pressure of water vapor, residual method 

satpress Saturated pressure relationship for water 

sercond Conductors in Series 

specvol Specific volume of air 

tower Cooling tower  

tstdhb Test driver for ddhtbal 

varmix Variable mixing box 

vavsys VAV System 

vlvcirc Flow circuit with non-linear valve and series flow resistance 

wcoilout Wet-coil leaving conditions 

wetb_hw Wet-bulb temperature (Hyland & Wexler) 

wetbulb Wet-bulb temperature 

wtcc1u Wet cooling/dehumidification coil, cross flow, one stream unmixed 

 164 Appendix B 
 



SPARK 2.0 Reference Manual 

wtccbm Wet cooling/dehumidification coil, cross flow, both streams mixed 

wtccbu Wet cooling/dehumidification coil, cross flow, both streams unmixed 

wtcctr Wet cooling/dehumidification coil, counter flow 

wtcprl Wet cooling/dehumidification coil, parallel flow 

zone Simple steady-state thermal zone  

zone_dd Dual-duct controlled zone 
 

 

 165 Appendix B 
 



SPARK 2.0 Reference Manual 

APPENDIX C: PREFERENCE FILE FORMAT 

WHAT ARE PREFERENCE FILES? 
Preferences file are external representations of objects of class TPrefList.  This C++ class is designed to 
allow storage and retrieval of (key, value) pairs, somewhat like a mapping.  However, this class differs 
from a typical mapping in that it allows an hierarchical description of information.  The example below will 
allow you to better understand the structure and format of SPARK preference files.  

USES OF PREFERENCE FILES IN SPARK 
Preference files are used several places in SPARK to store information about important aspects of the problem 
and how it is to be solved.  For example, every SPARK problem has a probName.prf file that gives information 
about the problem component structure, and how each component is to be solved (see Section 11).  Also, each 
problem has a run-control file probName.run (see Section 18) with information about the simulation interval 
and other control issues.  In some environments, a global spark.prf stores critical information about the SPARK 
installation.  Here we explain the general format of all preference files. 

HIERARCHICAL DATA: THE STRUCTURE OF THE PREFERENCE FILE 
As an analogue of the way SPARK preference files are structured, consider how the description of a building 
might be stored.  The building is to have a Name, a Roof, a Floor, and an arbitrary number of Walls.  
Although the Name has a simple string value, e.g., “MyBldg”, Roof, Floor and every Wall is to have two 
attributes, U and W.  

Figure C. shows this information as a general tree.  It can also be thought of as an object called theBuilding.  
Every node in this tree can be viewed as a key, and the list of child nodes can be viewed as the value of that 
key.  Thus theBuilding has a value which is the list (Name, Roof, Walls, Floor), each of which is another tree.  
In turn, the root of each of these trees can be thought of as another key with its own value.  The key Name has 
a single value, myBldg, and the key Roof has the value which is the list (U, W), each of which is a tree.  The U 
and W keys at the roots of these trees each have a single value, (1.2 ) and (1.0) respectively.  Note that nodes 
in the tree like myBldg, 1.2, and 1.0 are distinctly different from nodes like Name or Root in that they have no 
children, i.e., they are leaves.  Another way of saying this is that the “value” of a node like myBldg or U 
consist of an empty list ( ).  These are the actual data stored in the structure.  Note also that the path from the 
root to any leaf is a unique identifier of the data in the leaf.  For example, theBuilding.Roof.U identifies the 
value 1.2. 

 166 Appendix C 
 



SPARK 2.0 Reference Manual 

 theBuilding

Walls

North

1.2

U W

0.5

West

1.2

U W

0.5

East

1.2

U W

0.5

South

1.2

U W

0.5

Roof

1.2

U W

1.0

Name

 mybldg

Floor

1.2

U W

5.0

 

Figure C.1:  Simple Building Represented as a Tree 

PREFERENCE FILE FOR THE BUILDING DESCRIPTION EXAMPLE 
The preference file expresses this tree structure as text.  The preference file code example for the tree in 
Figure C. is shown below. 

