
Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1381
https://doi.org/10.26868/25222708.2017.351

MPCPy: An Open-Source Software Platform for Model Predictive Control in Buildings

David H. Blum1 and Michael Wetter1

1Lawrence Berkeley National Laboratory,

Energy Technologies Area

Building Technology and Urban Systems Division

Berkeley, CA, U.S.A.

Abstract

Within the last decade, needs for building control
systems that reduce cost, energy, or peak demand, and
that facilitate building-grid integration, district-energy
system optimization, and occupant interaction, while
maintaining thermal comfort and indoor air quality, have
come about. Current PID and schedule-based control
systems are not capable of fulfilling these needs, while
Model Predictive Control (MPC) could. Despite the
critical role MPC-enabled buildings can play in future
energy infrastructures, widespread adoption of MPC
within the building industry has yet to occur. To address
barriers associated with system setup and configuration,
this paper introduces an open-source software platform
that emphasizes use of self-tuning adaptive models,
usability by non-experts of MPC, and a flexible
architecture that enables application across projects.

Introduction

Background

In an effort to limit climate change and decrease
operating costs, energy systems have become the focus
of widespread concern. This is especially true with
those systems associated with buildings, which account
for approximately 71% (EIA 2016a) of electricity use
and 40% (EIA 2016b) of total primary energy use in the
U.S. While buildings play the largest role in energy use,
they are largely ill-equipped to handle new performance
requirements brought about by new concerns. These
requirements include energy or carbon minimization,
peak demand minimization, integration with electrical
and thermal district energy system operations, and
occupant and operator feedback and connectivity. Many
of these requirements depend upon a building being able
to consider time-based incentives in the operation of
multiple subsystems towards a common objective.
Examples include shifting peak afternoon cooling loads
towards morning hours, reducing energy use during
times of high energy prices, coordinating PV generation,
electric vehicle charging, and occupant service to limit
the stress on the electric grid, and responsiveness to
occupants.

Advancing the State of the Art

Current state of the art building control systems rely on a
combination of PID feedback control and schedule-

based setpoint managing without consideration of all of
the necessary information to decide an optimal
performance trajectory for a given objective. This
includes forecasts of weather, energy prices, and
building occupancy. In addition, the current control
systems do not provide meaningful feedback to operators
about the impact of certain control actions on system
performance, which may help operators better manage
systems according to their objectives.

Conversely, model predictive control (MPC) can meet
the emerging requirements of building control systems.
MPC uses system performance models, which include
all of the relevant information, to forecast performance
and optimize control inputs with respect to a given
objective. These models can also provide useful
feedback to system operators or building occupants for a
number of operating scenarios.

A large body of work has shown that MPC can help
enable buildings to meet these new requirements
(Rockett and Hathway 2016). However, despite its
widespread adoption in other industries (Qin and
Badgwell, 2003) and success in research, it has not been
widely adopted in the building industry, except for a few
companies offering MPC as a software service for
commercial buildings (BuildingIQ 2016, QCoefficient
2016) and campus central plants (Johnson Controls
2015). Rockett and Hathway (2016) point out several
factors that contribute to the lack of penetration of MPC
into industry, with the foremost being 1) the lack of
long-term trials showing the effectiveness of MPC and
2) the expense and skill required for installation and
maintenance. This is particularly true for initial model
configuration and maintaining model accuracy as
building operation changes over time. We believe these
factors go hand-in-hand, where the high costs of
installation and maintenance have prevented numerous
long-term trials, and the low number of long-term trials
have prevented the development of robust modeling and
installation approaches.

Paper Objective

In order to address the problem of high system setup and
maintenance costs, increase the number of trials of MPC
in buildings, and facilitate widespread adoption of MPC
in the building industry, this paper introduces the
development of an open-source software platform for

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1382

MPC in buildings, MPCPy, available on the LBNL
Simulation Research Group github site at
https://github.com/lbl-srg/MPCPy under a modified BSD
license. A number of specific features are expected to
contribute to the solution:

 An emphasis is put on the use of adaptive models,
which use measurements of the building
performance to continually update and remain
accurate enough for control optimization, as
illustrated in Figure 1. Such models are expected to
drastically reduce model setup and maintenance
costs.

 Automatic model parameter estimation and
optimization problem formulation together with
flexible data input modules reduce the required
MPC and programming expertise of users.

 The use of open software standards enable
contributions from other researchers and adoption
by industry, while maintaining code maintenability
and longevity due to the use of standards that have
support in many industrial sectors.

