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ABSTRACT 

This paper describes and demonstrates how to use the 

optimization program GenOpt with the building energy 

simulation program ESP-r. GenOpt, a generic 

optimization program, minimises an objective function 

that is evaluated by an external simulation program. It 

has been developed for optimization problems that are 

computationally expensive and that may have non-

smooth objective functions. ESP-r is a research oriented 

building simulation program that is well validated and 

has been used to conduct various building energy 

analysis studies. In this paper, the necessary file 

preparations are described and a simple optimization 

example is presented. 

INTRODUCTION 

Optimization is a technique that allows finding the 

optimal values of parameters that minimise an objective 

function such as energy use or operating costs. In 

building energy analysis, objective functions are 

generally discontinuous in the design parameters 

(Wetter and Polak, 2003), and their evaluation is 

usually undertaken by a dedicated simulation program. 

In these applications, the derivatives of an objective 

function are generally unavailable and might not even 

exist. While gradient-based optimization methods are 

not well-suited for these applications, derivative-free 

optimization algorithms usually perform well on such 

problems. GenOpt (Wetter 2009a) is an optimization 

program that contains libraries of such derivative-free 

optimization algorithms and that can be used for 

problems in which the cost function is evaluated using a 

simulation program that is external to the optimization 

program. GenOpt has been used to solve various 

building energy optimization problems. It has been 

coupled to different simulation programs, including 

TRNSYS (Thornton et al. 1997), IDA-ICE (Hassan et 

al. 2008), EnergyPlus (Wetter 2000) and Dymola 

(Wetter 2009b). While EnergyPlus and TRNSYS are 

commonly used in building optimization studies, there 

is precedence for employing ESP-r as well. Ferguson et 

al. (2008) used GenOpt to calibrate ESP-r models of 

combined heat and power units.. However, extended 

optimization studies using ESP-r have not been reported 

in the literature. Consequently, no guidelines are 

currently available for performing optimization studies 

with ESP-r. To address this gap, this paper discusses 

coupling GenOpt and ESP-r in detail. A simple example 

is given, for which the necessary files are downloadable 

from the ESP-r public 

repository(https://espr.svn.cvsdude.com/extras/example

s/Optimization_with_GenOpt/). 

SETTING UP AN OPTIMIZATION 

PROBLEM 

The problem description 

Solving an optimization problem requires modifying a 

set of independent variables to find a minimum of a 

function, which is called the objective function. 

Independent parameters may include, for example, 

insulation thickness, window sizes, equipment sizes and 

control set points. These user-selected parameters may 

vary continuously or in discrete steps. For practical 

reasons, these parameters may be constrained such that 

they vary over a limited range. Constraints may be 

handled directly by the optimization algorithms, such as 

for the simple case of lower and upper bounds of 

independent parameters. More complex constraints may 

be implemented by adding a penalty function to the 

objective function. For example, an optimization 

problem may require energy use to be minimized, while 

using a penalty function to ensure the resulting solution 

maintains thermal comfort. The set of independent 

parameters that results in a minimum value of the 

objective function is called a minimizer. It can be either 

a local or a global minimizer. For problems that are 

typically encountered in building energy optimization, it 

is in general not possible to know whether the cost 

function is convex. Thus, without extensive parametric 

studies, which are often computationally too expensive 

to conduct, it is not possible to know whether the global 

minimum has been found. Nevertheless, a local 

minimum is generally better compared to the non-

optimized case.  
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Selecting the optimization algorithm 

Several optimization algorithms are currently available 

in GenOpt’s library. In addition, users can implement 

their own optimization algorithms. Wetter (2009a) 

provides a discussion of different optimization 

algorithms and suggestions for selecting an appropriate 

algorithm. Here, only a brief overview is given of two 

families of algorithms that are implemented in GenOpt: 

the Particle Swarm Optimization algorithms (PSO 

algorithms) and the Generalized Pattern Search 

algorithms (GPS algorithms). These algorithms are 

most relevant for solving the example described here. 

 

The PSO algorithms can be used for continuous and 

discrete independent parameters. PSO algorithms 

randomly generate a set of initial points to be evaluated. 

