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Abstract
Building energy simulation programs compute numerical approximations to physical phe-

nomena that can be modeled by a system of differential algebraic equations (DAE). For a
large class of building energy analysis problems, one can prove that the DAE system has a
unique once continuously differentiable solution. Consequently, if building simulation pro-
grams are built on models that satisfy the smoothness assumptions required to prove existence
of a unique smooth solution, and if their numerical solvers allow controlling the approxima-
tion error, one can use such programs with Generalized Pattern Search optimization algorithms
that adaptively control the precision of the solutions of the DAE system. Those optimization
algorithms construct sequences of iterates with stationary accumulation points and have been
shown to yield a significant reduction in computation time compared to algorithms that use
fixed precision cost function evaluations.

In this paper, we state the required smoothness assumptions and present the theorems that
state existence of a unique smooth solution of the DAE system. We present BuildOpt, a de-
tailed thermal and daylighting building energy simulation program. We discuss examples that
explain the smoothing techniques used in BuildOpt. We present numerical experiments that
compare the computation time for an annual simulation with the smoothing techniques ap-
plied to different parts of the models. The experiments show that high precision approximate
solutions can only be computed if smooth models are used. This is significant because to-
day’s building simulation programs do not use such smoothing techniques and their solvers
frequently fail to obtain a numerical solution if the solver tolerances are tight. We also present
how BuildOpt’s approximate solutions converge to a smooth function as the precision param-
eter of the numerical solver is tightened.
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Disclaimer

This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States Gov-
ernment nor any agency thereof, nor The Regents of the University of California, nor any of
their employees, makes any warranty, express or implied, or assumes any legal responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by its trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favor-
ing by the United States Government or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof, or The Regents of the University of
California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.
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1 Introduction

We present BuildOpt, a new multi-zone thermal and daylighting building energy simulation pro-
gram. BuildOpt is different from existing building energy simulation programs, such as Energy-
Plus (Crawley et al., 2001), TRNSYS (Klein et al., 1976) and DOE-2 (Winkelmann et al., 1993),
since it is built on models that are defined by differential algebraic equations (DAE system) that are
once Lipschitz continuously differentiable in the building design parameters, and since all partial
differential equations, ordinary differential equations and algebraic equations are solved simulta-
neously. The use of smooth models not only allows proving that the DAE system has a unique
solution that is once continuously differentiable in the building design parameters, but it is in fact
required to achieve convergence of the DAE solver if the solver tolerances are tight. This is a sig-
nificant observation because today’s building energy simulation programs are built on non-smooth
models, and their solvers frequently fail to obtain a numerical solution if the solver tolerances are
tight.

The use of a DAE solver, as opposed to ad-hoc implemented solvers that are spread throughout
the code (which is common in most building energy simulation programs), allows controlling the
precision of the numerical approximations to the solution of the DAE system and hence it allows
obtaining a function that bounds the approximation error as a function of the solver tolerance. This
is required in order for the simulation program to be used with Generalized Pattern Search (GPS)
optimization algorithms with adaptive precision cost function evaluations, developed by Polak
and Wetter (2003), or by algorithms that are based on the Master Algorithm Model 1.2.36 in Polak
(1997). Those optimization algorithms use coarse precision simulations for the early iterations
and progressively increase the precision of the simulations. This significantly reduces computa-
tion time and allows proving that the optimization algorithm constructs sequences of iterates with
stationary accumulation points. To the best of our knowledge, BuildOpt is the first building energy
simulation program that can be used to do building design optimizations that provably converge to
a stationary point.