 An extensible architecture enables rapid
development and distribution of new MPC methods.

Figure 1 – MPCPy emphasizes the use of self-

adapting models for MPC optimization.

While previous research has developed software
frameworks for MPC in buildings, most have been
developed for specific project requirements (such as data
sources, processing methods, building simulation
packages, and optimziation solvers) and are not made
available for public use. Those that are offered to the
public in some way require costly commercial software,
such as MATLAB (Zakula et al. 2014, Bernal et al.
2012, Sturzenegger et al. 2014), or are focused on one
aspect of the MPC process, such as reduced-order model
development (Sturzenegger et al. 2014, DeConinck et al.
2016). In contrast, the framework introduced here looks

to address all aspects for building MPC in an externsible
way, is freely available, and is provided open-source.

The remainder of the paper will describe the architecture
of MPCPy and present examples to showcase its
capabilities. This paper will not address open research
questions about proper adaptive model configurations
and learning procedures, nor will it address guidelines
for connecting to building automation systems (BAS).
However, it is expected that MPCPy could be used
extensively to answer these and other questions.

Architecture
MPCPy is designed using an object-oriented approach
that promotes extensibility and is scripted in Python 2.7.
The architecture is adapted from a tool-based
architecture approach for computer-aided control design
software (Barker et al. 1993 and Jobling et al. 1994), and
is shown in Figure 2. In such an architecture, tools are
developed to perform very specific functions, and then
are supported by common processing agents and
combined to perform various tasks. In MPCPy, four
class modules represent the tools needed for MPC:

 ExoData classes collect external data and process it
for use within MPCPy.

 System classes represent real or emulated systems
to be controlled, collecting measurements from or
providing control inputs to the systems.

 Models classes represent system models for MPC,
managing model simulation, estimation, and
validation.

 Optimization classes formulate and solve the MPC
optimization problems using Models objects.

Supporting the four tools are three modules for data
handling and processing during run-time:

 Variable and Unit classes together maintain the
association of static or timeseries data with units.

 Utility classes provide functionality needed across
tools and for interactions with external components.

MPCPy does not contain any of its own model
specifications or solvers. Instead, it relies on external
software, modeling languages, and solvers. While
dependencies can be expanded to include other software,
these external components are currently based on the
Modelica (Mattsson and Elmqvist 1997) and Functional
Mock-up Interface (FMI 2016) open standards, with
system emulation models and MPC models able to be
defined as native Modelica files or as Functional Mock-
up Units (FMU). An FMU is a zipped file containing
the variables and equations of a model that can be used
to exchange the model between simulation programs.
Optionally, solvers and additional data can be packaged
as well. Substantial development of the application of

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1383

Figure 2 – MPCPy architecture.

these standards to building simulation and optimization
is ongoing (Wetter et al. 2015 and Wetter and Treeck
2015). JModelica (Modelon AB 2009), an open-source
Modelica compiler, is used to compile native Modelica
models, simulate FMUs, and solve optimization
problems, while EstimationPy (Bonvini et al. 2014) can
be used for model parameter and state estimation using
FMUs. Therefore, any Modelica library can be used to
create native Modelica models, including the Modelica
Buildings Library (Wetter et al. 2014) or any from the
Annex 60 collaboration (Wetter et al. 2015), as can any
modeling software capable of generating FMUs. While
there exist methods to solve control optimization
problems using highly detailed, non-differentiable
models (Wetter 2001), we strongly recommend the use
of differentiable models for control optimization, which
can be solved very efficiently (Wetter et al. 2016).

The following sections will detail the features of the
Variables, Units, ExoData, Systems, Models, and
Optimization module classes.

Variables and Units

Variable and Units classes allow MPCPy to effectively
associate data with units as well as handle timeseries
data separately from static (constant) data. The Python
package Pandas (McKinney 2010) is integrated into the
handling of timeseries variables, bringing to MPCPy the
many useful features Pandas has to offer for data
storage, cleaning, resampling, interpolation, and
statistical analysis.

Figure 3 presents a basic Unified Modeling Language
(UML) class diagram, commonly used in the field of
software development, showing the relationship of
Variables and Units classes. The Variable class defines
common methods for MPCPy variables, while the Static
and Timeseries classes inherit the Variable class and
implement methods more specific to data that is constant
and time-varying respectively. Units are added to

variable objects upon instantiation and act upon the
variable data depending on the action. Each unit is part
of a quantity type. For example the unit degC is a
temperature quantity. Each quantity has a base unit in
which all data is stored, which follows the convention
defined by the Modelica Standard Library (Modelica
Association 2016). The display unit, however, defines
the conversion of the data to that base unit upon input, or
conversion from that base unit upon display or output.
The DisplayUnit class defines these required methods,
with additional methods specified in quantity-specific
classes.

