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Abstract 

Within the last decade, needs for building control 
systems that reduce cost, energy, or peak demand, and 
that facilitate building-grid integration, district-energy 
system optimization, and occupant interaction, while 
maintaining thermal comfort and indoor air quality, have 
come about.  Current PID and schedule-based control 
systems are not capable of fulfilling these needs, while 
Model Predictive Control (MPC) could.  Despite the 
critical role MPC-enabled buildings can play in future 
energy infrastructures, widespread adoption of MPC 
within the building industry has yet to occur.  To address 
barriers associated with system setup and configuration, 
this paper introduces an open-source software platform 
that emphasizes use of self-tuning adaptive models, 
usability by non-experts of MPC, and a flexible 
architecture that enables application across projects. 

Introduction 

Background 

In an effort to limit climate change and decrease 
operating costs, energy systems have become the focus 
of widespread concern.  This is especially true with 
those systems associated with buildings, which account 
for approximately 71% (EIA 2016a) of electricity use 
and 40% (EIA 2016b) of total primary energy use in the 
U.S.  While buildings play the largest role in energy use, 
they are largely ill-equipped to handle new performance 
requirements brought about by new concerns.  These 
requirements include energy or carbon minimization, 
peak demand minimization, integration with electrical 
and thermal district energy system operations, and 
occupant and operator feedback and connectivity.  Many 
of these requirements depend upon a building being able 
to consider time-based incentives in the operation of 
multiple subsystems towards a common objective.  
Examples include shifting peak afternoon cooling loads 
towards morning hours, reducing energy use during 
times of high energy prices, coordinating PV generation, 
electric vehicle charging, and occupant service to limit 
the stress on the electric grid, and responsiveness to 
occupants. 

Advancing the State of the Art 

Current state of the art building control systems rely on a 
combination of PID feedback control and schedule-

based setpoint managing without consideration of all of 
the necessary information to decide an optimal 
performance trajectory for a given objective.  This 
includes forecasts of weather, energy prices, and 
building occupancy.  In addition, the current control 
systems do not provide meaningful feedback to operators 
about the impact of certain control actions on system 
performance, which may help operators better manage 
systems according to their objectives. 

Conversely, model predictive control (MPC) can meet 
the emerging requirements of building control systems.  
MPC uses system performance models, which include 
all of the relevant information, to forecast performance 
and optimize control inputs with respect to a given 
objective.  These models can also provide useful 
feedback to system operators or building occupants for a 
number of operating scenarios. 

A large body of work has shown that MPC can help 
enable buildings to meet these new requirements 
(Rockett and Hathway 2016).  However, despite its 
widespread adoption in other industries (Qin and 
Badgwell, 2003) and success in research, it has not been 
widely adopted in the building industry, except for a few 
companies offering MPC as a software service for 
commercial buildings (BuildingIQ 2016, QCoefficient 
2016) and campus central plants (Johnson Controls 
2015).  Rockett and Hathway (2016) point out several 
factors that contribute to the lack of penetration of MPC 
into industry, with the foremost being 1) the lack of 
long-term trials showing the effectiveness of MPC and 
2) the expense and skill required for installation and 
maintenance.  This is particularly true for initial model 
configuration and maintaining model accuracy as 
building operation changes over time.  We believe these 
factors go hand-in-hand, where the high costs of 
installation and maintenance have prevented numerous 
long-term trials, and the low number of long-term trials 
have prevented the development of robust modeling and 
installation approaches. 

Paper Objective 

In order to address the problem of high system setup and 
maintenance costs, increase the number of trials of MPC 
in buildings, and facilitate widespread adoption of MPC 
in the building industry, this paper introduces the 
development of an open-source software platform for 
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MPC in buildings, MPCPy, available on the LBNL 
Simulation Research Group github site at 
https://github.com/lbl-srg/MPCPy under a modified BSD 
license.  A number of specific features are expected to 
contribute to the solution: 

 An emphasis is put on the use of adaptive models, 
which use measurements of the building 
performance to continually update and remain 
accurate enough for control optimization, as 
illustrated in Figure 1.  Such models are expected to 
drastically reduce model setup and maintenance 
costs.   