The format follows the convention that a key is followed by a list representing its value, enclosed in 
parentheses.  If the list is empty, indicated by empty parentheses, the implication is that the key is in fact 
actual data.  Note that the key representing the file itself, in this case theBuilding, is not part of the stored 
data.  This is because externally the operating system will know it by the assigned file name, and programs 
that read preference files assign the file contents, i.e., its value, to an instance of prefItem class.  
Consequently, it is not useful to store the name in the file itself, and the file content begins with an opening 
parenthesis, and ends with a closing parenthesis.  With these conventions, here is the file for theBuilding: 
( 
 Name (myBldg ( ) 
 ) 
 Roof (  
  U (1.2 ( ) 
  ) 
  W (1.0  ( ) 
  ) 
 ) 
 Walls ( 
  North (  

 167 Appendix C 
 



SPARK 2.0 Reference Manual 

   U (1.2 ( ) 
   ) 
   W (0.5 ( ) 
   )         
  ) 
  South (  
   U (1.2 ( ) 
   ) 
   W (0.5 ( ) 
   )         
  ) 
  East (  
   U (1.2 ( ) 
   ) 
   W (0.5 ( ) 
   )         
  ) 
  West (  
   U (1.2 ( ) 
   ) 
   W (0.5 ( ) 
   )         
  ) 
 ) 
 Floor (  
  U (1.2 ( ) 
  ) 
  W (5.0  ( ) 
  ) 
 ) 
) 

Since theBuilding tree has four first-level nodes, between file opening and closing parenthesis there are four 
main clauses, each consisting of a key followed by a parenthetic expression representing the value of the key.  
The first-level keys are the nodes in the tree, Name, Roof, Walls, and Floor.  The Name key has a simple 
value, the building name string “myBldg”, so it is followed by a empty parentheses.  Note that the format is 
delimited entirely by the parentheses so spaces in strings are allowed, and no quoting is necessary.  The Roof 
and Floor keys have values that are trees with nodes representing U and W.  The U and W keys have simple 
values, so they are followed by empty parentheses.  The Walls identifier has a more complex structure, 
namely four trees, each with a structure like Roof and Floor.   

EDITING THE PREFERENCE FILE 
Each SPARK problem has an associated preference file that sets important information needed by the solver.  
This file describes the settings for the numerical solution of each component of  the problem . In addition, this 
preference file includes a list of the C++ source files that are specific to the problem. As explained earlier, the 
problem-preference file, probName.prf, is generated by the SPARK setupcpp program at the same time that it 
generates probName.cpp.  The following preference file is for the example.pr problem: 
( 
GlobalSettings ( 
 Tolerance (1.E-6 ()) 
 MaxTolerance (1.E-3 ()) 
) 
ComponentSettings ( 
 0 ( 

 168 Appendix C 
 



SPARK 2.0 Reference Manual 

  ComponentSolvingMethod ( 0 ()) 
  TrueJacobianEvalStep ( 1 ()) 
  Epsilon (1.E-6 ()) 
  RelaxationCoefficient ( 1.0 ()) 
  ScalingMethod ( 0 ()) 
  MaxIterations (50 ()) 
  MatrixSolvingMethod ( 0 ()) 
  PivotingMethod ( 1 ()) 
  RefinementMethod ( 0 ()) 
 ) 
) 
Sources ( 
 ./example.cpp () 
 ../class/r1.cc () 
 ../class/r2.cc () 
 ../class/r3.cc () 
 ../class/r4.cc () 
) 
) 

Since probName.prf is a text file, any text editor can be used to edit it.  Alternatively, you can use tools 
provided with SPARK.  One of these tools is a command line program called repref.  In general, execution of 
repref is as follows: 

repref file.prf [pref 0] [pref n-1] action key  <enter> 

This modifies the branches [pref 0] ... [pref n-1] according to action: 

= key replaces value at the branch by key 

- key removes value key value at the branch 

+ key add value key at the branch 

As an example, to change Epsilon for Component 0 in example.prf:  

repref example.prf ComponentSettings 0 Epsilon = 1.e-8  <enter> 

Repref is handy for writing script files for preference file modifications. 

 

 

 169 Appendix C 
 



SPARK 2.0 Reference Manual 

APPENDIX D: SPARK PROBLEM DRIVER  

The SPARK problem driver Application Programming Interface (API) allows an advanced user to implement 
a customized driver function in order to: 

• customize the sequence of operations to re-solve the same problem, 

• manage and solve multiple problems, 

• retrieve solution values and specify new input values, and 

• change run-control parameters between successive simulation runs. 

The sparksolver.cpp file that implements the default SPARK driver function uses this set of API functions to 
carry out the simulation task. 

Users can write a customized problem driver to retrieve the solution value from any problem variable and to 
modify the values of the input variables, so that multiple runs of the same problem can be carried out with 
different boundary conditions.  Variables comprised in each problem can be looked up by names and by 
handle from the methods of the TProblem class.  A variable handle is its unique identifier specified as an 
unsigned integer in the problem description files probName.cpp. and probName.xml (See Figure 1-1). 

The problem driver API enables: 

• the management of multiple problems in the same driver function as well as  

• the integration of a SPARK problem within another program. 

