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ABSTRACT 
Annex 60 is developing and demonstrating new 
generation computational tools for building and 
community energy systems based on the non-
proprietary Modelica modeling language and 
Functional Mockup Interface (FMI) standards. 
Demonstrations will include optimized design and 
operation of building and community energy systems. 
Within the Annex 60, Activity 2.3 focuses on the use 
of models to augment monitoring, control and fault 
detection and diagnostics methods. This promises to 
detect a degradation of equipment efficiency over time 
because measured performance can be compared to 
expected performance at the current operating 
conditions. Furthermore, use of models during 
operation allows operational sequences to be 
optimized in real-time to reduce energy or cost, 
subject to dynamic pricing.  
This paper will offer an overview of the work carried 
out within this IEA Annex 60 Activity 2.3 both in 
terms of approach and case studies with a particular 
focus on model use during operation for fault 
detection and diagnosis.  

INTRODUCTION 
In general terms, a fault is considered as any issue or 
state that causes a reduction of the performance (Roth 
et al., 2005b), even if it is not perceived immediately 
by humans. Detecting a fault is the process by which, 
using available information, there is a realisation of 
this reduction of performance. Diagnosing a fault is 
determining the root(s) cause(s) of the loss of 
performance (Struss, 2008). Fault Detection and 
Diagnosis (FDD) is the field within control 
engineering that studies the automated detection and 
diagnosis of faults (Isermann, 1997). 
Estimates give an average range of 15% to 30% for the 
energy waste in commercial buildings due to poorly 
maintained, degraded and improperly controlled 
buildings (Le et al., 2005; Bruton et al., 2012). These 
issues, apart from deriving in energy waste and 
reduction of equipment life, can also represent 
reduced performance and even health problems for the 
building’s occupants (Mumma & Issues, 2003). 

The building sector is just catching up with 
developments in FDD since operational optimisation 
of building operations is today becoming a 
requirement. It is estimated that FDD methodologies 
can reduce energy waste by 5% to 40% (Piette et al., 
2001; Westphalen et al., 2003; Roth et al., 2005a) in 
particualr when faulty operations are timely rectified 
for the most frequent and high-impact fautls types 
(International Energy Agency, 2006; Heinemeier, 
2012; Lee & Yik, 2010). However, in current practice 
faults are mostly identified manually during routine 
inspections, due to persistent alarms, or as a result of 
a noticeable degradation of performance. The problem 
with this approach is that many faults can be 
undetected for long periods of time thus leading to a 
considerable energy and monetary waste (Haves et al., 
2009). Automated FDD can help with this problem by 
providing timely indications of the existence and root 
cause of the fault, and possibly also suggest 
correctives actions.  
Automated FDD requires a-priori knowledge of the 
normal and faulty behaviour of the systems to be 
embedded in the methodology. In this sense, FDD 
techniques can be classified as rule-based or model-
free methodologies (Donca, 2010), model-based 
methodologies and history-based methodologies 
(Sterling, 2015). 
In the Annex 60 (Wetter et al., 2013), the focus lies 
specifically in using Modelica models for FDD 
benefitting from the extensive existing model libraries 
for buildings and HVAC&R systems and the various 
interfaces and coupling mechanisms provided for 
those models. 
Modelica models can be used for FDD in two different 
aspects: directly, by using simulation results as a 
reference for the monitored data and indirectly, by 
using simulation data as training data for black box 
models. In the latter case, the results of the black box 
model are then used as a reference for the monitored 
data. The direct use of Modelica models for FDD, 
based on fault models, has been reported in (Bunus et 
al., 2009; Lunde et al., 2006; Cui et al., 2011). 
In this paper we will present three case studies with 
relation to the use of Modelica models for FDD tasks 
as part of the IEA Annex 60 Activity 2.3: Model Use 
During Operations. In particular, the approaches 
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presented in this paper are applied to air handling units 
(AHUs). 
Two approaches for model-based FDD are described 
in this paper: 

• Qualitative model-based FDD, qualitative 
models describe the behaviour of a system 
only roughly. Instead of numerical values, 
qualitative models can deal with a symbolic 
representation of the system variables 
capturing deviations of variable values from 
their respective nominal behaviour. 

