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Abstract
The paper presents an open-source Python tool for pa-
rameter estimation in FMI-compliant models, called Mod-
estPy. The tool enables estimation of model parameters
using user-defined sequences of methods, which are par-
ticularly helpful in non-convex problems. A user can start
estimation with a chosen global search method and sub-
sequently refine the estimates with a local search method.
Several methods are available already and the tool’s archi-
tecture allows for easily adding new ones. The advantages
of having a single interface to multiple methods and using
them in sequences are highlighted on a case study in which
the parameters of a Modelica-based gray-box model of a
building zone (nonlinear, multi-output) are estimated us-
ing 9 different combinations of methods. The methods are
compared in terms of accuracy and computational perfor-
mance.
Keywords: FMI, parameter estimation, Python, open-
source

1 Introduction
1.1 Background
The Functional Mock-up Interface (FMI) is becoming a
de facto standard co-simulation interface, as of 2018 be-
ing supported by over 100 simulation tools (http://
fmi-standard.org/tools/). The support of the FMI
in simulation tools varies from full support, especially in
Modelica tools, to a subset of FMI 1.0 / 2.0, import / ex-
port, co-simulation / model exchange. Models compli-
ant with FMI are referred as Functional Mock-up Units
(FMUs).

Using FMUs allows for a flexible co-simulation be-
tween models developed in different software environ-
ments. It is also attractive for resource-limited embed-
ded systems with no need to install a GUI-based simu-
lation environment, or because relying on FMI makes the
system less dependent on specific tools and vendors. In
addition, the common interface to models developed in
different software environments makes it possible to de-
velop generic tools for co-simulation, system identifica-
tion, or optimization. System identification methods are
commonly used to calibrate models with respect to the real
system. In the case of FMUs, the model structure is typ-
ically already defined in the FMU, so the problem is nar-

rowed down to the estimation of model parameters and/or
states. In fact, several FMI-specific tools for parameter
and state estimation have been developed in recent years.

Bonilla et al. (2017) developed a GUI tool for static
(batch) parameter estimation in FMUs (compliant with
Model Exchange 2.0), based on a global-search Multi-
Objective Genetic Algorithm (MOGA). The main moti-
vation for the development of this tool was to facilitate
the coupling of different modeling languages, tools and
optimization algorithms, while being customizable. The
authors stated that the implementation of additional opti-
mization algorithms is planned.

Bonvini et al. (2014) developed a state and parameter
estimation Python tool based on Unscented Kalman Filter
(UKF), compliant with Model Exchange 1.0. The UKF
is a recursive estimation method, meaning it is suitable for
on-line applications where the states or parameters need to
be continuously updated. The authors presented the capa-
bilities of the tool on a fault detection and diagnosis (FDD)
case study, in which it was used to identify a faulty valve
in a simple theoretical system. In another exemplary ap-
plication, the tool has been used for an on-line estimation
of the number of occupants in a building based on indoor
temperature and CO2 (Sangogboye et al., 2017).

Vanfretti et al. (2016) developed the Rapid Parameter
Identification toolbox (RaPId), used for parameter estima-
tion in FMUs. The tool is developed as a Matlab/Simulink
plug-in and can be called using the Matlab command line
interface, but is also equipped with a GUI allowing it to
be used as a standalone application. Multiple optimiza-
tion methods are available, such as fmincon from Mat-
lab and heuristic algorithms, like a particle swarm opti-
mization (PSO) implemented by the authors.

Kampfmann et al. (2017) proposed a work flow for pa-
rameter estimation in FMUs, based on open-source tools.
The performance of the work flow was demonstrated on a
real industrial problem of a three arm Delta Robot. The es-
timation problem is formulated using the maximum like-
hood approach and the underlying optimization problem
is solved using the Levenberg-Marquardt algorithm.

De Coninck et al. (2016) developed a more special-
ized Python toolbox for gray-box system identification for
buildings. The tool automates both the model selection
(out of a group of predefined models) and parameter es-
timation. The toolbox relies on the JModelica.org plat-
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form which is used for compilation of models, simulation
and optimization. The direct collocation method is used to
solve the underlying optimization problem. Since the col-
location method is a local optimization method, the initial
guesses of parameters are either inherited from the previ-
ous estimation runs or a set of initial guesses is constructed
using the Latin hypercube sampling method. The toolbox
is currently in use in MPC systems in existing buildings
(De Coninck and Helsen, 2016).

