
2018 Building Performance Analysis Conference and

SimBuild co-organized by ASHRAE and IBPSA-USA

Chicago, IL

September 26-28, 2018

SIMULATOR TO FMU: A PYTHON UTILITY TO SUPPORT BUILDING

SIMULATION TOOL INTEROPERABILITY

Thierry S. Nouidui, Michael Wetter

Lawrence Berkeley National Laboratory, Berkeley, CA

ABSTRACT

The Functional Mock-up Interface (FMI) standard is an

open standard for an application programming interface

that allows run-time interoperability with other

simulation tools, such as for co-simulation. As of today,

more than 100 simulation tools use the FMI standard.

However only few building simulation tools are exported

as FMUs because of a lack of export utilities.

To address this limitation, we developed

SimulatorToFMU, a Python utility which exports

Python-driven simulation tools and Python scripts as

FMUs.

First, we describe SimulatorToFMU. Second, we

demonstrate its application to successfully export

OPAL-RT, a real-time simulation tool as an FMU. Third,

we conclude and discuss potential extensions to

SimulatorToFMU.

INTRODUCTION

As buildings are becoming increasingly integrated and

complex, it is often not possible to simulate in one single

tool all building domains including HVAC, controls,

envelope, and daylighting. Rather, it may be required to

couple during runtime, for example, a simulator for the

envelop with a simulator for the HVAC and control

system.

Since different simulation tools are written in different

languages with different Application Programming

Interfaces (API), it is challenging to couple different

simulation tools. To address this problem, the

automotive industry has developed an open standard

called Functional Mock-up Interface (Blochwitz et al.

2012) (FMI1). A tool which implements the FMI

standard exposes itself in a way that makes it run-time

interoperable with other simulators or tools that use the

FMI standard. In this paper, we present a software

1 https//fmi-standard.org
2 https://itea3.org/project/modelisar.html

package which leverages the FMI standard to support

interoperability of simulation tools. The next section

introduces the FMI standard. We then discuss the

application of FMI in the building simulation

community. This is followed by a description of

SimulatorToFMU, the tool we implemented to support

simulation tools interoperability. We show an

application where SimulatorToFMU is used, and discuss

other potential applications of SimulatorToFMU. We

conclude the paper with an outlook for

SimulatorToFMU.

FUNCTIONAL MOCK-UP INTERFACE

The FMI standard originated from the ITEA2

MODELISAR2 project, a multi-million European

project. FMI standardizes an API to be implemented by

a simulation model to facilitate its interoperability with

other models. The FMI standard provides two APIs,

called FMI for model exchange and FMI for co-

simulation. A simulation model which implements the

FMI for model exchange API exposes its differential

equations, whereas a model which implements the FMI

for co-simulation standard exposes a function that

returns the new value of the state variables, hence it

includes a solver for its system of differential equations.

A simulation model which implements the FMI standard

is called a Functional Mock-up Unit (FMU).

An FMU is an input/output representation of the model

which is distributed as a zip file with the extension .fmu.

This zip file contains an XML3 model description file

with metadata about the model, the model itself, and a

set of standardized C functions to interact with the

model.

Figure 1 shows a model described by a first-order

ordinary differential equation which has been exported

as an FMU for model exchange (top right), and an FMU

3 https://www.w3.org/XML/

This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Foreign copyrights may apply.

325

for co-simulation (bottom right). The model has one

continuous state x, an input u, and an output y.

When the model is exported as an FMU for model

exchange, the FMU exposes as external inputs the time

t, the state x, and the input u of the model. As outputs,

the model exposes the state derivative dx/dt and the

output y. The FMU does not provide a time integration

algorithm. Hence, a time integration algorithm needs to

be provided outside the FMU in order to compute the

state trajectory.

When the model is exported for co-simulation, the FMU

exposes its external inputs, the integration step size Δt

and the input u. As outputs, it exposes, the integrated

state x and the output y. In this situation the FMU

contains an integrator which computes the state

trajectory from a time t to a time t+Δt, with Δt being

specified by the tool which imports and runs the FMU.

Figure 1 First-order ordinary differential equation

exported as an FMU for model exchange (top right)

and co-simulation (bottom right).