Comprehensive documentation on how to write a problem driver function can be found in the htm/chm tutorial 
SPARK Build Process and Problem Driver API that can be found in the SPARK doc directory and at 
http://SimulationResearch.lbl.gov in the SPARK area. 

 

 

 

 170 Appendix D 
 

http://simulationresearch.lbl.gov/


SPARK 2.0 Reference Manual 

GLOSSARY OF TERMS 

absolute tolerance (ATOL)   
Absolute tolerance value. 

algorithmic programming   
A sequence of operations and assignments leading from prescribed inputs to prescribed outputs.  

assignment  
In computer languages, assignment is the action whereby a value is associated with an identifier representing 
a variable. Although the symbol “=” is often used for assignment, e.g., X = 2*y, assignment is different from 
mathematical equality because the latter implies that the expressions at the left and right of the “=” symbol are 
always equal. In particular, a sequence of assignments are order dependent, while a set of mathematical 
equations are not.  See “algorithmic programming.” 

atomic class   
A model comprising a single equation with used variables linked to its ports.  Acts as a template for 
instantiation of atomic objects. 

break level  
An integer from 0 to 10 expressing the desirability of using the associated link to break cycles in the 
computation graph. 

class  
A general description of an equation (atomic class) or group of related equations (macro class). A class acts as 
a template for instantiation of objects. 

command file 
A file containing MSDOS commands.  Also called a “batch” file .  

continuous variable   
Variable that can take on any real value between a minimum and maximum value. 

cut set  
A set of variables (links) that will break all cycles in the computation graph.  SPARK attempts to minimize the 
size of the cut set.  The variables in the cut set are called “break variables” and are used for iterative solution. 

cyclic  
In graph theory, the property of having closed paths, or circuits. 

differential algebraic equation system   
A system of differential and algebraic equations for simultaneous solution. 

discrete state variable   
A variable that can take on only specific values rather than any real value within a range. 

dynamic variable   

 171 Glossary of Terms 
 

A variable for which the derivative appears in a differential equation. 



SPARK 2.0 Reference Manual 

environment variable  
A symbol whose value is assigned in your computing environment, as opposed to within the SPARK program 
system. See documentation for Microsoft Windows for more information and to learn how environment 
variables are set. See also sparkenv. 

GNU 
GNU is not UNIX; GNU is a system of free software programs developed through the Free Software 
Foundation.  

graph  
See “mathematical graphs.” 

HVAC  
Heating, ventilation, and air-conditioning. 

ill-posed   
A problem that is not well-posed is said to be ill-posed.  See “Well-posed.” 

implicit inverse   
A form of an equation in which a particular variable occurs on both the left and right sides of the equation.  
Used when explicit inverses cannot be obtained. Solution requires iteration.  

initialization   
Specifies the value of variable at InitialTime.  Required for dynamic variables and break variables. 

initial time  
The time when the simulation starts.  This is the time at which initial conditions for differential equations 
apply. 

input set 
The complete set of information needed to define execution of a SPARK problem.  Includes input data files 
and run control information. 

input/output free   
A style of model expression that provides a set of equations rather than an algorithm.  Since any set of inputs 
that leads to a well-posed problem can be specified in conjunction with these equations, it is sometimes called 
“input/output free.” 

instantiate  
To create an instance of a class. To create an object based on a class definition.  The DECLARE statement 
performs instantiation in SPARK. 

integration formula  
A formula used in numerical solution of differential equations to calculate a value for the integration variable 
at the next point in time.  The formula can be explicit, in which case the new value appears only on the left 
side of the equation, or implicit in which case the new derivative also appears on the right of the equation. 

interface variable    
A class variable that is to be visible from outside.  Interface variables are defined with the PORT statement. 

 172 Glossary of Terms 
 



SPARK 2.0 Reference Manual 

inverse  
A form of an equation in which a particular variable is isolated on one side of the equation; i.e., a formula for 
a variable.  The formula is obtained by symbolic manipulation of an equation for a particular variable in the 
equation.  An explicit inverse has the wanted variable on the left side only, while an implicit inverse has that 
variable in the formula as well. 

Jacobian  
The square matrix of partial derivatives of residual equations with respect to the break variables in a 
strongly-connected component. 

macro classes   
A group of SPARK atomic or other macro classes linked together through their respective ports to form a 
subsystem model.  A macro class can be used wherever an atomic class can be used. 

make 
A utility program that creates a program from its composite parts, in response to commands embedded in a 
makefile.  GNU make is used for both the UNIX and Windows implementations of SPARK. 

makefile  
An input file for a make program.  Contains various targets, their dependencies, and commands for building 
them. 

match level  
An integer from 0 to 10 expressing the desirability of matching the associated link variable with the 
associated object port, and therefore with the inverse for this object port. 

mathematical graphs   
A structure comprising a set of  vertices (nodes) and edges (arcs) that connect them.  Often used to model 
systems of interacting entities.  

object-oriented  
A methodology in which the model behavior and data are encapsulated in a programming entity comparable 
to the physical entity that it represents.  

panel 
A discernible region within a window on your computer screen.  

parser 
The program that interprets the SPARK files that describe the model as the first step toward solution.  Builds 
the setup file. 