 Automatic model parameter estimation and 
optimization problem formulation together with 
flexible data input modules reduce the required 
MPC and programming expertise of users. 

 The use of open software standards enable 
contributions from other researchers and adoption 
by industry, while maintaining code maintenability 
and longevity due to the use of standards that have 
support in many industrial sectors. 

 An extensible architecture enables rapid 
development and distribution of new MPC methods. 

 

 
Figure 1 – MPCPy emphasizes the use of self-

adapting models for MPC optimization. 

 

While previous research has developed software 
frameworks for MPC in buildings, most have been 
developed for specific project requirements (such as data 
sources, processing methods, building simulation 
packages, and optimziation solvers) and are not made 
available for public use.  Those that are offered to the 
public in some way require costly commercial software, 
such as MATLAB (Zakula et al. 2014, Bernal et al. 
2012, Sturzenegger et al. 2014), or are focused on one 
aspect of the MPC process, such as reduced-order model 
development (Sturzenegger et al. 2014, DeConinck et al. 
2016).  In contrast, the framework introduced here looks 

to address all aspects for building MPC in an externsible 
way, is freely available, and is provided open-source. 

The remainder of the paper will describe the architecture 
of MPCPy and present examples to showcase its 
capabilities.  This paper will not address open research 
questions about proper adaptive model configurations 
and learning procedures, nor will it address guidelines 
for connecting to building automation systems (BAS).  
However, it is expected that MPCPy could be used 
extensively to answer these and other questions. 

Architecture 
MPCPy is designed using an object-oriented approach 
that promotes extensibility and is scripted in Python 2.7.  
The architecture is adapted from a tool-based 
architecture approach for computer-aided control design 
software (Barker et al. 1993 and Jobling et al. 1994), and 
is shown in Figure 2.  In such an architecture, tools are 
developed to perform very specific functions, and then 
are supported by common processing agents and 
combined to perform various tasks.  In MPCPy, four 
class modules represent the tools needed for MPC:  

 ExoData classes collect external data and process it 
for use within MPCPy. 

 System classes represent real or emulated systems 
to be controlled, collecting measurements from or 
providing control inputs to the systems. 

 Models classes represent system models for MPC, 
managing model simulation, estimation, and 
validation. 

 Optimization classes formulate and solve the MPC 
optimization problems using Models objects.   

Supporting the four tools are three modules for data 
handling and processing during run-time: 

 Variable and Unit classes together maintain the 
association of static or timeseries data with units. 

 Utility classes provide functionality needed across 
tools and for interactions with external components. 

MPCPy does not contain any of its own model 
specifications or solvers.  Instead, it relies on external 
software, modeling languages, and solvers.  While 
dependencies can be expanded to include other software, 
these external components are currently based on the 
Modelica (Mattsson and Elmqvist 1997) and Functional 
Mock-up Interface (FMI 2016) open standards, with 
system emulation models and MPC models able to be 
defined as native Modelica files or as Functional Mock-
up Units (FMU).  An FMU is a zipped file containing 
the variables and equations of a model that can be used 
to exchange the model between simulation programs. 
Optionally, solvers and additional data can be packaged 
as well.  Substantial development of the application of 
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Figure 2 – MPCPy architecture. 

 

these standards to building simulation and optimization 
is ongoing (Wetter et al. 2015 and Wetter and Treeck 
2015).  JModelica (Modelon AB 2009), an open-source 
Modelica compiler, is used to compile native Modelica 
models, simulate FMUs, and solve optimization 
problems, while EstimationPy (Bonvini et al. 2014) can 
be used for model parameter and state estimation using 
FMUs.  Therefore, any Modelica library can be used to 
create native Modelica models, including the Modelica 
Buildings Library (Wetter et al. 2014) or any from the 
Annex 60 collaboration (Wetter et al. 2015), as can any 
modeling software capable of generating FMUs.  While 
there exist methods to solve control optimization 
problems using highly detailed, non-differentiable 
models (Wetter 2001), we strongly recommend the use 
of differentiable models for control optimization, which 
can be solved very efficiently (Wetter et al. 2016). 