• Quantitative model-based FDD, performs 
multiple simulations for various 
hypothesized states of the system, called 
health states based on monitored data. Then, 
the output of these multiple simulations is 
processed and combined into a single 
diagnostic output. 

For both cases hold, that for Fault Detection (FD), 
nominal data that describes the faultless behaviour of 
the regarded system is needed.  Fault Detection and 
Diagnosis (FDD) requires also fault models or faulty 
measurement data. 

CASE STUDIES 
Fault detection through qualitative models of air 
handling unit components 
Usually, qualitative models can be generated by an 
abstraction from a quantitative model or by stochastic 
qualitative identification. In this case study we will 
focus on the second method which has been developed 
by (Lichtenberg, 1998) which allows the generation of 
a qualitative model directly from measurement data or 
from simulation data.  
The qualitative approach for fault detection shown 
here uses stochastic automata (SA) as qualitative 
models. Important work in this field has e.g. been done 
by (Lunze, 1994).  (Lichtenberg & Steele, 1996) used 
a qualitative observer for FDD. 
A common problem with SA is that complexity of the 
so-called behaviour relation of the SA increases 
rapidly with a rising number of inputs, outputs and 
state signals. Therefore, solutions for reducing the 
computational efforts and storage amounts are 
required. In addressing this issue, (Müller et al., 2015) 
have shown that the complexity of the behaviour 
relation of the SA can be reduced by exploiting the 
underlying tensor structure of  the behaviour relation. 
Consequently, a non-negative canonical polyadic (CP) 
tensor decomposition is used to make qualitative 
models applicable to large discrete-time systems. 
The basis for Fault Detection is the qualitative 
observer. The algorithm yields, for each time-step, a 
probability vector describing the possible behaviour of 
the system states depending on the measured 
qualitative input-output combination. If the 
probability vector contains only zeros, the measured 
input-output combination is inconsistent with the 

qualitative model and a fault can be structurally 
detected, (Lichtenberg, 1998). For demonstrating FD 
with qualitative models, different faults have been 
simulated with the Modelica fault triggering library, 
developed by the German Aerospace Center (DLR), 
(Linden, 2014). In the following, an application 
example of a heat exchanger (HX) of a HVAC&R 
system shows the applicability of the qualitative 
modelling approach.  
The following simulation results were generated 
during the project CASCADE of the European 
Union’s Seventh Framework Programme FP7/2007-
2013 under grant agreement no. 284920. 
The considered heat exchanger (HX) is used as an air 
cooler and the signals shown in Figure 1 have been 
simulated with Modelica for nominal and faulty 
conditions.  

 
Figure 1. Generic HX scheme 

The simulated fault describes a malfunction of the 
pump leading to a fully opened valve, because the 
controller tries to reach the regarded set point of the 
air outlet temperature. Figure 2 shows the faulty 
behaviour during the time interval 2420 ≤ t ≤ 2708. As 
the figure shows, the air outlet temperature of the HX 
equals the air inlet temperature because no water 
circulates.  

 
Figure 2. Simulation Data 

Then, the qualitative model was trained by the 
nominal behaviour of the simulation data of the HX. 
Figure 3 illustrates the qualitative state trajectory of 
the state variable x2 for a selected nominal time range. 
The state trajectory is a direct result of the qualitative 
observation algorithm and it shows the probability 
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distribution of the state signal for each discrete time 
step k. The different grey shades of the bars denote the 
probabilities. In the example, the state signal x2 was 
quantised into five intervals that can be seen by the 
horizontal separation of the black and grey bars.  

 
Figure 3. Qualitative state trajectory of the air outlet 
temperature x2 (nominal condition) 
Figure 4 shows the qualitative state trajectory for the 
faulty condition. During the faulty operation, the 
measured input-output pair is inconsistent with the 
qualitative model what leads to components of the 
probability vector tending to zero. This is visualized 
by the white space in the figure (2420 ≤ k ≤ 2708). 
For a better interpretability, whether a fault occurred 
or not, a Boolean signal which will be 1 in nominal 
condition and 0 in faulty operation, can be displayed. 