PDF 
A portable file format from Adobe Systems that retains page layout and graphics.  You need a special 
program, called Acrobat Reader, to view a file in PDF format.  This program is freely available on the 
Internet. 

predictor 
Value of a break variable at beginning of iterative solution.  Defaults to value at previous time step if not 
specified with PREDICT_FROM_LINK. 

prf file 
 173 Glossary of Terms 
 



SPARK 2.0 Reference Manual 

A file that contains various component settings (also called preferences) needed for a program to run. In a 
sense, a generalization of command line options and environment variables.  

propagation 
Process by which SPARK infers certain LINK or PORT statement settings, e.g., ATOL, INIT, MAX and MIN, 
from settings at lower or higher levels. 

relaxation coefficient    
Multiplier, usually a fraction, on calculated correction that is applied in order to get new break variable values 
during iterative solution. 

retained state  
Value that needs to be saved between successive uses of an object.  Currently, SPARK objects cannot retain 
state internally.  However, values of link variables are retained for four previous time steps.  

run-control 
Data controlling the solution phase for a SPARK problem, e.g., start time, finish time, time increment, and list 
of input files and output files. 

setupcpp 
A program used in the process of building a SPARK problem.  Processes the setup file produced by parser. 

solver  
The executable program that SPARK builds to solve a particular problem.  Called probName.exe (Windows) or 
probName (UNIX).  The library used by SPARK in constructing this executable is also sometimes referred to 
as the “solver.” 

sparkenv 
A command file for setting up your environment for running SPARK at the command line.  

spawn 
To create a computational process in a computer. 

strongly connected component or strong component  
In graph theory, a maximal set of vertices and edges that allow any vertex to be reached from any other 
vertex.  In SPARK, a strong component corresponds to a separately solvable sub-problem that SPARK 
automatically determines using graph theory.  Sometimes called simply “Component.” 

symbolic manipulation   
Operations on mathematical expressions in terms of contained symbols, as opposed to numerical evaluation.  
The goal is often to solve for a particular variable in terms of all others in the expression, i.e., to obtain an 
inverse.  Often done with computer software, i.e., computer algebra. 

target 
A file or other object that can be created with one of the command sequences in a makefile. 

tool bar 
A row or column of icons, usually at the top of a window, that can be clicked to perform commonly needed 
tasks.  The icons usually are pictorial, suggesting what the tool does.  For example, the Print icon on many 
VisualSPARK windows looks like a laser printer. 

 174 Glossary of Terms 
 



SPARK 2.0 Reference Manual 

updating  
Setting the value of Previous-Value Variable to the value of a variable specified with INPUT_FROM_LINK. 
Occurs at beginning of time step, before solving the components. 

well-posed   
A problem is said to be well-posed if it admits at least one solution.  One requirement is an equal number of 
equations (objects) and unknowns (links).  There also must be a complete matching, i.e., a matching of each 
variable to a unique equation inverse.  However, problems can meet these requirements and still not be 
well-posed.  For example, the two curves ( )y f x=  and ( )y g x=  may not intersect, so there is no value of 
x  that satisfies both equations. 

 

 175 Glossary of Terms 
 



SPARK 2.0 Reference Manual 

INDEX 

continuous system....................................................... 1 ♦ 141 
continuous variable ................................................. 172 ‘request 
convergence check .................................................. 105 internal ..................................................................93 
cut set ...................................................................... 172 absolute tolerance (ATOL)......................................172 
cyclic ....................................................................... 172 algorithmic programming ........................................172 
debug log file .......................................................... 135 assignment ...............................................................172 
debugging................................................................ 114 ATOL ......................................................109, 122, 141 
declare........................................................... 6, 33, 152 atomic class .................................................1, 143, 172 
default_residual............................................. 72, 79, 82 create .....................................................................16 
derivative .................................................................. 36 inverse function.....................................................18 
diagnostic mechanism............................................. 117 atomic port, example ...............................................146 
differential equation .................................................. 36 backtracking log file ................................................136 

algebraic ............................................................. 172 batch ........................................................................172 
ordinary................................................................... 3 break variable ......................................................14, 55 