The following sections will detail the features of the 
Variables, Units, ExoData, Systems, Models, and 
Optimization module classes. 

Variables and Units 

Variable and Units classes allow MPCPy to effectively 
associate data with units as well as handle timeseries 
data separately from static (constant) data.  The Python 
package Pandas (McKinney 2010) is integrated into the 
handling of timeseries variables, bringing to MPCPy the 
many useful features Pandas has to offer for data 
storage, cleaning, resampling, interpolation, and 
statistical analysis. 

Figure 3 presents a basic Unified Modeling Language 
(UML) class diagram, commonly used in the field of 
software development, showing the relationship of 
Variables and Units classes.  The Variable class defines 
common methods for MPCPy variables, while the Static 
and Timeseries classes inherit the Variable class and 
implement methods more specific to data that is constant 
and time-varying respectively.  Units are added to 

variable objects upon instantiation and act upon the 
variable data depending on the action.  Each unit is part 
of a quantity type.  For example the unit degC is a 
temperature quantity.  Each quantity has a base unit in 
which all data is stored, which follows the convention 
defined by the Modelica Standard Library (Modelica 
Association 2016).  The display unit, however, defines 
the conversion of the data to that base unit upon input, or 
conversion from that base unit upon display or output.  
The DisplayUnit class defines these required methods, 
with additional methods specified in quantity-specific 
classes. 

 

  
Figure 3 – Variables and Units class diagram.  Classes 

labelled “A” are abstract, “C” are concrete. 

 

ExoData 

ExoData classes are responsible for the representation of 
exogenous data, with methods to collect this data from 
various sources and process it for use within MPCPy.  
Exogenous data is separated according to a data class 
and each data class has a specified variable organization 
in the form of a Python dictionary.  This allows for an 
internal understanding of where objects should look for 
specific data and the use of specific checks for each data 
class.  At the time of this writing, there are eight types of 
data classes: Weather, Internal, Controls, Constraints, 
Prices, Parameters, and Other Inputs. 

Figure 4 presents a basic UML class diagram showing 
the relationship of ExoData classes.  At the top is the 
Type class that contains common methods for all 
exogenous data class types.  Then, there exists an 
abstract class for each exogenous data class, which 
inherits the Type class and adds additional methods 
specific for that data class.  These include assertions that 
particular variables fall within limits or methods for 
manipulating the data dictionary for that data class.  
Finally, source-specific classes inherit the type-specific 
data classes and add methods required to collect data 
from a particular source.  For example, an EPW file or 
CSV file may be the source of weather data.  At the time 
of this writing, aside from this choice, CSV files must be 
the source of all other data types.  However, similar to 
the EPW and CSV example, the class designs allow for 
easy addition of other data class sources and types. 
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Figure 4 – ExoData class diagram.  Classes labelled 

“A” are abstract, “C” are concrete. 

Systems 

Systems classes represent the controlled systems, with 
methods to collect measurements from or set control 
inputs to the system.  This representation can be real or 
emulated using a detailed simulation model.  A common 
interface to the controlled system in both cases allows 
for algorithm development and testing on a simulation 
with easy transition to the real system.  Similar to 
exogenous data, measurement data has a specified 
variable organization in the form of a Python dictionary 
in order to aid its use by other objects. 

Figure 5 presents a basic UML class diagram showing 
the relationship of Systems classes.  The System class 
contains common methods for all system types.  Then, 
real and emulated system classes inherit the top-level 
System class and add methods that are more specific.  
For example, the emulated system class requires 
methods to simulate a model, rather than establish a 
connection with a data server or control system serving a 
real system.  Finally, concrete classes inherit the system 
type methods and implement methods that are more 
specific for the emulation or real system source type.  At 
the time of this writing, MPCPy only supports emulation 
by FMU simulation, however, the class design allows for 
adding emulation methods and real system sources. 

 

  
Figure 5 – Systems class diagram.  Classes labelled “A” 

are abstract, “C” are concrete. 