Andersson et al. (2012) implemented in JModelica.org
three derivative-free optimization algorithms suitable for
parameter estimation in FMUs. The algorithms include
the Nelder-Mean simplex method, a differential evolution
algorithm, and a genetic algorithm. The algorithms can be
accessed through a Python interface.

Despite the diverse landscape of the tools and work
flows presented, there are still some niche applications
not specifically addressed. For example, there are no
lightweight, generic, open-source tools that would enable
automated testing of multiple algorithms, including algo-
rithm sequences (for global and local search), and be eas-
ily deployable on the target machines and integrable into
other codes. The available tools are either tied to specific
optimization algorithms, specific proprietary platforms, or
large software environments. This paper presents a new
tool that potentially fills this niche.

1.2 Paper Objective
The objective of this paper is to present a new open-source
Python tool for parameter estimation in FMUs, called
ModestPy (Arendt, 2017). Through the PyFMI (Ander-
sson et al., 2016) the tool is compatible with FMI 1.0/2.0
and Co-Simulation/Model Exchange. The main novelty of
the tool compared to the ones presented is that it includes
several optimization methods and enables easily running
the methods in user-defined sequences.

The initial motivation of this work was to facilitate
parameter estimation in models of buildings and HVAC
systems for the purpose of MPC. One of the often men-
tioned requirements for MPC to become economically vi-
able in buildings is an automated creation and updating
(e.g. through parameter estimation) of predictive mod-
els (Rockett and Hathway, 2017). Building and HVAC
models are often non-linear and in general can be non-
differentiable. In this context, ModestPy is a generic
tool with no assumptions on the model structure, offer-
ing a high flexibility in terms of combining different al-
gorithms. Since the performance of specific methods is
model-dependent, the aim of the tool is to support mul-
tiple algorithms. Currently, the tool supports two algo-
rithms implemented by the authors (genetic algorithm and
pattern search) in addition to several algorithms from the
SciPy eco-system (Jones et al., 2001).

2 Software Description
ModestPy is designed with the ease of use and installation
in mind. It is compatible with both Python 2.7 and 3 and

was tested on Windows and Linux. The package can be
installed using the command pip install modestpy.

The package structure is modular (Fig. 1). A user
needs to interact only with one class, Estimation from
estimation.py, and its two methods: estimate() and
validate().

Figure 1. Package structure (testing, logging and auxiliary mod-
ules excluded for clarity).

The implemented algorithms are kept in separate
modules under modestpy.estim. The algorithms
share some common functionality covering the error
calculation (error.py), estimation parameter interface
(estpar.py), plotting (plots.py), and FMU model in-
terface (model.py). The interaction with FMUs is pro-
vided by PyFMI (Andersson et al., 2016). Two types of
error metrics are implemented, the total mean-square er-
ror (MSEtot) and the total normalized mean-square error
(NMSEtot), calculated as follows:

MSEtot = ∑
i
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Ȳ 2
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where Ŷ t
i is the measured value of variable i at time step t,

Yt
i is the simulated value of variable i at time step t, Ȳi is

the mean measured value of variable i, N is the number of
time steps, and MSEi is the mean-square error for variable
i. Eq. (1) is suggested for single-output models (i = 1)
or models with physically comparable outputs. Eq. (2)
is suggested for multi-output models (i > 1) with physi-
cally incomparable outputs, e.g. temperature and CO2. It
should be noted that Ȳi in Eq. (2) needs to be non-zero.
Other norms can be easily implemented in error.py if
needed.

2.1 Algorithms
A user can estimate parameters using a single algorithm
or an arbitrarily designed sequence of algorithms. The se-
quences typically contain two methods, the first for global
search and the second for local search, but if needed it
is possible to queue more methods, e.g. multiple genetic
algorithms with different evolution parameters (best so-
lution from each run is saved and propagated to the next
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one). It is, therefore, possible to quickly test and evaluate
different methods and combination of methods on a given
problem.

Currently two in-house algorithms are implemented,
a genetic algorithm (GA) and a generalized pattern
search (GPS), in addition to the interface to several
well-known algorithms from the SciPy eco-system (Jones
et al., 2001), specifically those compatible with the func-
tion scipy.optimize.minimize(). The SciPy’s al-
gorithms tested by the authors with results presented in
this paper include the sequential least squares program-
ming (SLSQP) (Kraft, 1988), the limited memory Broy-
den–Fletcher–Goldfarb–Shanno with box constraints (L-
BFGS-B) (Byrd et al., 1995), and the truncated Newton
method (TNC) (Nash, 1984).