 
Figure 4. Qualitative state trajectory of the air outlet 
temperature x2 (faulty condition) 

While the example above shows how fault detection 
with qualitative models can be realized, fault 
diagnosis is also possible. To achieve this, a set of 
qualitative models, where each model is trained with 
a different faulty condition has to be generated.  
Note that even for this simple example the behaviour 
relation of the SA contains over 3.9·106 values, what 
leads to a significant calculation amount for each 
discrete time step k. Especially for the case, that the 
qualitative model should be implemented on a 
building automation system (BAS) with limited 
computing capacity, the CP-decomposition is needed. 
In the case at hand, the size of the behaviour relation 
of the SA could be reduced by a factor of more than 
3200, down to 1200 values to be stored, making it 
transferable to BAS with real-time application.  

Fault diagnosis using qualitative models of air 
gnadling units 
This case study, which results can be found in 
(Sterling et al., 2014), comprises a constant air volume 
AHU which schematic is shown in Figure 5. The AHU 
serves a facility consisting of an audio laboratory of 
around 50 m2. In this audio laboratory, strict 
conditions of temperature and humidity should be 
maintained due to the presence of highly sensitive 
music instruments (e.g. Steinway grand pianos). The 
building is located in Cork city in the Republic of 
Ireland. 
The AHU presented in Figure 5 comprises the 
following components: 

• Mixing Box (MB): serves to recover heat 
from exhaust air by mixing a fraction of it 
with fresh air from outside; 

• Cooling Coil (CC): is used to control both 
temperature and humidity by cooling and 
dehumidifying the air; 

• Heat Coil (HC): is used to control 
temperature by heating the air; 

• Humidifier (H): serves to control humidity 
by adding water vapour to the air. 

Coils and humidifier are operated by controlling the 
respective valves that increase, decrease, or block the 
flow of hot or cold water through them. The mixing 
box is operated by means of dampers that regulate the 
mixture between outdoor fresh air and recirculation air 
that passes though the unit. 
The unit under study is a reasonably well instrumented 
AHU making it suitable for research purposes. The 
available sensors can be seen in  Figure 5, where ‘T’ 
stands for temperature (ºC) sensor, ‘RH’ for relative 
humidity (%) sensor, ‘AV’ for air volumetric flow rate 
(m3/s) sensor and ‘%’ represents the opening of valves 
and dampers. The signals and sensors data is recorded 
with a frequency of one minute. The current 
application exploits only the control signals and the 
data from the temperature sensors. Technical 
manufacturer data for each of the components of the 
unit is available. 
The approach of this case study is shown in Figure 6. 
System specific information was gathered from the 
facility’s maintenance and operation manuals. 
Domain specific information corresponds to model 
developed in Modelica modelling language (Elmqvist, 
1978) and representing first-principles of energy and 
mass transfer between the components of the AHU. 
Finally the task specific information is provided by 
OCC’M Raz’r diagnosis engine (OCC’M, 2014). The 
diagnosis approach is based on the development 
presented in (Struss & Fraracci, 2012). 



In order to support the diagnosis in this case study, 
numerical models used to generate diagnostics model 
needed to satisfy particular requirements: 

• The modelling approach needs to be strictly 
component-oriented: the library has to be 
organized around the component types (with 
models that can be parameterized) that 
constitute the plant and that are units subject 
to diagnosis, e.g. heat exchangers (coils), 
mass exchanger (humidifier, mixing box), 
mass movers (fans), etc.; 

• For fault identification, fault models must be 
represented (perhaps with a parameter 
characterizing the fault, such as the opening 
of a passing valve); 

• The plant model has to be configured strictly 
according to the real physical 
interconnections in the plant. It must not 
include computational artifacts that link 
certain variables that are not really 
interacting directly via a physical connection; 

• The models in the library have to be 
formulated in a context-independent manner 
and must not rely on implicit assumptions 

about a specific control regime, operation 
mode, or the presence and correct 
functioning of other components, even 
though they may exist in most standard 
configurations. This is relevant for two 
reasons: it enables the re-use of the 
component models for different plants, and it 
is a precondition for the adequacy of the 
models in fault situations. 