FUNCTIONAL MOCK-UP INTERFACE IN

BUILDING SIMULATION

Although there are more than 100 tools which support

the FMI standard, only few building simulation tools

implement an FMI interface. EnergyPlus provides an

FMI import (Nouidui et al. 2014) and export4 interface

for FMI 1.0 for co-simulation. TRNSYS models can be

exported as FMUs for co-simulation 1.0 and 2.0 using

the FMI++ library5. The Building Controls Virtual Test

Bed6 supports the import of FMUs for co-simulation

and model exchange 1.0 and 2.0. WUFI+ supports the

import of FMUs for co-simulation 1.0 (Pazold M. et al.

2012). This lists shows the limited number of tools

which support FMI and motivates the need for FMU

4https://github.com/lbl-srg/EnergyplusToFMU

EnergyPlusToFMU is a tool developed to export

building models developed in EnergyPlus as FMUs.
5 https://sourceforge.net/projects/trnsys-fmu/.

export facilities. The next sections describe

SimulatorToFMU, a tool which allows exporting a

certain class of simulation tools as FMUs.

SIMULATORTOFMU

SimulatorToFMU is a Python utility which allows to

export Python modules that either implement an object

with memory, or simply call a Python function. By a

Python object with memory, we mean an application

that can for example step forward in time and use at

each time step data that it stored previously in memory

as well as current inputs. This allows for example to

interface certain simulators or data processing

applications which may be written in Python or C

(through the use of Python’s C API). In contrast,

Python functions do not require their memory to be

preserved between their invocations.

Although not widespread, more and more simulation

tools provide high-level APIs (CYME7, PowerFactory8)

which allow the tool to be driven by external tools.

These APIs are often written in Python. The approach

of SimulatorToFMU is to wrap such tool API around an

FMI interface. This standardizes the interface to be

used to communicate with the tool.

In the remainder of this document, we call for

simplicity a Python-driven simulation tool or a Python

function a simulator. The objective of

SimulatorToFMU is to allow using such simulators

with other tools that require run-time data exchange,

using a standardized way.

To export the Python API of a simulator as an FMU,

SimulatorToFMU requires the user to provide an input

file which lists the names of the inputs and outputs of

the FMU. SimulatorToFMU gets as additional

arguments the path to the simulator Python API

wrapper, and a flag which indicates if the tool is a

Python object with memory, or a call to a Python

function that does not require storing the memory

between invocations. SimulatorToFMU uses these

arguments to create an FMU with libraries and

resources which are necessary to interface with the

simulator.

The following sections describe the key components of

SimulatorToFMU which include the input

configuration file, the Python API wrapper, and the

libraries developed to export the Python API wrapper as

an FMU.

6 https://github.com/lbl-srg/bcvtb
7 http:// http://www.cyme.com/
8 https://www.digsilent.de/en/powerfactory.html

This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Foreign copyrights may apply.

326

https://github.com/lbl-srg/EnergyplusToFMU

Configuration Input File

To export a simulator as an FMU, the user has to define

the names of the inputs and outputs of the simulator to

be exposed through the FMI interface. This is done in a

XML configuration file. The path to the file is passed to

SimulatorToFMU. In addition, the XML file contains the

start values of the input variables.

Figure 2 shows a snippet of an input file where one input

and one output variable are defined. To create the file,

the user needs to specify the name of the FMU (Line 5).

The user needs to define the inputs and outputs of the

FMUs. This is done by adding ScalarVariable into the

list of ModelVariables.

To parameterize the ScalarVariable as an input variable,

the user needs to do the following:

• provide the name of the variable (Line 10),

• provide a description of the variable (Line 11),

• declare the causality of the variable (“input” for

inputs, “output” for outputs) (Line 12),

• define the type of variable (only Real variables

are supported) (Line 13),

• provide the unit of the variable (units as used by

Modelica9 [3] are supported) (Line 14),

• optionally give a start value for the input

variable (Line 15).

To parametrize the ScalarVariable as an output variable,

the user needs to

• provide the name of the variable (Line 18),

• provide a description of the variable (Line 19),

• declare the causality of the variable (“input” for

inputs, “output” for outputs) (Line 20),

• define the type of variable (only Real variables

are supported) (Line 21),

• give the unit of the variable (units as used by

Modelica are supported) (Line 22).