 

Models 

Models classes represent system models that can be used 
for MPC optimization, with methods to simulate the 

model, estimate parameters or states based on measured 
system data, and validate the model based on measured 
system data.  These are often reduced-order or simplified 
models when compared to a system emulation model. 

Figure 6 presents a basic UML class diagram showing 
the relationship of Models classes.  The Model class 
contains common methods for an MPC-suited model.  
The Model class has two classes for an estimation 
method and a validation method.  The Estimate class 
contains methods common for solving parameter or state 
estimation problems.  Implementations of the Estimate 
class contain specific methods required to setup and 
solve the estimation problem with various algorithms.  
For example, the estimation problem may be formulated 
as an optimization problem, to be solved in JModelica, 
or formulated for an Unscented Kalman Filter (UKF), 
implemented by EstimationPy.  Meanwhile, the Validate 
class contains methods common for validating the 
estimation process and concrete implementations of this 
class apply more specific validation algorithms.  For 
example, this could be calculating the RMSE between 
measured data and simulated data with estimated 
parameters.  Lastly, the Modelica class inherits the 
Model class and adds methods to handle Modelica and 
FMI-based models.  Many of these methods are inherited 
from an FMU class in the Utilities module, not described 
in detail here.  The class design of models is in such a 
way that allows for adding other estimation and 
validation methods as well as model formats. 

 

   
Figure 6 – Models class diagram.  Classes labelled “A” 

are abstract, “C” are concrete. 

 

Optimization 

Optimization classes represent MPC optimization 
problems, with methods to setup and solve such 
problems. 

Figure 7 presents a basic UML class diagram showing 
the relationship of Optimization classes.  The 
Optimization class implements methods for setting up 
and solving an MPC optimization problem.  It has two 
classes for a problem and an optimization package.  The 
Problem class contains common methods for defining an 
optimization problem.  Implementations of Problem add 
specific methods to setup a particular problem type.  At 
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the time of this writing, MPCPy supports parameter 
estimation, energy minimization, and energy cost 
minimization.  The Package class contains common 
methods for setting up an optimization package to solve 
the defined optimization problem.  Implementations add 
specific methods for a particular optimization package.  
At the time of this writing, MPCPy supports the use of 
JModelica as a package.  Note that an implementation of 
a Package should be able to solve any of the problems 
defined by a Problem class.  In this way, the class design 
allows for the addition of other problem types, such as 
peak load minimization or demand response 
maximization, and optimization packages. 

 

   
Figure 7 – Optimization class diagram.  Classes labelled 

“A” are abstract, “C” are concrete. 

 

A key feature of MPCPy is the ability to automatically 
setup and solve optimization problems, requiring only 
model files, exogenous input data, and optimization 
constraints.  At the time of this writing, this feature is 
supported for models defined in native Modelica and 
problem types of parameter estimation, energy 
minimization, and energy cost minimization using 
JModelica as an optimization package.  This automated 
process begins with automatic modification of the given 
native Modelica model file (.mo) into an Optimica 
(Akesson 2008) Modelica file (.mop) based on the 
optimization problem type.  This includes the objective 
of the problem type chosen, constraints on model states, 
or identification of parameters or states to be estimated.  
Figure 8 shows example modifications that are made for 
an energy cost minimization problem.  Next, the .mop 
file is used by JModelica to instantiate an optimization 
problem.  Upon solver runtime, the optimization 
problem is combined with solution-specific information 
and passed to the optimization solver.  This solution-
specific information includes exogenous input data or 
measurement data required for model estimation. 

Examples 
This section presents a number of examples to show the 
capabilities of MPCPy.  Examples are for variable and 
unit management, collecting exogenous data, building 
emulation, model estimation and validation, and control 
optimization.  Note that the examples are simple and 
emphasize the processes enabled by MPCPy, not the 
specific outcomes of those processes. 

 

 
Figure 8 – .mo file to .mop file modifications for an 

energy cost minimization problem with grey text 
representing original .mo code, red text representing 

case-specific code additions, and black code 
representing general code additions. 

 

Variable and Unit Management 

We begin by defining a single static variable with units 
of oC, which may represent a thermostat setpoint.   