The implemented GA (Algorithm 1) is based on the
standard operations of tournament-based selection and
crossover. The mutation is adaptive and depends on the
population diversity, defined as the ratio of shared genes
among the individuals. If the population is diverse, a stan-
dard mutation is applied in which a low mutation rate
(10% by default) is used, but genes can mutate within a
wide range (entire parameter range by default). If the pop-
ulation diversity is low, the population is split into 1/3 and
2/3 parts. The larger group (2/3) undergoes the standard
mutation (low mutation rate, wide range of possible val-
ues), and the smaller group undergoes mutation with an in-
creased rate (33% by default), but the genes are allowed to
change only within a small range (equivalent to a stochas-
tic local search). By tuning mutrate1, mutrate2, range1,
and range2 in Algorithm 1, a desired balance between the
exploratory and local search of the evolution can be found.
The algorithm continues until the error stops decreasing
or the maximum number of generations is reached. The
tolerance criterion checking can be delayed by a user-
defined number of generations (10 by default), allowing
for continuing the evolution for some time even if the sub-
sequent generations do not improve the solution. GA is a
metaheuristic global search algorithm, which is often able
to deal with complex non-convex functions, but does not
guarantee that the global optimum is found. In fact, the
solution might be worse than in the case of local search
methods. It is, therefore, often coupled with some local
search methods, as GPS, least squares or Newton-based
methods.

The implemented GPS (Algorithm 2) is a simple
gradient-free local search method. The algorithm requires
an initial guess x0 and an initial step size s. Thereafter it
starts a series of orthogonal exploratory moves, by chang-
ing one parameter at a time (in both positive and negative
directions) and evaluating the cost function f (x). The pa-
rameter vector propagated to the next iteration is the one
with the lowest cost function value. If the given step size
does not yield a reduction in the cost function value, it
is reduced by a factor of 2 and the procedure is repeated.
The algorithm stops when the solution does not improve
despite kmax reductions of the step size. GPS usually re-

Algorithm 1 Genetic algorithm implemented in ModestPy

Initialize population pop1 with N individuals
while generation g < gmax and error decreasing do

for all individuals in pop1 do
Evaluate cost function

end for
Initialize empty population pop2
Add fittest individual from pop1 to pop2 {elitism}
for i = 0 to N −1 do

ind1 ← tournament(pop1)
ind2 ← tournament(pop1)
child ← crossover(ind1, ind2)
Add child to pop2

end for
if pop2 is diverse then

pop2 ← mutate(pop2, mutrate1, range1)
else

X% of pop2 ← mutate(mutrate1, range1)
mutrate2 ← mutrate1K {K > 1}
range2 ← range1L {1 > L > 0}
(100−X)% of pop2 ← mutate(mutrate2, range2)

end if
pop1 ← pop2
g ← g+1
x ← parameters of fittest individual

end while
return x

quires more iterations than gradient-based methods, but
the method can deal with models that are not differentiable
or continuous. A similar algorithm is implemented in the
generic optimization program GenOpt (Wetter, 2001).

2.2 Usage
ModestPy does not have a GUI (although there are plans to
develop one in the future) and is aimed to be used directly
in Python scripts. First, the user has to instantiate the
Estimation class. All the estimation and validation set-
tings are specified during the instantiation. The required
arguments are as follows: path to the working directory
(string), path to the FMU (string), data frame with the in-
puts (pandas DataFrame), known inputs (dictionary), pa-
rameters to be estimated (dictionary), and measured data
(pandas DataFrame). The user can control other aspects of
the estimation with the optional arguments, as discussed
in the documentation (Arendt, 2017). Secondly, the esti-
mation and validation methods are called to retrieve the
results.