Modelica is a very adequeate tool for developing 
models that support the diagnosis approach presented 
in this case study as it aligns with the above items. 
Eventually, models need callibration which was 
performed following the approach in (Febres et al., 
2013). 
A number of experiments were conducted in a 
systematic manner with faults introduced to the 
system by modifying a single component and 
observing the reaction. In the experiments, while one 
of the components is being tested, the rest of the 
system is left to operate normally (e.g. control will 
compensate for any disturbance in order to maintain 
set point conditions in the zone). As a result of the 
experiments, four 24-hour data sets were compiled 
from real AHU data, one for a nominal working 
scenario and three for the three components under 
study namely mixing box, heating and cooling coils. 
Results from the experiments can be seen in Table 1. 

Table 1. Diagnosis results summary 

Experiment Results Comments 
Nominal No fault identified No fault identified. 

Passing Cooling 
Coil 

 2 possible faults 
identified during 5 
separate time periods 

Correctly 
identified an issue 
with the cooling 
coil. 

Passing Heating 
Coil 

4 possible faults 
identified during 3 
separate time periods 

Correctly 
identified a fault on 
the heating coil and 
also correctly 
identified a fault in 
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the mixing section 
of the AHU. 

Stuck Mixing 
Damper 

2 possible faults 
identified during 6 
separate time periods 

Correctly 
identified a fault on 
the mixing 
dampers. 

Quantitiative model-based diagnosis of AHUs  
This case study focuses on the application of an open 
and easy to replicate FDD method. A more detailed 
description of this method can be found in 
(Andriamamonjy et al., 2016). 
The method was used for component failure detection 
in an AHU, focussing on a prospective malfunction of 
the dampers, the heat recovery system and the fans. 
The AHU is part of a comprehensive test facility 
located on the KU Leuven Technologycampus Ghent 
in Belgium. It is constructed on the top of an existing 
university building and has four “zones” which are 
two lecture rooms, a staircase and a technical room 
where the AHU and the monitoring system are 
located. The lecture rooms form two parallelepiped 
insulated volumes, where one room has massive brick 
walls with insulation on its exterior face and the other 
room has a timber frame structure. The indoor 
parameters such as the temperature, the humidity and 
the CO2 within the lecture rooms are continuously 
monitored. The facility is also equipped with its own 
weather station measuring global solar irradiation, 
relative humidity, temperature, precipitation, wind 
speed and wind direction. 
In addition, a set of embedded sensors keep track of 
the AHU parameters such as the air volume flow (VF), 
air temperature (T) and relative humidity in the suplly 
air and  in the return air circuit. The damper position 
(%) signal (γi) (see Figure 7 are also monitored. 
The monitored data (e.g. the outputs σi, the inputs μi, 
the control signals γi) are centralized and stored with a 
one minute frequency in a Soft-PLC based monitoring 
system where the BMS and the FDD algorithm is 

integrated on the same industry PC hardware 
(Andriamamonjy & Klein, 2015).  
The FDD method consists of analyzing the received 
data (operation)  each minute.  Figure 8 schematizes 
the FDD process, which is based on a combination of 
a model-based fault detection and history based fault 
diagnosis. 

 
A calibrated Modelica model evaluates the outputs σi 
from the inputs (μi) and the control signal γi. A 
discrepancy superior to a predefined threshold 
between the measured value σi  and the estimation σ’i 
might be sign of malfunction within the AHU. In this 
scope, the use of Modelica was motivated by its ability 
to model dynamic behaviour of the components of the 
AHU. In addition, as an open language and 
considering the availability of open-source and 
validated libraries dedicated to buildings, Modelica 
fits especially well the aim of developing an open 
FDD method. 
The Modelica model was exported into a FMU to be 
integrated into the BMS for a near-real time estimation 
of the outputs σ’i. A Python based approach which 
relies on the pyFMi library was used for this purpose.   
For fault diagnosis, machine learning classification 
methods estimate the class of a control signal γi (i ϵ 
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[OA, EA, EABP, OABP, IEC, RECIRC]) based on the 
input and output values. If the estimation γ’i of the 
component i does not belong to the same class as the 
actual signal γi, a fault is assumed within this specific 
components.  
These classifiers are trained from a combination of 
synthetic data generated from a calibrated model and 
initial commissioning data which are assumed to be 
fault free. 
 In a third step, a rule based strategy analyzes the 
results from the aforementionned steps to categorize 
an operation as fault free (ff), faulty (ft) or unknown 
(ukn). An unknown status is obtained if the two first 
steps do not agree. For instance, if the model based 
fault detection triggers a fault while the fault diagnosis 
process fails to isolate the cause(s) of the errors or vice 
versa.  
The method has been tested on a virtual scenario 
where synthetic “measured” data was used to simulate 
the AHU. The following four scenarios were 
investigated: 