Numerical experiments with EnergyPlus and analysis of its source code revealed that it does
not seem possible to prove that EnergyPlus computes an approximate solution that converges to
a smooth function as the solver tolerances are tightened. In fact, in numerical experiments in
which we modeled a building’s heating and cooling load and daylighting control, there were about
ten solvers that controlled subsystems of the simulation model (such as the heat conduction in
the solids, the variable time-step integration of the room air temperature and the initialization of
the state variables). We were not able to analyze how the approximation errors of the different
solvers were propagated from one model to another, and from one time step to the next, and the
code became unstable as we increased the solver tolerances. In Wetter and Wright (2003a), Wetter
and Polak (2003) and (Wetter and Wright, 2003b), it is shown that a building’s annual energy
consumption computed by EnergyPlus is discontinuous in the building design parameters, and
that the discontinuities are in some cases on the order of 2% of the cost function value. This
caused in some numerical experiments the optimization algorithms to jam. In order to have a
building energy simulation program that can be used to perform building design optimizations that
provably find a stationary point of the cost function, we developed BuildOpt.
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One may ask why we developed our own simulation program rather than having used the IDA-
ICE program (Björsell et al., 1999; Sahlin and Bring, 1991), which is an equation-based building
energy analysis program that has a large library of simulation models. IDA-ICE generates from
equation-based models a DAE system which it solves simultaneously. Discussions with its devel-
oper showed that IDA-ICE might indeed be a promising tool for use with our optimization algo-
rithms. However, without extensive numerical experiments and code analysis, it is not possible to
conclude that IDA-ICE satisfies our requirements. Furthermore, in case of bad performance of our
optimization algorithms, it would have been hard if not impossible to detect why our algorithms
did not work as expected. Therefore, for the initial experiments of our optimization algorithms,
we preferred to develop our own code.

The paper is structured as follows. First, we present the optimization problem and the assump-
tions that the simulation program needs to satisfy in order to be used with our GPS algorithms with
adaptive precision cost function evaluations. Next, we characterize BuildOpt’s physical model, ex-
plain some of the models that are implemented in BuildOpt, and explain some of the smoothing
techniques that are used in implementing the models. Then, we present numerical experiments
that compare how the smoothing techniques affect the convergence of the DAE solver and verify
that the numerical approximations converge to a smooth function as precision is increased.

2 Nomenclature

2.1 Conventions

1. Vectors are always column vectors, and their elements are denoted by superscripts.

2. Elements of a set or a sequence are denoted by subscripts.

3. f (·) denotes a function where (·) stands for the undesignated variables. f (x) denotes the
value of f (·) for the argument x. f : A → B indicates that the domain of f (·) is in the space
A, and that the image of f (·) is in the space B.

4. We say that a function f : R
n → R is once (Lipschitz) continuously differentiable if f (·) is

defined on R
n, and if f (·) has a (Lipschitz) continuous derivative on R

n.

5. For ε,εS ∈ R
q
+, by ε ≤ εS, we mean that 0 < εi ≤ εi

S, for all i = {1, ... ,q}.
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2.2 Symbols

q dimension of the precision parameter of the numerical solvers
t time
x independent parameter in the optimization problem
a ∈ A a is an element of A
A ⊂ B A is a subset of B
R set of real numbers
R

q
+ {x ∈ R

q | xi > 0, i ∈ {1, . . . ,q}}
, equal by definition
‖x‖ L2 norm of x ∈ R

n, defined as ‖x‖ ,
(
∑n

i=1(x
i)2

)1/2

3 Properties of Optimization Problem

3.1 Optimization Problem

We are interested in solving box-constrained problems of the form

min
x∈X

f (x), (1)

where X ,
{

x ∈ R
n | li ≤ xi ≤ ui, i ∈ {1, . . . ,n}

}
is the constraint set, with −∞ ≤ l i < ui ≤ ∞ for

all i ∈ {1, . . . ,n}.
We assume that the cost function is once continuously differentiable and defined as

f (x) , F(z(x,1)), (2)

where F : R
m → R is once continuously differentiable and z(x,1) ∈ R

m is the solution of a semi-
explicit nonlinear DAE system with index one (Brenan et al., 1989) of the form