1 <?xml version="1.0" encoding="UTF-8"?>
2 <SimulatorModelDescription
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
4 fmiVersion="2.0"
5 modelName="simulator"
6 description="Input data for a Simulator FMU"
7 generationTool=" SimulatorToFMU ">
8 <ModelVariables>
9 <ScalarVariable
10 name="V"

9 http://www.modelica.org. Modelica is an open source

object-oriented equation-based Modelling language to

conveniently model physical systems.

11 description="Voltage"
12 causality="input">
13 <Real
14 unit="V"
15 start="0.0"/>
16 </ScalarVariable>
17 <ScalarVariable
18 name="i"
19 description="Current"
20 causality="output">
21 <Real
22 unit="A"/>
25 </ScalarVariable>
26 </ModelVariables>
27 </SimulatorModelDescription>

Figure 2 XML configuration input file of a simulator

exported by SimulatorToFMU.

Python API Wrapper

To export the Python API of a simulator, the user needs

to write a Python API wrapper which will interface with

the simulator. SimulatorToFMU comes with a Python

template wrapper which needs to be modified by the

user. Figure 3 shows a snippet of the Python API

wrapper of a simulator which has memory.

Line 2 defines a dummy simulator which will be called

by the Python API wrapper.

Line 21 declares the main function of the Python API

wrapper which needs to be implemented to call the

simulator using inputs obtained through the FMI

interface. The arguments of the function are:

• The configuration_file which is the path to an

input file needed to execute the model.

• The time which is the current simulation time.

• The input_names which is a list of FMU input

names.

• The input_values which is a list with values of

the FMU inputs.

• The output_names which is a list of FMU

output names to be retrieved.

• The write_results which is a flag to indicate

whether the simulator needs to write the

simulation results to a file which is saved in the

working directory of the import tool.

• The memory which is a variable which holds the

memory of a Python object used in the

simulator between invocation. If the simulator

This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Foreign copyrights may apply.

327

http://www.modelica.org/

doesn’t have memory, then this argument must

be removed from the exchange function

signature.

The function exchange gets these arguments and returns

output_values which is a list with output values

corresponding to the list of output names. If the simulator

has memory, then the exchange function must also return

the memory.

1 # Dummy simulator
2 Class Simulator():
3 """
4 Dummy Python-driven simulator
5 """
6 def __init__(self,
7 configuration_file,
8 time,
9 input_names,
10 input_values,
11 output_names,
12 write_results,
13 memory):
14 self.input_values = input_values
15
16 def doTimeStep(self):
17 return self.input_values + 1
18
19 # Main function to be implemented to interface
20 # with the simulator through FMI
21 def exchange(configuration_file,
22 time,
23 input_names,
24 input_values,
25 output_names,
26 write_results,
27 memory):
28 """
29 Return a list of output values from
30 the Python-driven simulation tool.
31
32 """
33 ##
34 #EDIT AND INCLUDE CUSTOM CODE FOR TARGET
35 # SIMULATOR
36 if memory == None:
37 s = Simulator(…) # Initialize Simulator
38 memory =
39 {‘a’:input_values,
40 ‘simulator’: s}
41 else:
42 memory[‘a’] =
43 memory[‘a’] + 1
44 s = memory[‘s’]
45 output_values = s.doTimeStep ()
46 if (…):
47 raise (“”)
48 # Store the new state of the simulator
49 memory[‘s’] = s
50 ##

51 return [output_values, memory]

Figure 3 Python API wrapper of a simulator exported

by SimulatorToFMU.

At simulaton runtime, an import tool which implements

the FMI interface will communicate with the simulator

through the Python API wrapper. The next section

describes how this communication has been enabled.

Modelica Wrapper Library

To enable communication with the Python API wrapper

through the FMI interface, a Modelica library was

developed. This library contains the Modelica function

simulator (see Modelica snippet below) which is

responsible for interfacing with the simulator. The

Modelica function passes its input arguments to an

external C function which invokes the Python API

wrapper of the simlator to compute its output values. The

inputs of the Modelica function are the Python API

wrapper module name, the Python API wrapper function

name, the simulation time, the number of inputs, the

input names, the input values, the number of outputs, the

output names, a flag to specify whether the simulator

should write results to a file, and an external object

which holds the memory of a Python object. This object

is used to save and restore the states of a simulator which

has memory. The return values of the function are the

output values of the simulator.

function simulator

 "Function that communicates with the

 SimulatorToFMU Python API"

 input String moduleName
 "Name of the python module that contains the function";
 input String functionName=moduleName

 "Name of the python function";
 input String conFilNam "Name of the python function";
 …
 output Real dblOutVal[max(1, …)]

 "Double output values read from SimulatorToFMU";
 external "C" modelicaToSimulator(moduleName, …);
…
end simulator;

The external C function (modelicaToSimulator) which is

called by the Modelica function is implemented in a C-

library which is provided by SimulatorToFMU. The C-

function uses the C-API of Python27 to communicate

with the Python API wrapper of the simulator.