directory, globalclass .............................................. 160 BREAK_LEVEL66, 120, 141, 146, 149, 151, 154, 172 
discrete state variable .............................................. 172 callback................................................................18, 29 
dynamic................................................................... 159 commit...................................................................78 

problem................................................................... 7 evaluate ...............................................18, 41, 74, 78 
variable ......................................................... 52, 173 explicit form..........................................................82 

environment variable .............................................. 173 framework .............................................................75 
Epsilon .................................................................... 101 function .................................................................76 
equation instance..................................................................76 

class ...................................................................... 10 keywords ...............................................................79 
differential algebraic........................................... 172 residual ..................................................................68 
file......................................................................... 10 residual form .........................................................82 
ordinary differential................................................ 3 rollback..................................................................78 
partial differential ................................................... 3 simulation loop......................................................77 
simple linear ........................................................... 6 static ......................................................................76 

EQUATIONS statement ......................................... 155 class .........................................................1, 5, 152, 172 
error log file ............................................................ 135 atomic......................................................1, 143, 172 
errors create...........................................................16, 23 

parsing ................................................................ 114 equation.................................................................10 
setup.................................................................... 114 globalclass ...........................................................160 

Euler method............................................... 36, 40, 160 integrator object ....................................................39 
explicit .................................................................... 173 macro.......................................................1, 144, 174 
explicit formula......................................................... 36 wrapper..................................................................24 
factory log file......................................................... 135 classtype ....................................................................66 
file ............................................................... 48, 63, 168 default....................................................................68 

.log ........................................................................ 10 integrator ...................................................39, 67, 85 
default problem preference................................... 97 sink ........................................................................67 
equation ................................................................ 10 coefficient 
input...................................................................... 48 relaxation.............................................................175 
preference ........................................................... 167 command file ...........................................................172 
problem............................................................... 145 comments...........................................................17, 142 
problem specification ......................................... 2, 7 compiler.............................................................17, 159 

final time ..................................................................... 8 component ...........................................................10, 97 
FinalSnapshotFile ........................................... 137, 139 strongly connected ................................................10 
formula component solving methods ....................................100 

explicit .................................................................. 36 component stamp.....................................................118 
implicit.................................................................. 36 compound statement ................................................142 
integration........................................................... 173 constant data ..............................................................56 

function constant values...........................................................48 
 176 Index 
 



SPARK 2.0 Reference Manual 

inverse ...................................................................18 LINK statement .................................................. 153 
FUNCTIONS statement ..........................................156 names.................................................................... 35 
globalclass directory................................................160 variable ................................................................. 52 
gnu ...........................................................................173 
gnuplot.....................................................................133 
graph..................................................................10, 173 

component .............................................................10 
mathematical .......................................................174 

hierarchy..................................................................141 
hvac .........................................................................173 
HVAC ToolKit ..................................................31, 162 
ill-posed problem...............................................15, 173 
implicit 

formula ..................................................................36 
inverse .................................................................173 

INIT.....................................................38, 48, 122, 141 
initial conditions ........................................................57 
initial time............................................................8, 173 
initial time solution....................................................53 
Initial Values .................................................36, 38, 42 
initialization.......................................................52, 173 
InitialSnapshotFile...........................................137, 139 
input mechanism 

map file ...............................................................131 
native...................................................................121 
Read URL ...........................................................124 

input set ...................................................................173 
INPUT statement .....................................................155 
input/output free ......................................................173 
INPUT_FROM_LINK ............................................141 
instantiate.................................................................173 
integration 

error control.....................................................40, 96 
Euler ..............................................................36, 160 
formula ..........................................................36, 173 
initialization...........................................................42 
restart.....................................................................43 

integrator object class ................................................39 
interface variable .................................................5, 174 
inverse ...............................................3, 10, 14, 20, 174 

default..................................................................114 
default residual ........................................72, 75, 114 
function .................................................................18 
implicit ................................................................173 
instance..................................................................75 
multi-valued ....................................................23, 75 
single-valued ...................................................16, 75 
sink ........................................................................73 
type........................................................................75 

inversion 
symbolic ................................................................14 

iteration safety factor .........................................99, 107 
iterative solution ..........................................13, 37, 101 
Jacobian .............................................................14, 174 

link...............................................................................5 

macro 

REQUEST__ABORT........................................... 28 

REQUEST__STOP.................................................. 94 

makefile................................................................... 174 

input/output free ................................................. 173 

literal strings............................................................ 142 

ACTIVE_COMPONENT..................................... 89 
ACTIVE_INVERSE............................................. 89 
ACTIVE_PROBLEM........................................... 89 
ARGDEF .............................................................. 19 
ARGUMENT ....................................................... 26 
class .................................................. 1, 64, 144, 174 
EVALUATE......................................................... 19 
REQUEST__ABORT .............................................. 94 