The exemplary Python code setting up an estimation us-
ing GA+GPS and using the MSE cost function is as fol-
lows:

from modestpy import Estimation

session = Estimation(
workdir, # string
fmu_path, # string
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Algorithm 2 Generalized pattern search algorithm imple-
mented in ModestPy

Require: Initial guess vector x0 with N parameters, initial
step s0, max. no. of tries kmax to decrease step
s ← s0
k ← 0
x ← x0
y ← f (x)
while k < kmax do

yn ← y
for n = 0 to N do

x̂n ← N-dim. versor with n-th element equal to 1
sn ← sx̂n
y+n ← f (x+ sn)
y−n ← f (x− sn)
if y+n < yn then

yn ← y+n
xn ← xn + sn

end if
if y−n < yn then

yn ← y−n
xn ← xn − sn

end if
end for
if yn < y then

y ← yn
x ← xn
k ← 0

else
s ← s/2 {reduce step}
k ← k+1

end if
end while
return x

inputs, # pandas DataFrame
known, # dictionary
estimate, # dictionary
measured, # pandas DataFrame
method=(’GA’, ’GPS’),
ga_opts={’maxiter’: 5, ’tol’: 1e-4},
gps_opts={’maxiter’: 500, ’tol’: 1e-6},
ftype=’MSE’

)

estimates = session.estimate()
err, res = session.validate()

In addition to the estimation and validation results re-
turned by the respective methods, the results are saved in
the working directory together with plots of error and pa-
rameter trajectories.

3 Example
3.1 System
The functionality of the tool is presented on a case study in
which it was used to calibrate a Modelica-based gray-box
model of a single building zone to the results of a white-
box model developed in EnergyPlus. The case study is
a part of a larger project aimed at the development of an
MPC framework that will be tested on the OU44 building
in Odense, Denmark (Jradi et al., 2017). The developed
EnergyPlus model is a downscaled 7-zone version of the
OU44 building, but with the same HVAC system and in-
ternal heat gains schedules. The EnergyPlus model is used
for MPC tests in the project.

The building is equipped with a balanced mechanical
ventilation system. The air handling unit (AHU) contains
two fans (for supply and exhaust air), a rotary wheel heat
recovery system, and a heating coil. No cooling is pro-
vided. The fans are controlled to maintain a constant pres-
sure in the duct system. Each zone is equipped with a
hydronic radiator and a VAV box. The radiator valve and
ventilation damper positions depend on the indoor temper-
ature and CO2 concentration, respectively. The tempera-
ture and CO2 setpoint schedules are set through the BMS
system.

Selected outputs of the white-box model are assumed to
represent the measured data for the calibration of the gray-
box model. The following zone-level outputs are used:
indoor temperature T [◦C], indoor CO2 concentration CO2
[ppm], radiator heat supply qrad [W], ventilation airflow
rate verate [m3/s], and the number of occupants occ [−]
(notation consistent with the gray-box model variables).
The chosen outputs correspond with the available sensors
in the OU44 building, so in the later phase of the project
the same gray-box model can be used with the real data.
In this study, however, the white-box results are used to
exclude the effect of uncertain inputs on the results. In
addition to the zone-level measurements, the weather data
and assumed temperature and CO2 setpoints are passed to
the gray-box model as inputs.

3.2 Modelica Gray-box Model
The gray-box model was developed in Modelica and ex-
ported to an FMU using Dymola (Fig. 2). The thermal
part of the model is based on the RC network approach
and contains two capacitors, one for the indoor air and
one for the internal thermal mass, and one resistor repre-
senting the external walls. The solar gains and radiator
heat gains are modeled with single gain blocks. The radi-
ator heat supply is controlled by a PI controller, depending
on the temperature setpoint (input) and calculated indoor
temperature. The occupancy contributes to both the indoor
heat gains and CO2 generation. The metabolic heat gen-
eration per person is modeled as a linear function of the
indoor temperature. The CO2 balance is modeled with a
custom block containing a steady state mass balance equa-
tion. The ventilation heat gain is also modeled with a cus-
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tom block containing a steady state heat balance equation.
The rest of the model is based on the components from the
Modelica Standard Library.

The model takes six inputs and has six outputs. The
inputs include the solar radiation solrad [Wm−2], out-
door temperature Tout [◦C], number of occupants occ,
ventilation air temperature setpoint Tvestp [◦C], indoor
CO2 setpoint CO2stp [ppm], and indoor temperature set-
point Tstp [◦C]. The outputs are the indoor temperature
T [◦C], indoor CO2 CO2 [ppm], ventilation airflow rate
verate [m3s−1], total ventilation airflow vetot [m3], ra-
diator heating rate qrad [W], and total radiator heating
energy Qrad [J].