To export the simulator API as an FMU,

SimulatorToFMU extracts from the XML configuration

input file the input and output names of the model. It then

writes a Modelia model which defines the inputs and

outputs of the model that are passed to the function that

communicates with the simulator.

The code snippet below shows the Modelica model of a

simulator which has one input and one output extracted

from the configuration input file shown in Figure 2. The

Modelica model is autogenerated by SimulatorToFMU.

This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Foreign copyrights may apply.

328

model Simulator
 "Block that exchanges a vector of real values with Simulator"
 extends Modelica.Blocks.Interfaces.BlockIcon;
 Modelica.Blocks.Interfaces.RealInput v(unit="V") "Voltage";
 Modelica.Blocks.Interfaces.RealOutput i(unit="A") "Current";
protected
 parameter Integer nDblInp(min=1) = 1
 "Number of double input values to be sent to Simulator";
 parameter Integer nDblOut(min=1) = 1
 "Number of double output values to receive from Simulator";
 Real dblInpVal[nDblInp] "Value to be sent to Simulator";
 Real uR[nDblInp]={v}
 "Variables used to collect values to be sent to Simulator";
 Real yR[nDblOut]={i}
 "Variables used to collect values received from Simulator";
 parameter String dblInpNam[nDblInp]={"v"}
 "Input variable name to be sent to Simulator";
 parameter String dblOutNam[nDblOut]={"i"}
 "Output variable names to be received from Simulator";
 parameter String moduleName="simulator_wrapper"
 "Name of the Python module that contains the function";
 parameter String functionName="exchange"

 "Name of the Python function";
equation
 // Compute values that will be sent to Simulator
 for _cnt in 1:nDblInp loop
 dblInpVal[_cnt] = uR[_cnt];
 end for;
 // Exchange data
 yR = SimulatorToFMU.Python27.Functions.simulator(...);
end Simulator;

Export of a Simulator as an FMU

To export the autogenerated Modelica model as an

FMU, SimulatorToFMU invokes a Modelica parser to

translate and compile the model as an FMU.

SimulatorToFMU supports three Modelica parsers – the

commercial Dymola10 tool and the two open source

tools JModelica11 and OpenModelica12.

Leveraging Modelica parsers to generate FMUs ensure

a backward and forward compatibility of

SimulatorToFMU with past and future versions of the

FMI standard as these tools typically implement all

versions of the FMI standard.

The snippet below shows the standard invocation of

SimulatorToFMU

> python SimulatorToFMU.py -s

simulator_wrapper.py –i simulator.xml

With –s, and –i, the user can specify the path to the

Python API wrapper and the configuration input file.

The main functions of SimulatorToFMU are

• reading, validating, and parsing the simulator

XML configuration input file. This includes

10 https://www.3ds.com/products-

services/catia/products/dymola/
11 http://www.jmodelica.org/

removing and replacing invalid characters in

variable names such as “*+-“ with “_”,

• writing Modelica code with valid input and

output names,

• invoking a Modelica parser to translate and

compile the Modelica code as an FMU for

model exchange or co-simulation “1.0`” or

”2.0”.

SimulatorToFMU has been tested with Dymola 2018.

JModelica 2.0, and 2.1, and with OpenModelica 1.11.

SimulatorToFMU supports the export of FMUs which

implement the FMI for model exchange, and the FMI for

co-simulation APIs. FMI 1.0 and 2.0 are both supported.

On a Windows 7 machine, SimulatorToFMU needs

about 14 seconds to export an FMU with JModelica 2.0

and Dymola 2018, and 75 seconds to export with

OpenModelica 1.11. On a Linux Ubuntu 16.04 machine,

it needs about 4 seconds to export FMUs with JModelica

2.0 and Dymola 2018.