Figure 3 – Variables and Units class diagram. Classes

labelled “A” are abstract, “C” are concrete.

ExoData

ExoData classes are responsible for the representation of
exogenous data, with methods to collect this data from
various sources and process it for use within MPCPy.
Exogenous data is separated according to a data class
and each data class has a specified variable organization
in the form of a Python dictionary. This allows for an
internal understanding of where objects should look for
specific data and the use of specific checks for each data
class. At the time of this writing, there are eight types of
data classes: Weather, Internal, Controls, Constraints,
Prices, Parameters, and Other Inputs.

Figure 4 presents a basic UML class diagram showing
the relationship of ExoData classes. At the top is the
Type class that contains common methods for all
exogenous data class types. Then, there exists an
abstract class for each exogenous data class, which
inherits the Type class and adds additional methods
specific for that data class. These include assertions that
particular variables fall within limits or methods for
manipulating the data dictionary for that data class.
Finally, source-specific classes inherit the type-specific
data classes and add methods required to collect data
from a particular source. For example, an EPW file or
CSV file may be the source of weather data. At the time
of this writing, aside from this choice, CSV files must be
the source of all other data types. However, similar to
the EPW and CSV example, the class designs allow for
easy addition of other data class sources and types.

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1384

Figure 4 – ExoData class diagram. Classes labelled

“A” are abstract, “C” are concrete.

Systems

Systems classes represent the controlled systems, with
methods to collect measurements from or set control
inputs to the system. This representation can be real or
emulated using a detailed simulation model. A common
interface to the controlled system in both cases allows
for algorithm development and testing on a simulation
with easy transition to the real system. Similar to
exogenous data, measurement data has a specified
variable organization in the form of a Python dictionary
in order to aid its use by other objects.

Figure 5 presents a basic UML class diagram showing
the relationship of Systems classes. The System class
contains common methods for all system types. Then,
real and emulated system classes inherit the top-level
System class and add methods that are more specific.
For example, the emulated system class requires
methods to simulate a model, rather than establish a
connection with a data server or control system serving a
real system. Finally, concrete classes inherit the system
type methods and implement methods that are more
specific for the emulation or real system source type. At
the time of this writing, MPCPy only supports emulation
by FMU simulation, however, the class design allows for
adding emulation methods and real system sources.

Figure 5 – Systems class diagram. Classes labelled “A”

are abstract, “C” are concrete.

Models

Models classes represent system models that can be used
for MPC optimization, with methods to simulate the

model, estimate parameters or states based on measured
system data, and validate the model based on measured
system data. These are often reduced-order or simplified
models when compared to a system emulation model.

Figure 6 presents a basic UML class diagram showing
the relationship of Models classes. The Model class
contains common methods for an MPC-suited model.
The Model class has two classes for an estimation
method and a validation method. The Estimate class
contains methods common for solving parameter or state
estimation problems. Implementations of the Estimate
class contain specific methods required to setup and
solve the estimation problem with various algorithms.
For example, the estimation problem may be formulated
as an optimization problem, to be solved in JModelica,
or formulated for an Unscented Kalman Filter (UKF),
implemented by EstimationPy. Meanwhile, the Validate
class contains methods common for validating the
estimation process and concrete implementations of this
class apply more specific validation algorithms. For
example, this could be calculating the RMSE between
measured data and simulated data with estimated
parameters. Lastly, the Modelica class inherits the
Model class and adds methods to handle Modelica and
FMI-based models. Many of these methods are inherited
from an FMU class in the Utilities module, not described
in detail here. The class design of models is in such a
way that allows for adding other estimation and
validation methods as well as model formats.

Figure 6 – Models class diagram. Classes labelled “A”

are abstract, “C” are concrete.

Optimization

Optimization classes represent MPC optimization
problems, with methods to setup and solve such
problems.

Figure 7 presents a basic UML class diagram showing
the relationship of Optimization classes. The
Optimization class implements methods for setting up
and solving an MPC optimization problem. It has two
classes for a problem and an optimization package. The
Problem class contains common methods for defining an
optimization problem. Implementations of Problem add
specific methods to setup a particular problem type. At

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1385

the time of this writing, MPCPy supports parameter
estimation, energy minimization, and energy cost
minimization. The Package class contains common
methods for setting up an optimization package to solve
the defined optimization problem. Implementations add
specific methods for a particular optimization package.
At the time of this writing, MPCPy supports the use of
JModelica as a package. Note that an implementation of
a Package should be able to solve any of the problems
defined by a Problem class. In this way, the class design
allows for the addition of other problem types, such as
peak load minimization or demand response
maximization, and optimization packages.