ż(x, t) = h
(
x,z(x, t),µ

)
, t ∈ [0, 1], (3a)

z(x,0) = z0(x), (3b)

γ
(
x,z(x, t),µ

)
= 0, (3c)

where h : R
n×R

m×R
l →R

m, z0 : R
n →R

m and γ : R
n×R

m×R
l →R

l are once Lipschitz contin-
uously differentiable in all arguments and equation (3c) has, for all x ∈R

n and for all z(·, ·) ∈R
m, a

unique solution µ∗(x,z)∈R
l and the matrix with partial derivatives ∂γ(x,z(x, t),µ∗(x,z))/∂µ ∈R

l×l

is non-singular. The notation ż(x, t) denotes differentiation with respect to time.
Equation (3) is a DAE system that describes a building energy simulation model after the

spatial domains of wall, floor and ceiling constructions have been discretized in a finite number of
nodal points. For example, the components of the vector z(·, ·) can be the room air temperature, the
solid temperature at the nodal points, and the building energy consumption for cooling, heating and
lighting, and γ(·, ·, ·) can be a system of nonlinear equations that is used to describe the temperature
of elements with negligible thermal capacity, such as window glass.
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3.2 Existence of a Unique Smooth Solution of the DAE System

We will now state the assumptions that we use to establish existence, uniqueness and differentia-
bility of the solution z(·,1) of (3).

Assumption 3.1 With γ : R
n ×R

m ×R
l → R

l as in (3c), we assume that γ(·, ·, ·) is once continu-
ously differentiable, and we assume that for all x ∈ R

n and for all z(·, ·) ∈ R
m, equation (3c) has a

unique solution µ∗(x,z)∈R
l and that the matrix with partial derivatives ∂γ(x,z(x, t),µ∗(x,z))/∂µ ∈

R
l×l is non-singular.

By using the Implicit Function Theorem (Polak, 1997), one can show that Assumption 3.1 implies
that the solution of (3c), i.e., the µ∗(x,z) that satisfies γ

(
x,z(x, t),µ∗(x,z)

)
= 0, is unique and once

continuously differentiable in x and z. Therefore, to establish existence, uniqueness and differen-
tiability of z(·,1), we can reduce the DAE system (3) to an ordinary differential equation, which
will allow us to use standard results from the theory of ordinary differential equations. To do so,
we define for x ∈ R

n, for t ∈ [0, 1] and for z(x, t) ∈ R
m the function

h̃(x,z(x, t)) , h
(
x,z(x, t),µ∗(x,z)

)
, (4)

and write the DAE system (3) in the form

ż(x, t) = h̃
(
x,z(x, t)

)
, t ∈ [0, 1], (5a)

z(x,0) = z0(x). (5b)

We will use the notation h̃x(x,z(x, t)) and h̃z(x,z(x, t)) for the partial derivatives (∂/∂x)(h̃(x,z(x, t)))
and (∂/∂z)(h̃(x,z(x, t))), respectively. We will make the following assumption.

Assumption 3.2 With h̃ : R
n ×R

m → R
m and z0 : R

n → R
m as in (5), we assume that

1. the initial condition z0(·) is continuously differentiable,

2. there exists a constant K ∈ [1, ∞) such that for all x′,x′′ ∈ R
n and for all z′,z′′ ∈ R

m, the
following relations hold:

‖h̃(x′,z′)− h̃(x′′,z′′)‖ ≤ K
(
‖x′− x′′‖+‖z′− z′′‖

)
, (6a)

‖h̃x(x′,z′)− h̃x(x′′,z′′)‖ ≤ K
(
‖x′− x′′‖+‖z′− z′′‖

)
, (6b)

and

‖h̃z(x′,z′)− h̃z(x′′,z′′)‖ ≤ K
(
‖x′− x′′‖+‖z′− z′′‖

)
. (6c)

Now we can use the following theorem, which is a special case of Corollary 5.6.9 in Polak (1997),
to show that f (·) , F(z(·,1)) is once continuously differentiable.