 
The first two lines of code import the Variables and 
Units modules from MPCPy.  The third line instantiates 
the static variable with three arguments; name, data, unit.  
Printing the variable displays relevant information about 
the variable, including that it has a quantity of 
temperature.  Therefore, the data is actually stored in 
units of Kelvin.  We can check this by getting the base 
unit and data of the variable. 

 
The data can also be displayed in the display units. 

 
The display unit can also be changed. 

 

Note that functionality is the same with timeseries 
variables, however, data is supplied in the form of a 
Pandas series variable with a timestamp index instead of 
a single value.  By default, the Pandas timeseries 

>>> from mpcpy import variables 
>>> from mpcpy import units 
>>> T_set = variables.Static('T_set',20,units.degC) 
>>> print(T_set) 
Name: T_set 
Variability: Static 
Quantity: Temperature 
Display Unit: degC 

>>> T_set.get_base_unit() 
mpcpy.units.K 
>>> T_set.get_base_data() 
293.15 

>>> T_set.display_data() 
20.0 

>>> T_set.set_display_unit(units.degF) 
>>> T_set.display_data() 
68.0 
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specified is assumed to be in UTC time, however, 
optional arguments upon instantiation allow for 
timeseries in local time zones to be specified as well.  
The timeseries is converted to UTC time for storage, 
though can be again converted to local upon data 
display.  

Collecting Exogenous Data 

Next, we would like to collect exogenous data from a 
source.  First, we collect weather data from an EPW file. 

 
The first line of code imports the exodata module from 
MPCPy.  The second line instantiates a weather data 
object with an EPW file as the source, while the third 
line collects data from the file for the time-period 
specified.  The time-period can be in any form 
recognizable to Pandas or a custom format, optionally 
defined upon object instantiation. 

Now, we collect weather data from a CSV file. 

 
The first line of code defines a mapping dictionary 
between the header columns of the CSV file and the 
input variables in the emulation or MPC models.  The 
dictionary keys are the column headers and the value of 
each key is a tuple of the model input name and data 
units as displayed in the CSV file.  Note that using the 
Variable and Units classes, the data is automatically 
converted to the base unit for use within the model.  The 
second line of code instantiates a weather object with a 
CSV file as a source and the variable map already 
defined.  A few optional arguments are shown as well, 
which define which CSV column header name contains 
the timestamps and in which time zone the timestamps 
are.  By default, the object will read timestamps from a 
column header “Time” or “Timestamp” and will assume 
UTC time.  Additional arguments for specifying a 
custom timestamp format and data cleaning algorithms 
are available, but not discussed further here. 

Building Emulation 

Next, we look to simulate a building emulation model.  
The building we will use is based on a test facility on the 
Berkeley Lab campus, called LBNL71T and shown in 
Figure 9.  It is a three-zone facility, with two of the 

zones having exterior walls, one facing east and the 
other facing west.  For example purposes, we model 
each zone having a single convective heater.  An 
emulation model is built using components from the 
Modelica Buildings Library, namely three thermally 
connected instances of the 
Buildings.ThermalZones.Detailed.MixedAir, and 
exported as a model-exchange FMU v 2.0.  Peak internal 
loads total 20 W/m2 with a 40%-40%-20% split between 
convective, radiative, and latent and a typical weekday 
office schedule.  For demonstration purposes the 
building is located in Chicago, IL, a time zone that is 
UTC-6:00. 

 

 
Figure 9 – LBNL71T test building, used for 

demonstration of MPCPy. 

First, we must define what measurements we wish to 
take from the model.  The code shown below defines a 
measurement dictionary by indicating the name of the 
variable we wish to measure and its sample rate.  Note 
that upon simulation, the output reporting time-step is 
equal to the minimum defined measurement sample rate.   

 
With the measurements defined, we can instantiate our 
building emulation object, simulate the building, and 
plot the measurements. 