Figure 7 – Optimization class diagram. Classes labelled

“A” are abstract, “C” are concrete.

A key feature of MPCPy is the ability to automatically
setup and solve optimization problems, requiring only
model files, exogenous input data, and optimization
constraints. At the time of this writing, this feature is
supported for models defined in native Modelica and
problem types of parameter estimation, energy
minimization, and energy cost minimization using
JModelica as an optimization package. This automated
process begins with automatic modification of the given
native Modelica model file (.mo) into an Optimica
(Akesson 2008) Modelica file (.mop) based on the
optimization problem type. This includes the objective
of the problem type chosen, constraints on model states,
or identification of parameters or states to be estimated.
Figure 8 shows example modifications that are made for
an energy cost minimization problem. Next, the .mop
file is used by JModelica to instantiate an optimization
problem. Upon solver runtime, the optimization
problem is combined with solution-specific information
and passed to the optimization solver. This solution-
specific information includes exogenous input data or
measurement data required for model estimation.

Examples
This section presents a number of examples to show the
capabilities of MPCPy. Examples are for variable and
unit management, collecting exogenous data, building
emulation, model estimation and validation, and control
optimization. Note that the examples are simple and
emphasize the processes enabled by MPCPy, not the
specific outcomes of those processes.

Figure 8 – .mo file to .mop file modifications for an

energy cost minimization problem with grey text
representing original .mo code, red text representing

case-specific code additions, and black code
representing general code additions.

Variable and Unit Management

We begin by defining a single static variable with units
of oC, which may represent a thermostat setpoint.

The first two lines of code import the Variables and
Units modules from MPCPy. The third line instantiates
the static variable with three arguments; name, data, unit.
Printing the variable displays relevant information about
the variable, including that it has a quantity of
temperature. Therefore, the data is actually stored in
units of Kelvin. We can check this by getting the base
unit and data of the variable.

The data can also be displayed in the display units.

The display unit can also be changed.

Note that functionality is the same with timeseries
variables, however, data is supplied in the form of a
Pandas series variable with a timestamp index instead of
a single value. By default, the Pandas timeseries

>>> from mpcpy import variables
>>> from mpcpy import units
>>> T_set = variables.Static('T_set',20,units.degC)
>>> print(T_set)
Name: T_set
Variability: Static
Quantity: Temperature
Display Unit: degC

>>> T_set.get_base_unit()
mpcpy.units.K
>>> T_set.get_base_data()
293.15

>>> T_set.display_data()
20.0

>>> T_set.set_display_unit(units.degF)
>>> T_set.display_data()
68.0

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1386

specified is assumed to be in UTC time, however,
optional arguments upon instantiation allow for
timeseries in local time zones to be specified as well.
The timeseries is converted to UTC time for storage,
though can be again converted to local upon data
display.

Collecting Exogenous Data

Next, we would like to collect exogenous data from a
source. First, we collect weather data from an EPW file.

The first line of code imports the exodata module from
MPCPy. The second line instantiates a weather data
object with an EPW file as the source, while the third
line collects data from the file for the time-period
specified. The time-period can be in any form
recognizable to Pandas or a custom format, optionally
defined upon object instantiation.

Now, we collect weather data from a CSV file.

The first line of code defines a mapping dictionary
between the header columns of the CSV file and the
input variables in the emulation or MPC models. The
dictionary keys are the column headers and the value of
each key is a tuple of the model input name and data
units as displayed in the CSV file. Note that using the
Variable and Units classes, the data is automatically
converted to the base unit for use within the model. The
second line of code instantiates a weather object with a
CSV file as a source and the variable map already
defined. A few optional arguments are shown as well,
which define which CSV column header name contains
the timestamps and in which time zone the timestamps
are. By default, the object will read timestamps from a
column header “Time” or “Timestamp” and will assume
UTC time. Additional arguments for specifying a
custom timestamp format and data cleaning algorithms
are available, but not discussed further here.