APPLICATION

This section describes an application where

SimulatorToFMU has been used to export a real-time

simulation tool as an FMU to support hardware-in-the-

loop simulation (HIL). The HIL scenario emulates a

medium sized distribution grid with PV panels and an

inverter which is controlled to limit PV generation. The

micro-grid is physically installed at LBNL’s

FLEXLAB13. The objective of the HIL is to develop and

test new inverter control algorithms (See Figure 4).

To test the controller prior to deployment, a model of the

grid with PV and inverter was developed and imported

in the real-time simulator OPAL-RT, which emulates the

physical micro-grid (See Figure 5). OPAL-RT has a

Python API which allows interfacing with its models

from Python. For the HIL, we developed a controller in

Modelica. The controller limits the PV generation

depending on grid voltage. We exported the controller

as an FMU for model exchange 2.0 using JModelica 2.0.

We modified the exchange function of

SimulatorToFMU for this simulator. Specifically, we

implemented functions which allows interfacing with the

Python API of OPAL-RT to import, compile and execute

OPAL-RT models. We used SimulatorToFMU to export

the OPAL-RT models as FMUs for model exchange 2.0.

For simulating the coupling of both FMUs, we used the

master algorithm PyFMI14.

12 https://openmodelica.org/
13 http:/www.flexlab.com
14 https://pypi.python.org/pypi/PyFMI

This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Foreign copyrights may apply.

329

Figure 4 Development of PV inverter control installed

at FLEXLAB.

Figure 5 HIL testing of PV inverter control installed at

FLEXLAB.

POTENTIAL APPLICATIONS

An application for which we anticipate the use of

SimulatorToFMU is the evaluation of Building Controls

or Machine Learning algorithms for Fault Detection and

Diagnostics (FDD). If such algorithms are written in

Python then a use case could be to

• export such algorithms as FMUs using

SimulatorToFMU,

• use EnergyPlusToFMU to export EnergyPlus

building models as FMUs,

• and use a master algorithm such as PyFMI to

couple and co-simulate the FMUs (See Figure

6).

Figure 6 SimulatorToFMU exports FDD algorithm

which is coupled to a building model FMU exported

with EnergyPlusToFMU.

Another application for which we anticipate

SimulatorToFMU to be used is the export of the

daylighting simulation tool Radiance15 as an FMU so it

can for instance be linked with buildings FMUs. The

exchange function of SimulatorToFMU could for this

use case be implemented to invoke Radiance using the

subprocess16 library of Python.

CONCLUSION

This paper demonstrates how SimulatorToFMU can be

used to facilitate interoperability between simulation

tools. Although the application is focussing on a real-

time simulation tool, it could be extended to other

15 https://www.radiance-online.org/

simulation tools which have a Python API. Future work

should extend SimulatorToFMU to support other API

languages such as JAVA or C. This will broaden the

number of tools which can be exported as FMUs.

SimulatorToFMU is open source and freely available at

https://pypi.python.org/pypi/SimulatorToFMU/. Details

on how to use SimulatorToFMU are in the user guide.

ACKNOWLEDGMENT

This work is supported by the U.S. Department of

Energy SunShot National Laboratory Multiyear

Partnership (SuNLaMP) program award number 31266.

REFERENCES

Blochwitz, T, Otter, M., Akesson, J., Arnold, M., Clauß,

C., Elmqvist, H., Friedrich, M., Junghanns, A.,

Mauss, J., Neumerkel, D., Olsson, H., Viel, A.,

2012. Functional Mockup Interface 2.0: The

Standard for Tool independent Exchange of

Simulation Models. MODELICA Conference,

September 3-5, 2012, Munich, Germany.

Nouidui, T. S., Wetter, M., Zuo, W., 2014. Functional

Mock-up Unit for co-simulation import in

EnergyPlus. Journal of Building Performance

Simulation, 7(3):192-202, 2014.

Pazold M., Burhenne S., Radon J., Herkel S., Antretter

F., 2012. Integration of Modelica models into an

existing simulation software using FMI for Co-

Simulation, Proceedings of the 9th International

MODELICA Conference, September 3-5, 2012,

Munich, Germany.

16 https://docs.python.org/2/library/subprocess.html

This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Foreign copyrights may apply.

330

https://pypi.python.org/pypi/SimulatorToFMU/