 
The first line of code imports the Systems module from 
MPCPy and the second imports the matplotlib package 
(Hunter 2007).  The third line of code instantiates the 
building system object as an FMU and with the 
measurement dictionary already defined.  Other optional 
arguments of the instantiation define the exogenous data 
to use, collected as shown before, parameters of the 

>>> from mpcpy import exodata 
>>> weather = exodata.WeatherFromEPW('path.epw') 
>>> weather.collect_data('1/1/2015', '1/4/2015') 

>>> variable_map = {'TemperatureF' : 
. . .   ('weaTDryBul', units.degF), 
. . .   'Dew PointF' :  
. . .  ('weaTDewPoi', units.degF),                             
. . .   'Humidity' :  
. . .  ('weaRelHum', units.percent), 
. . .  'Sea Level PressureIn' : 
. . .  ('weaPAtm', units.inHg), 
. . .  'WindDirDegrees' : 
. . .  ('weaWinDir', units.deg), 
. . .  ‘Wind SpeedMPH' : 
. . .  ('weaWinSpe', units.mph)}; 
>>> weather =  
. . . exodata.WeatherFromCSV( 
. . .  'path.csv', variable_map, 
. . . time_header = 'TimePDT', 
. . .  tz_name = 'from_geography',  
. . . geography = [37.8716, -122.2727]); 
>>> weather.collect_data('1/1/2015', '1/4/2015') 
 

>>> measurements = {}; 
>>> measurements['wesTdb'] = {'Sample' :  
. . . variables.Static('wesTdb_sample', 600, units.s)}; 
>>> measurements['halTdb'] = {'Sample' : 
. . . variables.Static('halTdb_sample',1200, units.s)}; 
>>> measurements['easTdb'] = {'Sample' : 
. . . variables.Static('easTdb_sample',1200, units.s)}; 

>>> from mpcpy import systems 
>>> from matplotlib import pyplot as plt 
>>> building = systems.EmulationFromFMU( 
. . .  'path.fmu', measurements,  
. . . weather_data = weather.data, \ 
. . . internal_data = internal.data, \ 
. . . control_data = control.data, \ 
. . . parameter_data = parameters.data, \ 
. . . tz_name = weather.tz_name); 
>>> building.collect_measurements( 
. . . '1/1/2015', '1/4/2015'); 
>>> plt.figure(1) 
>>> for key in self.building.measurements.keys(): 
. . . variable = 
. . .        building.measurements[key]['Measured']; 
. . .  variable.set_display_unit(units.degC);  
. . . variable.display_data().plot(label = key); 
. . . plt.legend(); 
. . .  plt.ylabel(variable.quantity_name + '[' + 
. . .     variable.display_unit.name + ']'); 
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emulation model, and the building time zone.  Note that 
the weather data comes from the Chicago, IL EPW file, 
while internal load data and heater control signals come 
from separate CSV files.  The fourth line of code 
simulates the emulation model for the time-period 
specified, according to the building time zone. Finally, 
the last lines of code plot the measurements using the 
Pandas plot function and MPCPy variable attributes.  
Figure 10 shows the resulting plot. 

 

 
Figure 10 – Mean zone air temperatures of LBNL71T in 

Chiacgo, IL from January 1-3. 

 

Model Estimation 

Next, we look to estimate the parameters of a reduced-
order model of our emulated building, shown in Figure 
11.  The reduced order model is an RC circuit that 
models sensible heat transfer only.  Each zone interior is 
modelled with two capacitances with a resistance 
between them, representing the air capacitance and 
interior thermal mass capacitance.  The zone exterior 
walls are modelled with two resistances and one thermal 
capacitance as well as a solar absorbance coefficient for 

solar irradiation incident on the wall.  Windows are 
modelled with a single resistor and solar transmittance 
coefficient.  Lastly, interior partitions between zones are 
modelled with two resistors and a single capacitor.  The 
components are modelled using the Modelica Standard 
Library and Modelica Buildings Library. 

While this paper shows the approach of building a 
library of reduced order model components is promising, 
the purpose of this model is not to represent answers to 
questions about what the proper reduced-order model 
configurations is to use for multi-zone buildings and 
HVAC systems.  Also, this example does not address 
methods to improve model training, including necessary 
model excitation or data characteristics.  Rather, the 
model’s purpose here is to be a suitable demonstration of 
MPCPy capabilities.  These other important questions 
are saved for future work, and can be exercised using 
MPCPy.  We are now ready to instantiate, estimate, and 
validate the reduced order model. 