REQUEST__CLEAR_MEETING_POINTS............... 95 
REQUEST__REPORT............................................. 94 
REQUEST__RESTART .......................................... 94 
REQUEST__SET_MEETING_POINT...................... 95 
REQUEST__SET_TIME_STEP ............................... 96 
REQUEST__SNAPSHOT........................................ 94 

RETURN ........................................................ 20, 74 
TARGET .............................................................. 27 
THIS ..................................................................... 88 

make........................................................................ 174 
makefile .............................................................. 174 

manipulation, symbolic........................................... 175 
MATCH_LEVEL12, 66, 115, 120, 141, 147, 149, 151, 

154, 174 
matching.................................................................... 10 
mathematical graph ............................................. 1, 174 
matrix solving methods........................................... 102 
MAX ............................................................... 122, 141 
maxiterations........................................................... 101 
MaxTolerance ........................................................... 99 
MIN................................................................. 122, 141 
MinRelaxationCoefficient....................................... 102 
mixer ........................................................... 33, 59, 165 
models, object ............................................................. 1 
names ...................................................................... 141 

link names............................................................. 35 
reserved............................................................... 141 
rules .................................................................... 142 

Newton-Raphson ...................................................... 13 
NOERR................................................................... 148 
numerical support data .............................................. 57 
object........................................................................... 5 

integrator............................................................... 37 
interconnected......................................................... 9 
interconnected method............................................ 9 
models..................................................................... 1 

object-oriented .................................................... 1, 174 
ordinary differential equation ............................... 3, 36 
output ...................................................................... 133 JacobianRefreshRatio ..............................................105 

keywords .................................................................141 
PARAMETER statement ........................................ 150 

 177 Index 
 



SPARK 2.0 Reference Manual 

parser .......................................................................174 time event ............................................................. 95 
parsing errors ...........................................................114 utility..................................................................... 93 
partial differential equation .........................................3 request mechanism.................................................... 93 
past values .....................................................36, 52, 65 required entry.......................................................... 141 
pdf............................................................................174 reserved names........................................................ 141 
port.....................................................................48, 143 residual................................................................ 68, 82 

argument................................................................17 retained state ........................................................... 175 
atomic, example ..................................................146 run log file............................................................... 135 
statement .......................................................25, 146 run-control .......................................................... 7, 175 
target......................................................................17 run-control file ........................................................ 139 
variable................................................................5, 6 ScalingMethod ........................................................ 102 

PORT statement.........................................................17 setup errors.............................................................. 114 
post-processing........................................................133 setupcpp .................................................................. 175 
prediction.............................................................14, 54 simulation loop.......................................................... 77 
prediction safety factor ..............................................99 
predictor...................................................................174 

time step .......................................................... 8, 36, 42 

snapshot file ............................................................ 137 
solution...................................................................... 55 

preference file..........................................................167 solver....................................................................... 175 
preference settings sparkenv .................................................................. 175 

component ...........................................................100 sparse linear solution method.................................. 102 
default....................................................................99 special characters .................................................... 141 
global.....................................................................98 statement 

prefix symbols ...........................................................62 compound ........................................................... 142 
previous time .......................................................36, 42 DECLARE...................................................... 6, 152 
Previous-Value Variable .....................................55, 63 EQUATIONS ..................................................... 155 
prf ............................................................................175 FUNCTIONS...................................................... 156 
private data ....................................................75, 77, 86 INPUT ............................................................ 6, 155 

instance............................................................86, 91 LINK .................................................................. 153 
static ......................................................................86 PARAMETER.................................................... 150 

probe..................................................................66, 151 PORT...................................................... 17, 25, 146 
problem PROBE ............................................................... 151 

dynamic ...................................................................7 terminator ........................................................... 142 
file .......................................................................145 statement terminator................................................ 142 
ill-posed.........................................................15, 173 step stamp................................................................ 118 
preference file ...............................................97, 169 StepControlMethod................................................. 101 
specification file ..................................................2, 7 strings...................................................................... 141 
variable....................................................................5 literals ................................................................. 142 
well-posed ...........................................................176 strongly connected component.......................... 10, 175 

problem driver .........................................................171 subports................................................................... 146 
propagation........................................................55, 175 symbolic 

rule ........................................................................62 inversion ............................................................... 14 
range of values...........................................................31 manipulation ....................................................... 175 
relaxation coefficient ...............................................175 processing ............................................................. 20 
RelaxationCoefficient..............................................102 tools ........................................................................ 3 
reports......................................................................151 symbols, prefix.......................................................... 62 
repref .......................................................................170 
request variable ......................................................... 40, 139 

abort ................................................................28, 94 time unit .................................................................... 48 
clear meeting points ..............................................95 time-varying 
external..................................................................93 data ....................................................................... 56 
integration .............................................................96 Tolerance .................................................................. 99 
report .....................................................................94 ToolKit, HVAC ...................................................... 162 
restart.....................................................................94 tools 
set meeting point ...................................................95 symbolic ................................................................. 3 
set time step...........................................................96 total internal scaling................................................ 111 
snapshot.................................................................94 trace file .................................................................. 116 
state transition .......................................................94 TrueJacobianEvalStep............................................. 101 
stop ........................................................................94 unit consistency......................................................... 31 