Theorem 3.3 Suppose that F : R
m → R is once continuously differentiable on bounded sets, that

Assumptions 3.1 and 3.2 are satisfied and that f : R
n → R is defined by f (x) , F(z(x,1)). Then,

f (·) is once continuously differentiable on bounded sets.
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3.3 Numerical Solutions of the DAE System

We assume that z(x, t) cannot be evaluated exactly, but that it can be approximated numerically by
functions z∗(ε,x, t), where z∗ : R

q
+×R

n×R→R
m and ε∈R

q
+ is a vector that contains the precision

parameters of the DAE solvers. Hence, we denote by z∗(ε,x, t) the numerical approximation for
the solution z(x, t) of (3), as computed by a simulation program with solver precision parameters
ε. Thus, for ε ∈ R

q
+ and x ∈ R

n, we define approximating cost functions f ∗(ε,x) , F(z∗(ε,x,1))
which are, in general, discontinuous in x due to adaptive algorithms in the DAE solver, such as
variable time step integration algorithms or Newton-based solvers.

3.4 Requirements on the Exact Cost Function and on the Approximating Cost
Functions

We want to use BuildOpt to evaluate the cost function in Generalized Pattern Search (GPS) al-
gorithms with adaptive precision cost function evaluations (Polak and Wetter, 2003). For those
algorithms, we need to make the following assumptions on the solution z(·,1) and its numerical
approximations {z∗(ε, ·,1)}ε∈

� q
+

.

Assumption 3.4
1. There exists an error bound function ϕ : R

q
+ → R+ such that for any bounded set S ⊂ X,

there exists an εS ∈ R
q
+ and a scalar KS ∈ (0, ∞) such that for all x ∈ S and for all ε ∈ R

q
+,

with ε ≤ εS,
|z∗(ε,x,1)− z(x,1)| ≤ KS ϕ(ε). (7)

Furthermore,
lim

‖ε‖→0
ϕ(ε) = 0. (8)

2. The function z : R
n ×R → R is once continuously differentiable.

Note that we allow the functions {z∗(ε, ·,1)}ε∈
� q

+
to be discontinuous. Examples of error

bound functions ϕ(·) can be found in Polak and Wetter (2003) and in Wetter and Polak (2003).

4 BuildOpt Simulation Program

Many if not all of today’s detailed building simulation programs are built on models that do not
satisfy Assumptions 3.1 and 3.2. Furthermore, the numerical experiments presented in Wetter
and Wright (2003a), in Wetter and Polak (2003), and in Wetter and Wright (2003b) show that
approximating cost functions computed by EnergyPlus can have discontinuities on the order of 2%
of the cost function value. In some numerical experiments, this caused optimization algorithms to
jam.

To ensure that the simulation program used in the optimizations is built on models that are
smooth in the input data and to ensure that controlling the approximation error is possible, we
developed BuildOpt, a new building energy simulation program.
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4.1 Models

BuildOpt is built on detailed simulation models that consist of 30,000 lines (1.2 MB) of C/C++
code. We will here only give a brief overview of the models to give an impression of the model
complexity.

The diffuse solar irradiation is computed using the model of Perez et al. (1990, 1987) and
the radiation temperature of a cloudy sky is computed using the model of Martin and Berdahl
(1984). To compute the heat conduction in opaque materials, with possibly composite layers, the
Galerkin method (Evans, 1998; Strang and Fix, 1973) is used for the spatial discretization. The
spatial discretization results in systems of ordinary differential equations. The systems are coupled
to other constructions via long-wave radiative heat exchange, and are coupled to the room air
temperatures via convective heat transfer. The short-wave radiation through multi-pane windows
is computed using a model similar to the one used in the Window 4 program (Finlayson et al.,
1993). The daylight illuminance is computed with a model based on view-factors that is similar to
the model in the DeLight program of Vartiainen (2000). All equations are solved simultaneously,
as explained in Section 4.3.