 
The first line of code imports the Models module from 
MPCPy.  The second line of code instantiates the model 
object with an estimation method (JModelica), validation 

>>> from mpcpy import models 
>>> model = models.Modelica( 
. . .  models.JModelica,  
. . .    models.RMSE, 
. . .    building.measurements, 
. . . moinfo =  
. . .       ('path.mo', 'package.model', libraries)  
. . . weather_data = weather.data, \ 
. . . internal_data = internal.data, \ 
. . . control_data = control.data, \ 
. . . parameter_data = parameters.data, \ 
. . . tz_name = weather.tz_name); 
>>> model.estimate('1/1/2015', '1/4/2015',  
. . .  ['wesTdb', 'halTdb', 'easTdb']); 
>>> building.collect_measurements( 
. . . '1/4/2015', '1/5/2015'); 
>>> model.measurements = building.measurements; 
>>> model.validate('1/4/2015', '1/5/2015',  

'respath', plot = 1); 

Figure 11 – RC model representing the LBNL71T test building, used for demonstration of MPCPy. The parameters 
to train are shown next to each component Modelica diagram. 
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method (calculate RMSE), system measurements, and 
Modelica model information, as well as exogenous data 
as collected before.  The system measurements are 
passed using the measurement dictionary formulated 
after collecting measurements with the building object.  
The model information requires the file path, model path 
within the file, and any libraries required to compile the 
model.  The parameter data is collected from a CSV as 
exogenous data and contains information about the 
parameters in the model to be estimated, including their 
minimum and maximum values, initial guesses, and 
covariances (applicable to the UKF estimation method if 
used).  The third line of code estimates the model 
parameters using the specified period of measurement 
data (Jan. 1-3) and measurement variables. 

 

 
Figure 12 – Mean zone air temperatures over the 

validation period on Jan. 4 for LBNL71T RC model 
Shown in local time.  

 

Finally, the last three lines of code validate the model 
using data from the day after the training period using 
the specified period of measurement data, with the 
validation results output to a defined directory path.  The 
results of model validation are shown in Figure 12.  The 
RMSE for wesTdb, halTdb, and easTdb are 0.32 K, 0.27 
K, and 0.40 K for the training period, and 0.18 K, 0.20 
K, and 0.58 K for the validation period.  

Control Optimization 

Lastly, we optimize heater control to minimize energy 
use and cost while maintaining thermal comfort. 

 
The first line of code imports the Optimization module 
from MPCPy.  The second line of code instantiates an 
optimization problem object by defining the model to 
use, the optimization problem, the optimization solver, 
the objective variable within the model, which is total 
power in this case (variable “Ptot”), and constraint data.  
The model is the model object instantiated as shown 
previously.  The constraint data is collected as an 

exogenous data object from a CSV file and contains 
timeseries information about greater-than-or-equal-to 
and less-than-or-equal-to constraints on state variables 
and their derivatives, as well as initial value, final value, 
or cyclic (initial equals final) constraints.  For this 
example, the zone mean air temperatures are constrained 
to between 22°C and 25°C, their derivatives are 
constrained to less than 2 K/h, and their initial and final 
values must be equal.  This cyclic constraint assumes 
that neighbouring days would have similar conditions 
and preferred performance.  The heater control signals 
are constrained to between 0 and 1.  The last line of code 
solves the optimization problem over the time period 
specified.  Note that all other exogenous data, such as 
weather and internal loads, are included in the model 
object that is passed.  The optimization will optimize all 
variables in the “control_data” attribute of the model, 
which in this case are the heater control signals. 

Lastly, the objective is changed to minimize energy cost.  