Seven of the model parameters are estimated: outdoor
wall resistance RExt [m2WK−1], indoor wall resistance
RInt [m2WK−1], infiltration air change rate Vinf [h−1],
maximum ventilation air change rate maxVent [h−1], in-
ternal thermal mass imass [JK−1m−2], solar heat gain co-
efficient shgc [−], and indoor air thermal mass tmass
[JK−1m−3]. All parameters excepts shgc are scaled by
the respective surface areas (e.g. external wall surface
area for RExt) or the indoor volume (tmass). It should
be noted that the infiltration rate parameter Vinf affects
only the CO2 balance, while the thermal effect of infiltra-
tion is included in the resistance RExt.

3.3 Estimation Setup
Table 1 provides the lower and upper bounds in addition to
the initial guesses of the seven parameters to be estimated
in this study. The bounds were chosen considering stan-
dard physical and technical specifications of buildings.

Table 1. Initial guess, lower and upper bounds of the gray-box
model parameters.

Parameter Initial guess Low. bound Up. bound

shgc 5 0.1 10
tmass 50 1 100
imass 50 1 100
RExt 5 0.1 10
RInt 5 0.1 10
Vinf 5 0.1 10
maxVent 5 0.1 10

The cost function is based on the total normalized
mean-square error NMSEtot , calculated according to
Eq. (2). Four white-box model outputs are taken into ac-
count: T, CO2, verate, and qrad.

9 different method sequences were used to estimate the
parameters: (1) GA, (2) GPS, (3) TNC, (4) SLSQP, (5)
L-BFGS-B, (6) GA+GPS, (7) GA+TNC, (8) GA+SLSQP,
(9) GA+L-BFGS-B.

The GA settings were consistent across the sequences
(1) and (6)-(9). In addition a random number seed was
used to make the results comparable. The maximum num-
ber of generations was set to 100. The initial popula-
tion contained 40 individuals and was generated using the

Latin hypercube sampling. The maximum number of it-
erations in all the other methods was 500. The absolute
solution tolerance was 1e-9 (same for all methods).

All the non-default estimation parameters are specified
in the following code:

ga_opts = {
’maxiter’: 100, ’tol’: 1e-9,
’lhs’: True, ’pop_size’: 40

}
gps_opts = {

’maxiter’: 500, ’tol’: 1e-9
}
scipy_opts = {

’solver’: ’scipy_solver’,
’options’: {

’maxiter’: 500, ’tol’: 1e-9
}

}

session = Estimation(
wdir, fmu, inp, known, est, out,
lp_frame=(0, 86400 * 3),
vp=(86400 * 3, 86400 * 4),
ga_opts=ga_opts,
gps_opts=gps_opts,
scipy_opts=scipy_opts,
methods=met_seq,
ic_param=ic_param,
ftype=’NMSE’, seed=1

)

where scipy_solver is one from [’TNC’,
’L-BFGS-B’, ’SLSQP’], and met_seq is one from
[(’GA’, ), (’GPS’, ), (’SCIPY’, ), (’GA’,
’GPS’), (’GA’, ’SCIPY’)].

The training period was 3 days long (January 1-3). The
validation was performed on the day following the training
period (January 4).

3.4 Results
All the 9 considered method sequences yielded different
estimates, despite the same bounds and initial guesses (in
GPS, SLSQP, L-BFGS-B, TNC) and the random num-
ber seed (in the GA-based sequences). Fig. 3 presents
a stacked histogram of the obtained estimates. The esti-
mates obtained by the GA-based sequences are close to
the ones yielded by the GA alone. Differences are no-
ticeable mainly in the case of shgc and maxVent. The
remaining method sequences (non-GA-based) yielded es-
timates scattered across the parameter space.

The GA+L-BFGS-B and GA+GPS sequences yielded
the lowest training errors, while GA+SLSQP was the most
accurate in the validation, suggesting that the parameters
are slightly overfitted in former cases (Table 2). GA+L-
BFGS-B was the only GA-based sequence that performed
worse in the validation than the GA alone. Nevertheless,
all GA-based sequences yielded models with a similar ac-
curacy, with training errors below 0.394 and validation er-
rors below 0.379. The rest of the methods (GPS, TNC, L-
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Figure 2. Gray-box zone model developed in Modelica (using Dymola).

BFGS-B, SLSQP) yielded significantly worse estimates,
with validation errors above 3.4.