 178 Index 
 



SPARK 2.0 Reference Manual 

units ...........................................................................48 
identifier ................................................................32 
unspecified ............................................................32 

updating .............................................................55, 176 
URL 

map file ...............................................................131 
Read ....................................................................124 
Write....................................................................132 

val_or_par................................................................141 
variable 

continuous ...........................................................172 

discrete state ....................................................... 172 
dynamic ................................................................ 52 

port.......................................................................... 5 

dynamic .............................................................. 173 
I/O swapping .......................................................... 8 
interface .......................................................... 5, 174 
link........................................................................ 52 

Previous-Value ......................................... 52, 55, 63 
problem................................................................... 5 

well-posed problem........................................... 15, 176 

 

 

 179 Index 
 


	Table of Contents
	Foreword
	Licenses and Copyrights
	Text Conventions
	Introduction
	What is SPARK?
	Kinds of Problems that SPARK Can Solve
	Describing Problems for SPARK Solution
	Portability and User Interfaces
	The History of SPARK
	Versions of SPARK

	Basic Methodology
	Overview and Terminology
	A Problem with a Single Object
	Running the SPARK Problem
	Arbitrary Input/Output Designation

	Problems with Several Objects
	Problems Requiring Iterative Solution
	Iterative Solution and Break Variables
	Well-Posed Problems

	Creating Single-Valued Atomic Classes
	Class Definition
	The PORT Statement
	The EQUATIONS Statement
	The FUNCTIONS Statement

	Inverse Functions Definition
	Basic Structure of a Single-Valued EVALUATE Callback
	Defining the C++ Callback Function
	Defining the Argument Variables
	Calculating the Result Value
	Returning the Result Value

	Symbolic Processing
	Simple Symbolic Processing
	Generating an Inverse
	Caveats


	Creating Multi-Valued Atomic Classes
	Motivation
	Limitations
	Class Definition
	The PORT Statement
	The EQUATIONS Statement
	The FUNCTIONS Statement

	Inverse Function Definition
	Defining the C++ Callback Function
	Defining the Argument Variables
	Defining the Target Variables
	Calculating the Result Values
	Returning the Result Values
	Basic Structure of a Multi-Valued EVALUATE Callback


	Models of Physical Systems
	Units, Valid Range, and Initial Values
	Macro Classes

	Differential Equations
	Numerical Solution of Differential Equations
	Solving a Simple Differential Equation
	Integrator Classes in the SPARK Library
	Creating SPARK Integrator Object Classes
	Simplified Implementation of the Euler Method
	The Initialization Issue
	The Restart Issue
	The Previous Value Issue

	Solving a Larger Example: The Air-Conditioned Room

	How SPARK Assigns Values to Variables
	Initialization
	What Must be Initialized
	What Might Need Initialization
	How to Specify Initialization
	Initial time solution of a dynamic problem

	Prediction
	Where Prediction is Needed
	How Prediction is Specified

	Updating
	What Needs to Be Updated
	How Updating is Specified

	Solution
	What Needs to Be Solved For
	How Solution Is Specified

	Propagation
	Input Values from Files
	Categorization of Different Types of Input
	Example of Multiple Input Files


	Advanced Language Topics
	Macro Links
	Internal SPARK Names for Variables (Full Names of Links or Ports)
	Previous-Value Variables, or Updating Variables from Links
	Usage of the LIKE Keyword in PORT Statements
	The PROBE Statement
	Usage of the CLASSTYPE Keyword in Atomic Classes
	INTEGRATOR classes
	SINK classes
	DEFAULT classes

	Usage of the RESIDUAL Keyword in EVALUATE Callbacks
	Motivation
	Implications for the Graph-Theoretic Analysis
	Mathematical Example
	Class Definition
	Inverse Function Definition

	Usage of the Default Residual Inverse in the FUNCTIONS Statement

	The Callback Framework
	Overview and Terminology
	Inverse Type
	Single-valued inverse
	Multi-valued inverse
	Default residual inverse