Building Emulation

Next, we look to simulate a building emulation model.
The building we will use is based on a test facility on the
Berkeley Lab campus, called LBNL71T and shown in
Figure 9. It is a three-zone facility, with two of the

zones having exterior walls, one facing east and the
other facing west. For example purposes, we model
each zone having a single convective heater. An
emulation model is built using components from the
Modelica Buildings Library, namely three thermally
connected instances of the
Buildings.ThermalZones.Detailed.MixedAir, and
exported as a model-exchange FMU v 2.0. Peak internal
loads total 20 W/m2 with a 40%-40%-20% split between
convective, radiative, and latent and a typical weekday
office schedule. For demonstration purposes the
building is located in Chicago, IL, a time zone that is
UTC-6:00.

Figure 9 – LBNL71T test building, used for

demonstration of MPCPy.

First, we must define what measurements we wish to
take from the model. The code shown below defines a
measurement dictionary by indicating the name of the
variable we wish to measure and its sample rate. Note
that upon simulation, the output reporting time-step is
equal to the minimum defined measurement sample rate.

With the measurements defined, we can instantiate our
building emulation object, simulate the building, and
plot the measurements.

The first line of code imports the Systems module from
MPCPy and the second imports the matplotlib package
(Hunter 2007). The third line of code instantiates the
building system object as an FMU and with the
measurement dictionary already defined. Other optional
arguments of the instantiation define the exogenous data
to use, collected as shown before, parameters of the

>>> from mpcpy import exodata
>>> weather = exodata.WeatherFromEPW('path.epw')
>>> weather.collect_data('1/1/2015', '1/4/2015')

>>> variable_map = {'TemperatureF' :
. . . ('weaTDryBul', units.degF),
. . . 'Dew PointF' :
. . . ('weaTDewPoi', units.degF),
. . . 'Humidity' :
. . . ('weaRelHum', units.percent),
. . . 'Sea Level PressureIn' :
. . . ('weaPAtm', units.inHg),
. . . 'WindDirDegrees' :
. . . ('weaWinDir', units.deg),
. . . ‘Wind SpeedMPH' :
. . . ('weaWinSpe', units.mph)};
>>> weather =
. . . exodata.WeatherFromCSV(
. . . 'path.csv', variable_map,
. . . time_header = 'TimePDT',
. . . tz_name = 'from_geography',
. . . geography = [37.8716, -122.2727]);
>>> weather.collect_data('1/1/2015', '1/4/2015')

>>> measurements = {};
>>> measurements['wesTdb'] = {'Sample' :
. . . variables.Static('wesTdb_sample', 600, units.s)};
>>> measurements['halTdb'] = {'Sample' :
. . . variables.Static('halTdb_sample',1200, units.s)};
>>> measurements['easTdb'] = {'Sample' :
. . . variables.Static('easTdb_sample',1200, units.s)};

>>> from mpcpy import systems
>>> from matplotlib import pyplot as plt
>>> building = systems.EmulationFromFMU(
. . . 'path.fmu', measurements,
. . . weather_data = weather.data, \
. . . internal_data = internal.data, \
. . . control_data = control.data, \
. . . parameter_data = parameters.data, \
. . . tz_name = weather.tz_name);
>>> building.collect_measurements(
. . . '1/1/2015', '1/4/2015');
>>> plt.figure(1)
>>> for key in self.building.measurements.keys():
. . . variable =
. . . building.measurements[key]['Measured'];
. . . variable.set_display_unit(units.degC);
. . . variable.display_data().plot(label = key);
. . . plt.legend();
. . . plt.ylabel(variable.quantity_name + '[' +
. . . variable.display_unit.name + ']');

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1387

emulation model, and the building time zone. Note that
the weather data comes from the Chicago, IL EPW file,
while internal load data and heater control signals come
from separate CSV files. The fourth line of code
simulates the emulation model for the time-period
specified, according to the building time zone. Finally,
the last lines of code plot the measurements using the
Pandas plot function and MPCPy variable attributes.
Figure 10 shows the resulting plot.

Figure 10 – Mean zone air temperatures of LBNL71T in

Chiacgo, IL from January 1-3.

Model Estimation

Next, we look to estimate the parameters of a reduced-
order model of our emulated building, shown in Figure
11. The reduced order model is an RC circuit that
models sensible heat transfer only. Each zone interior is
modelled with two capacitances with a resistance
between them, representing the air capacitance and
interior thermal mass capacitance. The zone exterior
walls are modelled with two resistances and one thermal
capacitance as well as a solar absorbance coefficient for

solar irradiation incident on the wall. Windows are
modelled with a single resistor and solar transmittance
coefficient. Lastly, interior partitions between zones are
modelled with two resistors and a single capacitor. The
components are modelled using the Modelica Standard
Library and Modelica Buildings Library.