4.2 Smoothing Techniques

BuildOpt differs from other building simulation programs in that it uses various smoothing tech-
niques to make all model equations as well as the table look-ups (used in Perez’ model), hourly
schedules of internal heat gains and weather data once Lipschitz continuously differentiable in the
state variables, in the model parameters and in time. Smoothing is required to satisfy Assump-
tion 3.2, it significantly reduces the computation time and it is required to achieve convergence of
the DAE solver if the solver tolerance is tight.

The building blocks used to formulate once Lipschitz continuously differentiable models are
as follows. For s ∈ R and for some δ > 0, we defined a once Lipschitz continuously differentiable
approximation for the Heaviside function as

H̃(s;δ) ,





0, for s < −δ,
1
2

(
sin

( s
δ

π
2

)
+1

)
, for −δ ≤ s < δ,

1, for δ ≤ s.

(9)

We parametrized (9) by δ > 0 to be able to take the scaling of s into account. Equation (9) is used
to define a once Lipschitz continuously differentiable approximation for the max function as

m̃ax(a,b;δ) , a+(b−a) H̃(b−a;δ). (10)

This function is then, for example, used to smoothen the convective heat transfer coefficient be-
tween a wall surface and the room air as we will now explain. A commonly used equation for
the convective heat transfer coefficient due to natural convection between a wall surface at tem-
perature T and the room air, which we assume for this explanation to have zero temperature, is
h(T ) = 1.310 |T |1/3. Hence, the convective heat transfer per unit area is q(T ) = 1.310 |T |1/3 T ,
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which has a derivative that fails to be Lipschitz continuous near zero. Consequently, we used for
the convective heat transfer coefficient the once Lipschitz continuously differentiable approxima-
tion h̃(T ) = 1.310 m̃ax(1, |T |1/3;0.1).

To interpolate the weather data for time instants that do not coincide with time stamps in the
weather data file, we used cubic splines. To interpolate values of internal loads for people, lighting
and electric equipment, which are specified by hourly schedules, we used the smooth Heaviside
function (9) with δ = 1/2 hour.

Thus, BuildOpt’s simulation models are written in such a way that the functions h : R
n×R

m×
R

l → R
m, z0 : R

n → R
m and γ : R

n ×R
m ×R

l → R
l , defined in (3), are implemented so that the

Assumptions 3.1 and 3.2 are satisfied. We do not believe that there is any other building energy
simulation program that is built on models that are as detailed as the models in BuildOpt and that
satisfies Assumptions 3.1 and 3.2.

4.3 Solving the Equations

BuildOpt’s models are linked with the DAE solver DASPK (Brenan et al., 1989; Brown et al.,
1994). The DASPK solver uses a variable time-step, variable order Backward-Differentiation
Formula.

To solve the DAE system (3), the DASPK solver requires the simulation model to be written
in the residual form

G(t, v(x, t), v̇(x, t)) =

(
ż(x, t)−h(x, z(x, t), µ∗(x,z))

γ(x, z(x, t), µ∗(x,z))

)
= 0, (11)

where v(x, t) , (z(x, t),µ∗(x,z))T ∈ R
m+l is the vector of differential variables z(x, t) and of al-

gebraic variables µ∗(x,z), which are the solution of (3c). Given initial values of the differential
variables z(x,0), DASPK computes consistent initial conditions ż(x,0) and µ∗(x,z(x,0)), or con-
versely, given v̇(x,0), it computes consistent values for v(x,0) (see Brown et al. (1998)).1 At
each time step t ∈ [0, 1], DASPK passes to BuildOpt a t̂ > t, a v̂(x, t̂) and a ̂̇v(x, t̂), where ̂̇v(x, t̂)
is approximated by backward differences2 and BuildOpt returns to DASPK the residual vector
G