The computational time of the GA-based sequences
was mostly dominated by GA (723 s). In the consid-
ered problem only GPS was slower than GA (986 s).
All gradient-based methods included in the test where
much faster, but stuck in local minima. From the time-
to-accuracy point of view mixing GA with a gradient-
based method seems the most efficient (801-934 s), while
GA+GPS is the slowest combination (1319 s).

All computations were performed on a laptop equipped
with an Intel Core i7-5600U processor (2.60GHz), 16 GB
RAM, and a hard-disk drive (HDD). The disk type is rel-
evant, because ModestPy was run in a verbose logging
mode, each time saving a log file containing up to 85000
lines with detailed results from each iteration. All simula-
tions were run on a single core – ModestPy does not offer
parallelized algorithms yet.

Table 2. CPU time and total normalized mean square error
(NMSEtot ) for validation and training, sorted in ascending order
by validation NMSEtot .

Method Training Validation CPU Time
NMSEtot NMSEtot [s]

GA+SLSQP 0.377 0.353 920
GA+GPS 0.351 0.371 1319
GA+TNC 0.393 0.372 801
GA 0.394 0.373 723
GA+L-BFGS-B 0.349 0.379 934
GPS 1.306 3.428 986
TNC 4.967 5.856 101
L-BFGS-B 4.929 6.808 38
SLSQP 5.040 6.920 12
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The different estimates yielded by the respective meth-
ods can be due to inaccuracies in the numerically approx-
imated gradients, and due to the non-convexity of the cost
function. The non-convexity of the cost function used in
this study can be analyzed in Fig. 4. The cost function
evaluated on the line connecting estimates yielded by two
different methods (GA and SLSQP) has few sections with
positive derivatives and local minima. In addition the cost
function is very steep in the vicinity of the GA solution,
while relatively flat for s < 0.7. Although the shape of
the function in other directions is not presented, Fig. 4
highlights the need for a good initial guess in the case of
gradient-based methods if the cost function is non-convex.
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Figure 3. Histogram of estimates yielded by the 9 method se-
quences.

In the case of non-convex problems, it is sometimes
useful to analyze the visualization of the parameter search
in GA (Fig. 5). This figure is by default generated by Mod-
estPy whenever GA is used in the method sequence. Each
dot in the figure represents a solution produced by a single
individual. The colors represent the error (NMSEtot), with
the brightness decreasing with decreasing error. The GA
starts with the inaccurate population spread over the entire
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Figure 4. Cost function evaluated on the training data based
on linear combinations of parameters yielded by GA (x1) and
SLSQP (x2). Sections with positive derivatives with respect to s
marked in red.

search domain (yellow color marks NMSEtot above 5.0).
Over time, the solution quality improves to NMSEtot be-
low 1.0 (purple color). For some parameters (most notably
maxVent and Vinf) the value found early in the evolution
does not change much throughout the rest of the evolu-
tion. In other cases rapid jumps in parameters with only
a minor improvement in the accuracy are observed (e.g.
imass). Based on this visualization, the user is able to as-
sess whether a desired balance of the exploration and local
search was achieved.

Fig. 6 depicts root-mean-square errors (RMSE) for
each output variable, calculated for the validation period.
RMSE was not used in the cost function, because it is
non-differentiable at 0 which is problematic for gradient-
based methods, but the metric helps interpreting results.
RMSE represents the standard deviation between the pre-
dicted and true values. The analysis of the errors reveals
that the problems encountered by the non-GA-based se-
quences were due to both the thermal and CO2 parts of
the model. The best performing models achieved RMSE
below 50 ppm for CO2, 0.4 ◦C for T, 600 W for qrad, and
10 m3h−1 for verate. The RMSE differences between
the best and worst performers are around 180 ppm for CO2,
2 ◦C for T, 1600 W for qrad, and 20 m3h−1 for verate.
Interestingly, unlike the gradient-based methods, GPS cal-
ibrated well the parameters affecting CO2 and verate,
even though it started from the same initial guess.

The validation results for the four output variables ex-
plain the large errors yielded by the non-GA-based se-
quences. The temperature in those cases slowly reacts to
the applied heat loads (Fig. 7), which is due to the over-
estimated thermal mass (tmass, imass) of the building
(Fig. 3).