While this paper shows the approach of building a
library of reduced order model components is promising,
the purpose of this model is not to represent answers to
questions about what the proper reduced-order model
configurations is to use for multi-zone buildings and
HVAC systems. Also, this example does not address
methods to improve model training, including necessary
model excitation or data characteristics. Rather, the
model’s purpose here is to be a suitable demonstration of
MPCPy capabilities. These other important questions
are saved for future work, and can be exercised using
MPCPy. We are now ready to instantiate, estimate, and
validate the reduced order model.

The first line of code imports the Models module from
MPCPy. The second line of code instantiates the model
object with an estimation method (JModelica), validation

>>> from mpcpy import models
>>> model = models.Modelica(
. . . models.JModelica,
. . . models.RMSE,
. . . building.measurements,
. . . moinfo =
. . . ('path.mo', 'package.model', libraries)
. . . weather_data = weather.data, \
. . . internal_data = internal.data, \
. . . control_data = control.data, \
. . . parameter_data = parameters.data, \
. . . tz_name = weather.tz_name);
>>> model.estimate('1/1/2015', '1/4/2015',
. . . ['wesTdb', 'halTdb', 'easTdb']);
>>> building.collect_measurements(
. . . '1/4/2015', '1/5/2015');
>>> model.measurements = building.measurements;
>>> model.validate('1/4/2015', '1/5/2015',

'respath', plot = 1);

Figure 11 – RC model representing the LBNL71T test building, used for demonstration of MPCPy. The parameters
to train are shown next to each component Modelica diagram.

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1388

method (calculate RMSE), system measurements, and
Modelica model information, as well as exogenous data
as collected before. The system measurements are
passed using the measurement dictionary formulated
after collecting measurements with the building object.
The model information requires the file path, model path
within the file, and any libraries required to compile the
model. The parameter data is collected from a CSV as
exogenous data and contains information about the
parameters in the model to be estimated, including their
minimum and maximum values, initial guesses, and
covariances (applicable to the UKF estimation method if
used). The third line of code estimates the model
parameters using the specified period of measurement
data (Jan. 1-3) and measurement variables.

Figure 12 – Mean zone air temperatures over the

validation period on Jan. 4 for LBNL71T RC model
Shown in local time.

Finally, the last three lines of code validate the model
using data from the day after the training period using
the specified period of measurement data, with the
validation results output to a defined directory path. The
results of model validation are shown in Figure 12. The
RMSE for wesTdb, halTdb, and easTdb are 0.32 K, 0.27
K, and 0.40 K for the training period, and 0.18 K, 0.20
K, and 0.58 K for the validation period.

Control Optimization

Lastly, we optimize heater control to minimize energy
use and cost while maintaining thermal comfort.

The first line of code imports the Optimization module
from MPCPy. The second line of code instantiates an
optimization problem object by defining the model to
use, the optimization problem, the optimization solver,
the objective variable within the model, which is total
power in this case (variable “Ptot”), and constraint data.
The model is the model object instantiated as shown
previously. The constraint data is collected as an

exogenous data object from a CSV file and contains
timeseries information about greater-than-or-equal-to
and less-than-or-equal-to constraints on state variables
and their derivatives, as well as initial value, final value,
or cyclic (initial equals final) constraints. For this
example, the zone mean air temperatures are constrained
to between 22°C and 25°C, their derivatives are
constrained to less than 2 K/h, and their initial and final
values must be equal. This cyclic constraint assumes
that neighbouring days would have similar conditions
and preferred performance. The heater control signals
are constrained to between 0 and 1. The last line of code
solves the optimization problem over the time period
specified. Note that all other exogenous data, such as
weather and internal loads, are included in the model
object that is passed. The optimization will optimize all
variables in the “control_data” attribute of the model,
which in this case are the heater control signals.

Lastly, the objective is changed to minimize energy cost.

Here, we add price data, collected as an exogenous data
object as shown previously, to the optimize statement.
The price data is automatically integrated with the model
optimization, in this case multiplying together with the
defined objective variable, “Ptot.” In the case
demonstrated, the price of electricity is five times higher
during the hours of 6:00 PM, 7:00 PM, and 8:00 PM
local time than the rest of the day. The solutions to the
energy minimization and energy cost minimization
problems are presented in Figures 13 and 14. Notice that
temperature constraints are not violated and the inclusion
of price spikes incentives a significant shift in heating
power away from the hours with higher prices.