(
t̂, v̂(x, t̂), ̂̇v(x, t̂)

)
∈ R

m+l . This process is repeated iteratively until all convergence tests in
DASPK are satisfied. Our simulation model is too big to obtain an analytical expression for the
iteration matrices Gv(·, ·, ·) and Gv̇(·, ·, ·) used by DASPK. Hence, we configured DASPK so that
it approximates the iteration matrices using finite differences. The linear system of equations that
arises in the Newton iterations is solved using a direct method. We note that more efficient solu-
tion strategies could be implemented in our code, but we have not yet pursued such improvements.
For example, the linear system could be solved using a sparse matrix solver or Krylov iterations.

1We say that initial conditions v(x,0) and v̇(x,0) are consistent if G(0,v(x,0), v̇(x,0)) = 0.
2E.g., if the Implicit Euler method is used, then ̂̇v(x, t̂) is replaced by (v(x, t̂)− v(x, t̂ − δ))/δ, where δ ∈ � is the

integration time step.
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Furthermore, we currently check only in the computationally most expensive models if the input
data are the same as in the last model evaluation, in which case no model evaluation is required.3

4.4 Model Validation

In Wetter et al. (2004), the thermal simulation model is validated using the ANSI/ASHRAE Stan-
dard test procedure 140-2001 (ASHRAE, 2001), and the daylighting simulation is validated using
benchmark tests from Laforgue (1997) and Fontoynont et al. (1999), which were produced in the
Task 21 of the International Energy Agency (IEA) Solar Heating & Cooling Program. The results
of BuildOpt show good agreement with the results of the other validated programs.

5 Numerical Experiments

We will now describe how the smoothing techniques affect the convergence of the DASPK solver
and consequently reduce the computation time. For the numerical experiments, we did compu-
tations of the annual source energy consumption for heating, cooling and lighting of an office
building in Houston, TX. We simulated three representative spaces: a north and a south facing
room and a hallway between the rooms. The simulation model is described in Wetter and Wright
(2003b). In Tab. 1 we show for different precision parameters ε the normalized number of eval-
uations of the residual function G(·, ·, ·), defined in (11), in an annual simulation. For BuildOpt,
the number of residual evaluations is proportional to the computation time. A normalized compu-
tation time of 1.0 corresponds to 33.4 minutes on one 2.2 GHz AMD processor using the Linux
2.4.18−3 kernel. The first three columns in Tab. 1 are defined as follows: In the column labeled
“model equations”, “smooth” means that the smoothing of the model equations is enabled (i.e.,
all model equations, but not necessarily the hourly schedules, are once Lipschitz continuously dif-
ferentiable in the state and in time), and “non-smooth” means that the smoothing is disabled. In
the column labeled “internal loads”, “smooth” means that internal loads due to people, lights, and
electric equipment, which are all specified by hourly schedules, are interpolated using the function
H̃(·;δ), as defined in (9), with δ = 1/2 hour, “linear” means that we used linear interpolation,
where the change from one value to the next occurs over one hour, and “step” means that the
hourly schedules are implemented as step functions. In the column labeled “weather data”, “cu-
bic” means that we used cubic splines to interpolate the weather data, and “linear” means that we
used linear interpolation. For all combinations of these smoothing techniques, we did five annual
simulations with solver tolerance settings ε ∈ {10−m}5

m=1.
We observed that we were only able to compute high precision approximations when we

used smooth models, which will hardly surprise any numerical analyst. The reason is that the
DASPK solver uses Taylor expansions to approximate solutions of nonlinear equations and to
replace derivatives by finite difference approximations, which is common to any Newton-based
solver. However, if the equations being solved are not differentiable, then the Taylor expansions