1) No error introduced.  
2) The Indirect Evaporative Cooling (IEC) 

keeps running despite a stop signal. 
3) The Outside Air damper bypass (OA BP) is 

stuck on the closed status.  
4) Multiple errors introduced (faulty OA BP 

and IEC).  
Table 2 shows the results from 8 days of data, which 
represents about 12000 operations (or 12000 min). 
Each scenario was simulated for an average of 3000 
operations each. The table 2 reflects the percentage of 
fault free, faulty and unknown operation detected 
throughout each scenario and for each component of 
the AHU. The ff and ft were taken out of the valid 
operations (not unknown). One can observe that all the 
introduced faults were identified within the considered 
scenarios, in addition the causes were identified. For 
instance, for the scenario 2, 87.5% were correctly 
classified as faulty and 76.1% of the faulty operation 
of the IEC was detected. 

Table 2. FDD results 

category FD EA BP IEC OA OA BP FDD 
results 

Scenario 1 
ff 78.4% 89.8% 92.3% 81.7% 87.6% 96% 
ft 21.5% 10.1% 7.7% 18.2% 12.4% 4% 

 ukn 20.1% 14% 2.1% 8.5% 19.9% 37.3% 
Scenario 2 

ff 19.8% 92.5% 23.8% 89% 96.3% 12.4% 
ft 80.1% 7.4% 76.1% 10.9% 3.6% 87.5% 

 ukn 4% 7.7% 2.3% 1.4% 11.7% 16.9% 
Scenario 3 

ff 66.4% 96.9% 98.6% 96.2% 0% 1.7% 
ft 33.5% 3% 1.3% 3.7% 100% 98.3% 

 ukn 5.3% 0.8% 1.3% 0.2% 4.2% 67.9% 

Scenario 4 
ff 6.9% 75.2% 17% 73.1% 38.4% 24% 
ft 93% 24.7% 83% 26.8% 61.5% 76% 

 ukn 59.7% 25% 8.1% 19.7% 28% 55.8% 

CONCLUSIONS 
In this paper we presented three different approaches 
by which Modelica can support the implementation of 
fault detection and diagnosis systems in air handling 
units. Direct implementation of modelica models 
embedded in the BAS is still not foreseen due to 
different constrains associated with model complexity 
and hardware restrictions. However, if we take into 
account that, unlike other sectors, FDD in airhandling 
units is not necessary for safety issues but its 
implementation follows rather economic and 
environmental contrains; it becomes clear that FDD in 
AHUs can be performed with a lower frequency than 
the data collection and control which, together with 
the simplicity and versatility of the language, allows 
for different FDD approaches to bebased on Modelica 
models with different levels of complexity. 
Some clear advantages in the use of Modelica for 
supporting FDD include: 

• Possiblity to integrate hybrid modelling 
processes in the same model. Modellica 
allows for mechanical, electrical, 
thermodynamic modellign, control 
algorithms, etc., all to be integrated in the 
same model; 

• Object-orientiation not only enhances 
reusability of the models but also allow 
models to be developed following the 
physical system structure which makes them 
easier to understand; 

• The open source characteristic combined 
with the existince of several freeley available 
Modelica libraries (Baetens et al., 2012; 
Lauster et al., 2014; Nytsch-Geusen et al., 
2013; Wetter et al., 2014) allows for models 
to be modified and extended depending on 
the necesities; 

• The possibility to import and export 
Modelica models as Functional Mock-up 
Units (FMUs) enables the integration of 
models using a standardized, tool-
independent API into existing FDD routines 
or the development of integral solutions that 
couple tools for data analysis, simulation, 
FDD and optimization in one single 
environment. An integral solution can be 
realized, for example, using the Building 
Controls Virtual Test Bed (BCVTB) (Wetter, 
2011) or JModelica with the python module 
PyFMI (Åkesson et al., 2010). 
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