Discussion
The examples showed the systematic, yet flexible,
approach MPCPy takes to setup MPC for buildings,
upon which industry and researchers can build and test
their implementations. Variables and Units provide
flexibility during the input and output of data with
respect to data units and timeseries time zones.
Exogenous data of various types and with different data
sources and formats can be combined together for use
during model simulation, estimation, validation, and
optimization. Common interfacing with real and
emulated systems eases transition from controller
development to application. Automatic setup of model
parameter estimation and optimization algorithms
minimizes the user programming and expertise
requirements. Lastly, an extensible architecture enables
new data sources, simulation procedures, problem types,
and solver methods to be added in the future.

Conclusion
The requirements of building control systems are
growing in a way that requires improved information
processing and decision making over the state of the art.

>>> from mpcpy import optimization
>>> self.opt_problem =
. . . optimization.Optimization(model,
. . . optimization.EnergyMin,
. . . optimization.JModelica,
. . . 'Ptot',
. . . constraint_data = self.constraints.data);
>>> opt_problem.optimize('1/2/2015', '1/3/2015');

>>> opt_problem.set_problem_type(
. . . optimization.EnergyCostMin);
>>> opt_problem.optimize('1/2/2015', '1/3/2015',
. . . price_data = prices.data);

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1389

(a)

(b)

Figure 13 – Zone mean air temperature (a) and heater
power (b) solutions for energy minimization of LBNL71T

RC model on Jan. 2nd. Shown in local time.

Past research and few demonstrations have shown that
MPC can meet these new requirements. However, the
building industry has yet to see widespread adoption of
MPC control systems, likely due to high setup costs and
maintenance for individual sites. To address these
barriers, this paper introduces a freely available open-
source MPC platform for buildings based on open
standards, called MPCPy, available on the LBNL
Simulation Research Group github site at
https://github.com/lbl-srg/MPCPy under a modified BSD
license. The platform emphasizes the use of adaptive
models, whose parameters can be learned over time with
measured building data, and the automation of model
learning and optimization problem setup and solving.
Both of these features are expected to significantly
reduce the required system setup time and expertise. In
addition, MPCPy is designed for extensibility and based
on open-source standards so that new data sources,
model types, procedures, and problems can be added
over time without sacrificing code longevity.

Immediate future work is three-fold, having to do with
functionality, demonstration, and support for the public
release. Additional functionality includes methods for
real system implementation, support for additional
optimization problems, such as peak load minimization,
and incorporation of occupant behaviour models.

(a)

(b)

Figure 14 – Zone mean air temperature (a) and heater
power (b) solutions for energy cost minimization of

LBNL71T RC model on Jan. 2nd. Shown in local time.

Future functionality also includes application of MPCPy
at various system scopes, including the room, building,
and campus levels. Development of a Modelica
component library for MPC applications is planned by
Wetter and Treeck (2015). Demonstrations of MPCPy at
real sites are planned to take place over the next five
years by LBNL and collaborators. However, we hope
that the public release provides others an opportunity to
demonstrate its capabilities as well, contribute to its
development, and create a community of users.

The current version of MPCPy is v0.1. Development is
ongoing for the support of the public release, including
additional features, documentation, error handling,
regression testing, and interface adjustments. Updates
will be released periodically according to user feedback
and developer progress. To contribute to this project’s
development or inquiry about collaboration, visit the
MPCPy github site or contact the authors.

Acknowledgements
This research was supported by the Assistant Secretary
for Energy Efficiency and Renewable Energy, Office of
Building Technologies of the U.S. Department of
Energy, under Contract No. DE-AC02-05CH11231.

This work is funded by the U.S.-China Clean Energy
Research Center (CERC) 2.0 on Building Energy
Efficiency (BEE).

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1390

References
Akesson, J. (2008). Optimica – An extension of

Modelica supporting dynamic optimization. In
Proceedings of the 6th International Modelica
Conference, Bielefeld, Germany, March 3-4, 57-66.

Barker, H. A., M. Chen, P. W. Grant, C. P. Jobling, and
P. Townsend (1993). Open architecture for
computer-aided control engineering. IEEE Control
Systems 13(2), 17-27.

Bernal, W., M. Behl, T. X. Nghiem, and R. Mangharam
(2012). MLE+: A tool for integrated design and
deployment of energy efficient building controls. In
Proceedings of Buildsys 2012, Toronto, Canada,
November 6.

Bonvini, M., M. Wetter, and M. D. Sohn (2014). An
FMI-based framework for state and parameter
estimation. In Proceedings of the 10th International
Modelica Conference, Lund, Sweden, March 10-12,
647-656.