	Inverse Instance
	Callback Function
	Callback classification
	Static and instance callbacks

	Private Data

	Callback Entry Points in Simulation Loop
	Specifying the Callback Functions
	The FUNCTIONS Statement
	Callback Keywords

	Structor Callbacks
	Syntax
	Rules

	Modifier Callbacks
	Syntax
	Rules

	Non-Modifier Callbacks
	Syntax
	Rules

	Predicate Callbacks
	Syntax
	Rules

	Defining Private Data for an Inverse
	Private Data Mechanism
	Instance Private Data
	Static Private Data
	The “this” Pointer
	Preprocessor Macros

	Example of an Inverse with Private Data
	Allocate and Attach Private Data in CONSTRUCT Callback
	Deallocate and Detach Private Data in DESTRUCT Callback
	Retrieve Private Data in EVALUATE Callback



	The Request Mechanism
	Concept
	Utility Requests
	State Transition Requests
	Time Event Requests
	Integration Requests

	Solution Method Controls
	Solution Methodology
	Preference Settings
	Default Preference File
	Global Settings
	Default Component Settings
	Component Settings
	Changing the Preference Settings

	Component Solving Methods
	Matrix Solving Methods
	Jacobian Evaluation Methods
	Scaled Perturbation for the Numerical Approximation of the Partial Derivatives
	Jacobian Refresh Strategy
	Automatic Jacobian Refresh Strategy

	Convergence Check Strategy
	Notation
	Scaled Stopping Criterion for Iterative Solution
	Prediction Convergence Check
	Iteration Convergence Check
	Safety Factors
	Relaxed Convergence Check

	Scaling Methods
	Variable Scaling Procedure
	Defining the Absolute Tolerance for Each Problem Variable with the ATOL Property
	Achieved Accuracy

	Scaled Norms and Implications for the Solution Methods
	In the Variable Space
	In the Residual Space

	Total Internal Scaling of Linear Systems
	Detection of an Ill-Conditioned Problem
	Implication for the Backtracking Step Control Methods


	Debugging SPARK Programs
	Parsing Errors
	Setup Errors
	Solution Difficulties
	Trace File Mechanism
	Problem-Level Diagnostic Mechanism
	Description of the Inputs Diagnostic Mode
	Description of the Reports Diagnostic Mode
	Description of the Convergence Diagnostic Mode
	Step Stamp
	Component Stamp
	Prediction Diagnostic
	Iteration Convergence Diagnostic
	Relaxed Convergence Diagnostic

	Description of the Statistics Diagnostic Mode


	The Native Input File Mechanism
	Precedence Rule
	Evaluation Rule
	File Format
	Property Reader
	How to Specify a Property in an Input File
	When Properties Are Read from Input Files


	The Read URL Mechanism
	Overview and Terminology
	Read URL File Type
	DOE-2 Weather file (doe2bin)
	TMY Weather file (tmyascii)
	EnergyPlus Weather File (eplusweather)
	Column File
	Named Column File
	Format File

	Read URL String Type
	DOE-2 Schedule Type (doe2sch)
	Algebraic Expression Type (expr)

	URL Map File
	The Map File Syntax
	URL String Substitution
	URL String Specification

	Loading Rules


	Output and Post Processing
	The Output File
	Plotting the Output File
	Post Processing in MATLAB

	Log Files
	Run Log File
	Error Log File
	Factory Log File
	Debug Log File
	Backtracking Log File

	Snapshot Files
	Why Snapshot Files Are Useful
	Generating Snapshot Files
	Using Snapshot Files to Initialize a Simulation Run
	Specifying Snapshot Files as Input Files
	Restarting after a Numerical Error
	Enforcing Initial Conditions from a Different Problem Definition


	Run-Control File
	SPARK Language Reference
	Notation Used in this Section
	Special Characters
	Names and Other Strings
	Reserved Names
	Rules for User-Specified Names
	Literals

	Comments
	Statement Terminator
	Compound Statement
	Atomic Class  File
	Macro Class File
	Problem File
	PORT Statement
	Atomic port
	Macro port

	PARAMETER Statement
	PROBE Statement
	DECLARE Statement
	LINK Statement
	INPUT Statement
	EQUATIONS Statement
	FUNCTIONS Statement

	References
	Appendix A: Classes in the globalclass Directory
	Appendix B: Using the HVAC Toolkit
	The SPARK HVAC Toolkit
	Example Usage

	Appendix C: Preference File Format
	What are Preference Files?
	Uses of Preference Files in SPARK
	Hierarchical Data: The Structure of the Preference File
	Preference File for the Building Description Example
	Editing the Preference File

	Appendix D: SPARK Problem Driver
	Glossary of Terms
	Index