Each point is called a particle, and the set of points is 

called a population. The next populations are computed 

using a particle update equation. This equation is 

modelled based on the social behaviour of bird flocks or 

fish schools (Wetter 2009a). The particle update 

equation attracts particles towards the best known 

iterate in a way that moves the whole population 

towards regions where the objective function is 

expected to be decreasing. It also contains a term that 

leads to a global exploration of the search space in 

order to increase the chance of finding a global 

minimum.  

 

The GPS algorithms can be used for problems with 

continuous parameters. GPS algorithms divide the 

search space into a mesh and search on this mesh for a 

decrease in the objective function. If no further decrease 

can be found, the mesh is refined and the search is 

repeated, starting from the currently best known iterate. 

This process ensures convergence to a local minimum 

under appropriate smoothness conditions (Torczon, 

1997). 

 

In general, the PSO algorithms are well-suited for 

exploring large parts of the parameter space and 

typically come close to an optimal solution. But because 

they are inherently stochastic, they require many 

iterations to refine the solution, which can lead to a long 

computing time. Although GPS algorithms can contain 

a global search component, they are typically used to 

explore small regions of the parameter space. GPS 

algorithms determine the parameter values for the next 

iteration based on the local descent around the current 

iteration. This allows the algorithms to quickly refine a 

solution that has been identified by a PSO algorithm. By 

combining these algorithms, the entire parameter space 

is explored in order to increase the chance of finding the 

global minimum. The hybrid GPS/PSO algorithm is 

applicable for optimization problems with continuous 

parameters only, or mixed continuous and discrete 

parameters. It starts with a global search using the PSO 

algorithm in order to increase the chance of finding the 

global minimum. After a user-specified number of 

generations, the algorithm switches to a local search 

using the GPS algorithm to further refine the search. 

The GPS starts with the best iterate found by the PSO 

algorithm. As the GPS algorithm requires the 

independent parameters to be continuous, only the 

continuous independent parameter will be varied during 

the second phase of the hybrid algorithm. 
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Figure 1 Data flow of GenOpt-ESP-r coupling 
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Preparing the files 

 

Different files need to be prepared in order to set up the 

communication between GenOpt and the building 

energy simulation program, here ESP-r, as shown in 

Figure 1. An extended overview on the details 

concerning the file preparations can be found in Wetter 

(2009a). The overview here is limited to a concise 

description. 

 

SimulationStart 
{ 
    Command = "./script.pn" ; 
    WriteInputFileExtension = false; 
} 

Figure 2 Extract of configuration file pointing to the 

script 

 

Simulation{ 
// Files used during optimization 
Files{ 
      // Name of file containing input template 
      Template{ 
         File1 = "office_template.geo"; 
         File2 = "reception_template.geo"; 
      } 
      // Name of target file  
      Input{ 
         File1 = "office.geo"; 
         File2 = "reception.geo"; 
      } 

Figure 3 Extract of initialization file pointing to 

different files containing independent parameters 

 

A second file, the initialization file, contains the names 

and paths of all files involved in or affected by the 

optimization. Figure 3 shows part of an initialization 

file. In this case, the templates for two ESP-r geometry 

files are named in the Template{} section. During each 

iteration, GenOpt will modify the data in these files 

according to the selected optimization algorithm, and 

will write new files using the names given in the 

Input{} section. These new files will be parsed by ESP-

r at the start of the simulation. The ‘//’ characters 

denote comments in GenOpt input files; these 

characters and the text that follows them are ignored by 

GenOpt. The command file defines the feasible set, 

initial values and scaling information for all 

independent parameters (Figure 4). The file further 

contains criteria for convergence and specific 

parameters related to the selected optimization 

algorithm. In this case, ‘offz1’ and ‘offz2’ define the 

dimensions of a window. The variable off_z1 varies 

continuously between 0.2 and 1.0 m. The value Step= 

0.05 causes the algorithm to search on an initial mesh 

with a spacing of 0.05 m, but this spacing will be 

refined during the course of the optimization. The 

variable off_z2 varies in discrete steps between 1.3 m 

and 2.2 m. We could have changed both values using a 

continuous parameter, but for illustration, we varied 

one parameter continuously and the other discretely. 