In the case of CO2 (CO2) and ventilation rate (verate)
the inaccuracy of the gradient-based methods is due to
the overestimated infiltration rate Vinf (Fig. 3), which
reduced the indoor CO2, preventing it from reaching the
setpoint of 800 ppm and triggering the ventilation. Hence,
the ventilation in those cases remained turned off through-
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Figure 5. Parameter evolution in the genetic algorithm – color represents the training error (darker more accurate).
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Figure 6. Validation root-mean-square error (RMSE) per output
variable.

out the entire validation period (verate equal to 0).
Similarly, the models with the inaccurate indoor tem-

perature yielded inaccurate radiator heating power qrad
(Fig. 8). Only the GA-based method sequences were able
to achieve a good accuracy with respect to qrad. In all
cases, however, there is a mismatch in the initial 8 hours
of the validation period due to the wrong initial condition
for qrad. If the grey-box model is to be used for short-
term predictions, the initial value should be based on the
measurements, as in the case of indoor temperature and
CO2.

4 Discussion
The results are not generalizable to other models, estima-
tion settings (initial guesses, number of iterations, parame-
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Figure 7. Validation results: temperature (T), CO2 (CO2), ven-
tilation airflow rate (verate).

ter bounds etc.), or even training data. The specific meth-
ods can perform differently on different problems. The
gradient-based methods heavily rely on the quality of the
initial guess, while the GA results depend on the random
seed. Both, the initial guess and the random seed were
fixed in this study. However, the results highlight the im-
portance of such inter-method comparisons, especially in
the cases where the parameter estimation is a non-convex
problem. In many practical applications it may be diffi-
cult to assess whether or not the problem is non-convex,
or what should be the initial guess for parameters.

The GA results presented in this paper are surprisingly
good in terms of the accuracy and computational time.
Typically GA requires much more time to converge than
gradient-based methods. However, since GA is stochastic
in nature, the results could be different if the experiment
was repeated without a fixed random seed. The computa-
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tional times reported in this study are based on single trials
and therefore may be slightly biased.

The authors advise to always couple GA with an-
other gradient-based method and rerun the estimation sev-
eral times if there are no strict time constraints, possi-
bly with various GA settings. ModestPy allows for set-
ting up the number of estimation runs with an option-
ally moving training period during the instantiation of the
Estimation class. An alternative approach could be to
test the gradient-based methods with multiple random ini-
tial guesses.

It should be noted, that the gradient-based methods
(SLSQP, L-BFGS-B, TNC) would be much faster if the
gradient of the cost function with respect to the estimated
parameters was known. In a general case, this gradient
is not known and has to be evaluated numerically, as in
this study. However, the FMI standard allows to provide
directional derivatives (optional feature), and some tools
support it. If the computational time is an issue, other tools
that are able to perform algebraic differentiation should be
used, e.g. JModelica.org (Åkesson et al., 2009).

5 Conclusions
Automated parameter estimation is crucial in many in-
dustrial applications, including MPC and other cyber-
physical systems. The FMI standard provides an attrac-
tive simulation interface that allows for using models out-
side their dedicated environments, and developing model-
agnostic tools. This paper introduces a new Python tool
for parameter estimation in FMI-compliant models, called
ModestPy. The tool supports several optimization meth-
ods, both gradient-free and gradient-based (numerically
approximated), that can be queued in user-defined se-
quences. ModestPy enables easily testing multiple meth-
ods on a given model and find the most suitable approach
and estimation settings.

The tool was tested on a case study in which it was used
to estimate parameters of a non-linear multi-output model
of a building zone. The results showed that the local opti-
mization methods (GPS, L-BFGS-B, TNC, SLSQP) were
unable to calibrate the model, marking that the the ini-
tial guess for parameters was poor. The addition of GA

as the initial global search method significantly improved
the model accuracy. The results also validated the two in-
house algorithms (GA and GPS).

It should be noted, that the initial global search would
not be needed if the approximate initial values of parame-
ters were known. In such a case the gradient-based meth-
ods would easily outperform GA.

The current functionality of the tool is already sufficient
for a general use. It is used by the authors for calibrating
gray-box models of buildings and HVAC systems for the
use in MPC.

However, the development work continues and there are
plans to include the following functionality:

• a simple graphical user interface to attract users less
experienced in the Python programming language,

• support for on-line estimation methods (e.g. Kalman
filter),

• support for multi-period stochastic gradient descent
training,

• support for parallel processing methods.
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