BuildingIQ (2016). https://buildingiq.com/. Last
accessed Nov. 18, 2016.

De Coninck R., F. Magnusson, J. Akesson, and L.
Helsen (2016). Toolbox for development and
validation of grey-box building models for
forecasting and control. Journal of Building
Performance Simulation 9(3), 288-303.

EIA (2016a). Monthly Energy Review October 2016,
Table 7.6. Available online at
http://www.eia.gov/totalenergy/data/monthly/pdf/se
c7_19.pdf. Last accessed Nov. 18, 2016.

EIA (2016b). Monthly Energy Review October 2016,
Table 2.1. Available online at
http://www.eia.gov/totalenergy/data/monthly/pdf/se
c2_3.pdf. Last accessed Nov. 18, 2016.

FMI (2016). Functional Mock-up Interface. Available
online at https://www.fmi-standard.org/start. Last
accessed Nov. 18, 2016.

Hunter, J. D. (2007). Matplotlib: A 2D graphics
environment. Computing in Science and
Engineering 9(3), 90-95.

Jobling, C. P., P. W. Grant, H. A. Barker, and P.
Townsend (1994). Object oriented programming in
control system design: a survey. Automatica 30(8),
1221-1261.

Johnson Controls (2015). Johnson Controls helps
Stanford University drastically reduce water and
energy use in new central plant. Available online at
http://www.johnsoncontrols.com/media-
center/news/press-releases/2015/06/15/johnson-
controls-helps-stanford-university-drastically-
reduce-water-and-energy-use-in-new-central-plant.
Last accessed Nov. 18, 2016.

Mattsson, S. E. and H. Elmqvist (1997). Modelica – An
international effort to design the next generation
modeling language. In 7th IFAC Symposium on

Computer Aided Control Systems Design, Gent,
Belgium, April 28-30.

McKinney, W. (2010). Data structures for statistical
computing in Python. In Proceedings of the 9th
Python in Science Conference, Austin, Texas, June
28 – July 3, 51-56.

Modelica Association (2016). Modelica Standard
Library. https://github.com/modelica/Modelica. Last
accessed Nov. 18, 2016.

Modelon AB (2009). Jmodelica.org – Open source
Modelica platform for modeling, simulation, and
optimization. Available online at
http://jmodelica.org/. Last accessed Nov. 18, 2016.

QCoefficient, Inc. (2016). http://qcoefficient.com/. Last
accessed Nov. 18, 2016.

Qin, S., and T. Badgwell (2003). A survey of industrial
model predictive control technology. Control
Engineering Practice 11(7), 733-764

Rockett, P. and E. Hathway (2016). Model-predictive
control for non-domestic buildings: a critical review
and prospects. Building Research & Information,
DOI: 10.1080/09613218.2016.1139885.

Sturzenegger, D., D. Gyalistras, V. Semeraro, M.
Morari, and R. S. Smith (2014). BRCM Matlab
Toolbox: Model generation for model predictive
building control. In Proceedings of the 2014
American Control Conference (ACC), Portland, OR,
June 4-6, 1063-1069.

Wetter, M. (2001). GenOpt – A generic optimization
program. In Proceedings of the 7th International
IBPSA Conference, Rio de Janeiro, Brazil, August
13-15, 601-608.

Wetter, M., W. Zuo, T. S. Nouidui, and X. Pang (2014).
Modelica Buildings library. Journal of Building
Performance Simulation 7(4), 253-270.

Wetter, M., M. Fuchs, P. Grozman, L. Helsen, F.
Jorissen, M. Lauster, D. Muller, C. Nytsch-Geusen,
D. Picard, P. Sahlin, and M. Thorade (2015). IEA
EBC Annex 60 Modelica Library -- An international
collaboration to develop a free open-source model
library for buildings and community energy
systems. In Proceedings of the 14th Conference of
International Building Performance Simulation
Association, Hyderabad, India, Dec. 7-9.

Wetter, M., and C. van Treeck (2015). IBPSA Project 1.
Available Online at https://ibpsa.github.io/project1/.
Last accessed Mar. 3, 2017.

Wetter, M., M. Bonvini, and T. S. Nouidui (2016).
Equation-based languages – A new paradigm for
building energy modelling, simulation and
optimization. Energy and Buildings 117, 290-300.

Zakula, T., P. R. Armstrong, and L. Norford (2014).
Modeling environment for model predictive control
of buildings. Energy and Buildings, 85, 549-559.