 

Vary{ 
     Parameter{   // off_z1 
       Name =     off_z1; 
       Min     =     0.2; 
       Ini       =     0.5; 
       Max    =     1.0; 
       Step   =      0.05; 
          } 
     Parameter{    // off_z2 
       Name    =    off_z2; 
       Ini          =    4; 
       Values   =    "1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 
2.0, 2.1, 2.2"; 
       Type      =    SET; 
         }  
       } 

… 
Algorithm{ 
  Main = GPSPSOCCHJ; 
… 

Figure 4 extract of command file with variation range 

for a continuous and discrete parameter and indication 

of selected algorithm (in this case a combination of 

GPS and PSO) 

 

The simulation input template files are the ESP-r input 

files in which all independent parameters have been 

replaced by the user with a variable name that is 

enclosed by percentage characters. Before evaluating 

the objective function, GenOpt will make a copy of this 

file and replace in the copied file all variable names 

with their numerical value as determined by the 

optimization algorithm. Figure 5 presents an extract of 

a simulation template file describing building 

geometry. In this case, the ESP-r keyword *vertex 

indicates that the subsequent data describe a coordinate 

point in the ESP-r building geometry. The ‘#’ character 

denotes a comment in ESP-r input files; this character 

and the text that follows it are ignored by ESP-r. In this 

example, vertices 13–16 denote the coordinates of the 

four points defining a window. The keywords 

‘%off_z1%’ and ‘%off_z2%’ indicate the locations 

where GenOpt will save the parameter values 

computed by the optimization algorithm. For instance, 

GenOpt will replace the ‘%off_z1%’ keyword with the 

value of the off_z1 variable. Thus, GenOpt can 

manipulate complex components of a building 

simulation program’s inputs without understanding its 
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underlying data model. This methodology ensures that 

GenOpt’s algorithms can be applied to any aspect of a 

building simulation model, and that it is compatible 

with any building simulation program that uses ASCII 

input files. Once GenOpt has prepared the new ESP-r 

input files, it invokes the script script.pn to start 

the building simulation. This script calls ESP-r and 

post-processes the ESP-r results. It also writes a file 

that contains the new value of the objective function 

and it writes additional output files that store more 

information on the simulation runs. GenOpt will then 

read the objective function value from the output file. 

Next, it displays the results to the user and generates 

files that document the progress of the optimization. A 

more detailed discussion about the data post-processing 

can be found in Peeters (2009). 

 

*vertex,5.00000,6.00000,2.50000     #  Vertex 12 
*vertex,1.00000,8.00000,%off_z1%  #  Vertex 13 
*vertex,1.00000,6.00000,%off_z1%  #  Vertex 14 
*vertex,1.00000,6.00000,%off_z2%  #  Vertex 15 
*vertex,1.00000,8.00000,%off_z2%  #  Vertex 16 

Figure5 Extract of simulation template file, in this case 

the file called office_template.geo 

 

Running the optimization 

The optimization can be run either with a graphical 

interface, or as a console application. The graphical 

interface shows the optimization progress of the 

objective function and of user-selectable parameters. 

The console application allows running GenOpt as a 

batch job for several sequential optimizations or 

starting GenOpt over a remote connection.On 

computers with multiple processors, GenOpt may run 

multiple ESP-r simulations in parallel. How many 

simulations are run in parallel depends on the number 

of processors, on the optimization algorithm and its 

configuration. 

EXAMPLE 

The simulated case 

Consider the optimization of the window size of a 3-

zone heavyweight office building depicted in Figure 6. 

The geometry of all 3 windows is to be optimized. The 

coordinates related to the bottom side of the window 

are continuous, those determining the upper side are 

discrete. All parameters can vary over a limited interval 

covering the lower half of the height of the wall they 

are built in for the bottom side and the upper half of the 

height of that wall for the upper side of the window. 