Here, we add price data, collected as an exogenous data 
object as shown previously, to the optimize statement. 
The price data is automatically integrated with the model 
optimization, in this case multiplying together with the 
defined objective variable, “Ptot.”  In the case 
demonstrated, the price of electricity is five times higher 
during the hours of 6:00 PM, 7:00 PM, and 8:00 PM 
local time than the rest of the day.  The solutions to the 
energy minimization and energy cost minimization 
problems are presented in Figures 13 and 14.  Notice that 
temperature constraints are not violated and the inclusion 
of price spikes incentives a significant shift in heating 
power away from the hours with higher prices. 

Discussion 
The examples showed the systematic, yet flexible, 
approach MPCPy takes to setup MPC for buildings, 
upon which industry and researchers can build and test 
their implementations.  Variables and Units provide 
flexibility during the input and output of data with 
respect to data units and timeseries time zones.  
Exogenous data of various types and with different data 
sources and formats can be combined together for use 
during model simulation, estimation, validation, and 
optimization.  Common interfacing with real and 
emulated systems eases transition from controller 
development to application.  Automatic setup of model 
parameter estimation and optimization algorithms 
minimizes the user programming and expertise 
requirements.  Lastly, an extensible architecture  enables 
new data sources, simulation procedures, problem types, 
and solver methods to be added in the future. 

Conclusion 
The requirements of building control systems are 
growing in a way that requires improved information 
processing and decision making over the state of the art.   

>>> from mpcpy import optimization 
>>> self.opt_problem =  
. . . optimization.Optimization(model, 
. . . optimization.EnergyMin, 
. . . optimization.JModelica,  
. . . 'Ptot',  
. . . constraint_data = self.constraints.data); 
>>> opt_problem.optimize('1/2/2015', '1/3/2015'); 

>>> opt_problem.set_problem_type( 
. . .  optimization.EnergyCostMin); 
>>> opt_problem.optimize('1/2/2015', '1/3/2015', 
. . . price_data = prices.data); 
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(a) 

 
(b) 

Figure 13 – Zone mean air temperature (a) and heater 
power (b) solutions for energy minimization of LBNL71T 

RC model on Jan. 2nd.  Shown in local time. 

 

Past research and few demonstrations have shown that 
MPC can meet these new requirements.  However, the 
building industry has yet to see widespread adoption of 
MPC control systems, likely due to high setup costs and 
maintenance for individual sites.  To address these 
barriers, this paper introduces a freely available open-
source MPC platform for buildings based on open 
standards, called MPCPy, available on the LBNL 
Simulation Research Group github site at 
https://github.com/lbl-srg/MPCPy under a modified BSD 
license.  The platform emphasizes the use of adaptive 
models, whose parameters can be learned over time with 
measured building data, and the automation of model 
learning and optimization problem setup and solving.  
Both of these features are expected to significantly 
reduce the required system setup time and expertise.  In 
addition, MPCPy is designed for extensibility and based 
on open-source standards so that new data sources, 
model types, procedures, and problems can be added 
over time without sacrificing code longevity.   

Immediate future work is three-fold, having to do with 
functionality, demonstration, and support for the public 
release.  Additional functionality includes methods for 
real system implementation, support for additional 
optimization problems, such as peak load minimization, 
and incorporation of occupant behaviour models.     

 
(a) 

 
(b) 

Figure 14 – Zone mean air temperature (a) and heater 
power (b) solutions for energy cost minimization of 

LBNL71T RC model on Jan. 2nd.  Shown in local time. 

 

Future functionality also includes application of MPCPy 
at various system scopes, including the room, building, 
and campus levels.  Development of a Modelica 
component library for MPC applications is planned by 
Wetter and Treeck (2015).  Demonstrations of MPCPy at 
real sites are planned to take place over the next five 
years by LBNL and collaborators.  However, we hope 
that the public release provides others an opportunity to 
demonstrate its capabilities as well, contribute to its 
development, and create a community of users.    

The current version of MPCPy is v0.1. Development is 
ongoing for the support of the public release, including 
additional features, documentation, error handling, 
regression testing, and interface adjustments.  Updates 
will be released periodically according to user feedback 
and developer progress.  To contribute to this project’s 
development or inquiry about collaboration, visit the 
MPCPy github site or contact the authors. 
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