3When DASPK approximates the elements of the iteration matrices Gv(·, ·, ·) and Gv̇(·, ·, ·), many models are repet-
itively evaluated with no change in input data.
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Smoothing Solver tolerance ε
Model equations Internal loads Weather data 10−1 10−2 10−3 10−4 10−5

smooth smooth cubic 0.011 0.080 0.169 0.497 1
smooth linear cubic 0.011 0.078 0.170 0.503 1.048
smooth step cubic 0.012 0.091 * * *
smooth smooth linear 0.005 0.056 0.299 0.879 2.012
smooth linear linear 0.006 0.054 0.300 0.889 2.044
smooth step linear 0.007 0.069 0.454 * *

non-smooth smooth cubic 0.011 0.078 0.233 * *
non-smooth linear cubic 0.011 0.078 0.238 * *
non-smooth step cubic 0.012 0.093 * * *
non-smooth smooth linear 0.009 0.093 0.511 * *
non-smooth linear linear 0.009 0.093 0.521 * *
non-smooth step linear 0.010 0.110 * * *

Table 1: Normalized number of calls to G(·, ·, ·) in an annual simulation with different solver
tolerances and different smoothing. An asterisk “*” means that the DAE solver failed to converge
in 25 time steps, in which case the simulation stopped.

are inaccurate or even completely wrong, which can cause the Newton search direction to point
away from the solution of the equation. However, in practice we observe that building simulation
programs are built on non-smooth models and contain Newton-based solvers that frequently fail
to find a solution if the solver tolerances are tight. This is what we also observed in BuildOpt
when we disabled the smoothing techniques. Furthermore, when the solver tolerance was tight,
BuildOpt’s computation time increased by a factor of two when we changed from cubic splines to
linear interpolation of the weather data. This is interesting because many if not all of today’s build-
ing simulation programs use linear interpolation rather than cubic splines. Thus, we believe that
the convergence properties of today’s building energy simulation programs could be significantly
improved if they were built on smooth models and if they used weather data interpolations that are
smooth in time. Numerical solvers that detect state events, such as a change in model equations
for some domain of the model input data, are likely to be more robust than DASPK if non-smooth
models are used, but the detection of state events is computationally expensive and hence it may
be better to prevent state events where possible.

We will now show how the approximate numerical solutions converge to a smooth function as
the tolerance of the DASPK solver is tightened.

Let z∗(ε,x,1) ∈ R denote the numerical approximation of the annual source energy consump-
tion for heating, cooling and lighting of the office building used in the above numerical experi-
ments, computed by BuildOpt with solver tolerance ε ∈ R+. Here, x ∈ R denotes the normalized
setpoint for the shading device of the south facing window. Let δ(ε,x) denote the relative change
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Figure 1: Relative change of the annual source energy consumption δ(ε,x), defined in (12), for
different precision parameters ε. For better visibility of the data series, the support points are
connected by lines. The figure is reproduced from Wetter and Polak (2004).

in the source energy consumption, defined as

δ(ε,x) ,
z∗(ε,x,1)− z∗(10−5,0.048,1)

z∗(10−5,0.048,1)
. (12)

In (12), the argument 0.048 corresponds to the normalized shading control setpoint that yields
lowest annual source energy consumption. In Fig. 1, we plot δ(ε,x) for different values of ε and x.
The figure shows how z∗(ε, ·,1) converges to a smooth function as ε → 0. The difference between
δ(10−4, ·) and δ(10−5, ·) is almost invisible.

6 Conclusion

Building energy simulation programs can be written so that they compute approximate solutions
to a DAE system that converge to a smooth function as the solver tolerance is tightened. This
is required if the simulation program is used with GPS algorithms with adaptive precision cost
function evaluations which provably construct sequences of iterates with stationary accumulation
points.

To obtain convergence of the DAE solver at tight solver tolerance, and to reduce the computa-
tion time, it is essential that model equations, the hourly schedules and the weather data are smooth
in the state variables and in time. This observation is significant because today’s building energy
simulation programs are built on non-smooth models and their solvers are known to frequently fail
to converge to a solution if the solver tolerances are tight.
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