The resulting constraining minimum and maximum 

window sizes are listed in Table 1. 
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Figure 6 The 3-zone building with standard windows, 

south-east view 

 

 Table 1 Minimum and maximum window sizes 

WINDOW MINIMUM SIZE MAXIMUM SIZE 

East  0.6 m² 4.0 m² 

South 1.8 m² 12 m² 

West 0.6 m² 4.0 m² 

The aim is to minimise the energy consumption for 

heating, cooling and artificial lighting. The objective 

function f(x) (kWh) is thus defined as follows: 

( ) ( )
( ) ( )h c

h c

Q x Q x
f x PE El x

η η
= + + ⋅  

where x are the independent parameters, Qh(·) and 

Qc(·) are annual heating and cooling demand (kWh) 

and El(·) is the electricity consumption (kWh) for 

artificial lighting. The plant efficiencies related to 

heating and cooling, ηh and ηc, are set to 0.44 and 0.77 

respectively (Huang 1999). PE is the conversion factor 

to convert site electricity to primary energy and is 

dependent on the country. For Belgium it is 2.5 

(EURPROG 2007), for Italy 2.17 (EURPROG 2007) 

and for Canada 1.84 (NRCAN 2006). The optimization 

is performed for the same building located in three 

different climate zones; Brussels (Belgium), Montreal 

(Canada) and Palermo (Italy). Typical weather data is 

summarized in the graphs below. For all cities, Figure 7 

shows the hours the outdoor temperature is within 

certain limits. Figure 8 gives for each of those 

temperature intervals the average total solar radiation 

(Wh/m
2
). An intermittent heating/cooling control is 

implemented. 
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Figure 7 Yearly temperature frequency (h) 
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Figure 8 Average solar radiation hours (Wh/m²) for the different temperature intervals 

 

During office-hours, the heating or cooling is delivered 

to the different zones by use of ESP-r’s ideal zone 

controller. The temperature set point is 20°C for 

heating and 26°C for cooling. Outside this period, 

heating and cooling setpoints are 15°C and 28°C 

respectively. The maximum heating and cooling power 

is 3 kW. Artificial lighting is turned on when the light 

intensity (daylight as well as artificial lighting) is below 

450 lux for the reception and 600 lux for the office. 

The solar heat gain coefficient is 0.61. The U-values of 

the heavyweight building envelope are given in Table 

2. The annual simulation is performed using a 6-minute 

time step. Indoor heat gains are limited to office hours 

and are highest in the reception. 

The optimization 

The parameters involved are mixed discrete and 

continuous. Therefore, both the PSO and the 

combination of PSO and GPS could be applied. In this 

example, the latter option has been selected. The 

different files, including the script, can be downloaded 

from the ESP-r branch 

https://espr.svn.cvsdude.com/extras/examples/Optimiza

tion_with_GenOpt/. The posted files there are for a 

simplified optimization with shorter computing time. 

 

Table 2 U-values of different parts composing the 

building envelope. 

Part of building envelope U-value (W/m
2
K) 

External wall 0.5 

Ground floor 0.5 

Roof 1.1 

Window 1.24 

Door 1.5 

Results analysis 

The optimizations performed for the current example 

are for a whole year and the savings achieved are thus 

for both heating and cooling. Compared to the initial 

case values as given in Table 3, the optimized window 

sizes resulted in savings of 8.5% for Brussels, 4.8% for 

Montreal and even 21.3% for Palermo. The 

convergence process is shown in Figures 9 to 12. 

Figure 9 shows the value of the objective function, i.e. 
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the primary energy delivered, as a function of the 

iteration number throughout the optimization process. 

Figures 10 to 12 show the corresponding dimensions of 

the windows. To display the results, we did not plot the 

individual window heights and widths, as specified in 

Figure 4. Instead, we plotted the resulting window 

areas normalized to the maximum window area as 

listed in Table 1. The points that are spread out on the 

left of the Figures 10 to 12 are iterates of the PSO 

algorithm. The points on the right part of the figures 

that appear to follow a more smooth line are the main 

iterates of the GPS, here the Hooke-Jeeves, algorithm. 

 

Considering the Brussels case, the optimum for the east 

window shows to be as large as possible. This is the 

result of the best trade-off between heat gains and 

losses and lighting electricity savings due to use of 

daylight. The weight of the latter consumption is 

relatively high due to the conversion factor of 2.5 for 

the Belgian electricity generation mix. However, as can 

be seen in Table 4 below, the overall energy use for 

lighting is small compared to the energy use for 

cooling. The optimal size of the south window tends 

towards minimal, the main reason being the higher 

intensity of the solar radiation on this window. This 

high solar intensity increases the cooling energy 

consumption. This increase cannot be compensated by 

a reduction in energy for artificial lighting and a 

possible decrease of the heating load due to solar heat 

gains in winter. For Montreal, all optimal window areas 

are smaller than the initial values (Figure 11). The 

values given by Table 4 show a large reduction in the 

cooling energy consumption when compared to the 

initial case scenario. The reduction of the window sizes 

has only a limited effect on the heating energy 

consumption, i.e. an increase by 6.4%, while the 

increase in primary energy consumption for lighting is 

close to 87%. The absolute increase for lighting energy, 

however, is small compared to the primary energy for 

heating and cooling. The results are thus mainly 

explained by a reduction in solar gains entering the 

building and thus a way to decrease overheating. 

Palermo shows a markedly different climate. Figure 7 

shows moderate to high temperatures throughout the 

whole year for Palermo. Figure 8 shows that the solar 

radiation during 

 

Table 3 Initial and optimized parameter values 

 

Parameter 
Initial value  Optimized value 

B r u s s e l s Montreal P a l e r m o Brussels  Montreal P a l e r m o 

Lower height  of east window (m) 0.5 0.5 0.5 0.2 1.0 0.8 

Upper height  of east window (m) 1.6 1.6 1.6 2.2 1.3 2.2 

Lower height  of south window (m) 0.5 0.5 0.5 0.95 0.8 0.2 

Upper height  of south window (m) 1.6 1.6 1.6 1.3 1.6 1.3 

Lower height  of west window (m) 0.5 0.5 0.5 0.7 0.7 0.8 

Upper height  of west window (m) 1.6 1.6 1.6 1.3 1.3 1.3 
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Figure 9 Primary energy delivered as a function of the simulation number in the optimization process. Results are 

shown for the buildings located in Brussels, Montreal and Palermo 
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Figure 10 Relative surface area as a function of the simulation number in the optimization process. Results given 

for the building located in Brussels 

Montreal
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Figure 11 Relative surface area as a function of the simulation number in the optimization process. Results given 

for the building located in Montreal 

Palermo

0

20

40

60

80

100

1 50 99 148 197 246 295 344

Simulation number (-)

R
e
la

tiv
e
 s

u
rf

a
c
e
 a

re
a
 (

%
)

east south west

 
Figure 12 Relative surface area as a function of the simulation number in the optimization process. Results given 

for the building located in Palermo 
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Table 4 Initial case and optimized case primary energy uses 

 

Load 
Initial case Optimized case 

B r u s s e l s Montreal P a l e r m o Brussels  Montreal P a l e r m o 

Heating primary energy use (kWh) 1131 3806 1 1226 4051 4 

Cooling primary energy use (kWh) 4136 5763 14128 3145 4423 10398 

Lighting primary energy use (kWh) 889 699 344 1268 1304 738 

Total primary energy use (kWh) 6156 10269 14473 5639 9777 11140 

 

moderate to high outdoor temperatures is less than for 

the same temperatures in Montreal. This ratio changes 

only for the seldom occurring temperatures above 

30°C. As shown by Figure 9 and Table 4, the energy 

use for Palermo is higher than for the other two cases 

and it is dominated by the cooling energy consumption. 

As shown by Figure 12, both the south and west 

window have their optimum close to the minimal sizes, 

while the optimum surface area for the east window is 

maximum. The results are thus again explained by a 

reduction in solar gains. Compared to the Montreal 

case, however, there is a beneficial effect of solar 

radiation on the east window. This is due to a less 

intense solar radiation, negligible heat losses due to 

higher ambient temperatures, combined with the higher 

weight of electricity for artificial lighting: a conversion 

factor of 2.17 for Palermo, compared to 1.84 for 

Montreal.  

 

The determination of the primary reasons for the 

observed phenomena would require a thorough 

sensitivity analysis, which is outside the scope of this 

study. 

CONCLUSION 

GenOpt has been used frequently with common 

building simulation programs such as TRNSYS, 

EnergyPlus and IDA-ICE. Running an ESP-r - GenOpt 

optimization has not been previously described in 

detail. The overview given in this paper shows the flow 

of information during such an optimization and 

describes the files to be prepared. 

While simple, the glazing optimization presented in 

this paper shows the strengths of the coupling between 

the two programs. Since the files required to run the 

example are available in the public ESP-r repository, 

future users can build their own optimization files in an 

efficient way. 
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