
IEA EBC ANNEX 60 MODELICA LIBRARY –
AN INTERNATIONAL COLLABORATION TO DEVELOP

A FREE OPEN-SOURCE MODEL LIBRARY
FOR BUILDINGS AND COMMUNITY ENERGY SYSTEMS

Michael Wetter1, Marcus Fuchs2, Pavel Grozman3, Lieve Helsen4,
Filip Jorissen4, Moritz Lauster2, Dirk Müller2, Christoph Nytsch-Geusen5,

Damien Picard4, Per Sahlin3, Matthis Thorade5.
1Lawrence Berkeley National Laboratory, Berkeley, CA, USA

2RWTH Aachen University, E.ON Energy Research Center, Aachen, Germany
3EQUA SE, Sweden

4KU Leuven, Department of Mechanical Engineering, Belgium
5UdK Berlin, Germany

ABSTRACT
This paper describes the collaborative development of
the Annex 60 Modelica library, a free, open-source
library for building and community energy systems.
The library is developed within the Annex 60 project
that is conducted under the umbrella of the Interna-
tional Energy Agency’s Energy in Buildings and Com-
munities Programme (IEA EBC). Our goal is to de-
velop and distribute a well documented, vetted and
validated open-source library that serves as the core
of future building simulation programs and that can be
integrated with existing programs as well. The work
brings together experts in Modelica for building en-
ergy applications and coordinates the previously frag-
mented development that led to four libraries that were
incompatible, hard to combine and each itself limited
in scope. The work resulted in a library that is now
used as the core of these four Modelica libraries. The
paper describes the agreed upon requirements, scope,
current status of implementation, quality control pro-
cess and structure of the library. The paper also pro-
vides illustrative examples.

INTRODUCTION
Annex 60 is a collaborative project among 38 in-
stitutes from 16 countries, conducted between 2012
and 2017 under the umbrella of the International En-
ergy Agency’s Energy in Buildings and Communi-
ties Programme (IEA EBC). Annex 60 will develop
and demonstrate new generation computational tools
for building and community energy systems based on
non-proprietary Modelica, Functional Mockup Inter-
face and Building Information Modeling standards.
This paper describes the research and development of
an open-source, free library for building and commu-
nity energy systems that is jointly developed within
Annex 60 using the Modelica language (Mattsson
and Elmqvist, 1997). In 2012, before the beginning
of Annex 60, five groups (EQUA SE Sweden, KU
Leuven Belgium, LBNL USA, RWTH Aachen Uni-
versity Germany, and UdK Berlin Germany) devel-
oped their own Modelica libraries for building per-

formance simulation. These libraries were difficult
to use with each other, in some cases incompatible,
and there was a significant duplication of effort. In
2013, the decision has been made by the Annex 60
team to form a group that joins efforts to avoid such
a fragmented development. Subsequently, collabo-
rative development started on a free, open-source li-
brary which is hosted at https://github.com/
iea-annex60/modelica-annex60 and which
is described in this paper. The anticipated outcome
is an open-source, freely available, documented, vali-
dated and verified core Modelica library that is used by
the above five libraries, and hopefully, by other whole
building simulation programs. A goal of the library is
to provide models that support the design and opera-
tion of building and community energy systems as in-
tegrated, robust, performance based systems with low
energy use and low peak power demand while main-
taining thermal comfort. Our goal is to set a foun-
dation for the development of models, and implement
a model library, that can serve the building simula-
tion community over the next decades, and that will
be adopted by various building simulation programs
in addition to the above Modelica libraries.
This effort is also expected to support realizing propo-
sition 6 of the vision spelled out in the position pa-
per of Joe Clarke that was written on behalf of the
IBPSA board (Clarke, 2015). Specifically, proposi-
tion 6 states:

IBPSA will encourage manufacturers to pro-
vide more fundamental descriptions of com-
ponents and make these available within a
standard library.

We believe that the here presented work could serve
as the basis of such a standard library. Proposition 6
of the same paper also states IBPSA’s support for “...
a library of control system template definitions to rep-
resentative cases.” Although adding control templates
is currently a lower priority, we believe with the An-
nex 60 library to have created a framework that allows
populating such a control template library.

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 395 -

https://github.com/iea-annex60/modelica-annex60
https://github.com/iea-annex60/modelica-annex60

This paper discusses how the Annex 60 library is
being developed and it discusses the current status
of development. As of today, we developed a li-
brary with a core functionality and merge it auto-
matically into individual Modelica libraries for build-
ing performance simulation. The Annex 60 library
is now used by AixLib from RWTH Aachen (Con-
stantin et al., 2014; Lauster et al., 2014), Buildings
from LBNL Berkeley, CA (Wetter et al., 2014),
BuildingSystems from UdK Berlin (Nytsch-
Geusen et al., 2013), and IDEAS from KU Leu-
ven (Baetens et al., 2012).
The approach of the library distribution is modeled af-
ter Linux, which has a kernel that is used by differ-
ent distributions (e.g., Ubuntu, RedHat etc.), which
then provide installation packages, user support and
detailed documentation. In a similar fashion, the An-
nex 60 library provides reliable base classes for build-
ing and HVAC component models. Thus, the individ-
ual model libraries of participating institutions can be
further developed, each with their specific focus, while
compatibility between the libraries is ensured by the
use of the common base classes from the Annex 60
library. In addition to the advantages of having a reli-
able and well-tested common foundation for model de-
velopment, we expect further benefits of this approach
from increased compatibility, exchange and collabora-
tion as opposed to the previously fragmented develop-
ment of model libraries.

CONVENTIONS AND NOMENCLATURE
This section defines various technical terms that are
used throughout the paper and that may not be clear
to readers that are not familiar with the Modelica lan-
guage.
A package is a collection of models, functions, or
other packages that are used to hierarchically struc-
ture the library. A class is a term that includes models,
blocks, functions and packages. Connectors are in-
stances that define variables and parameters, and are
used to connect models or blocks with each other. A
block is a special case of a model in which all connec-
tors are either inputs or outputs. In a model, the causal-
ity of a connector need not be specified. The value of
a parameter cannot change with time. In contrast, the
value of an input signal or a variable may change with
time.

FUNCTIONAL REQUIREMENTS
The library should fulfill several functional require-
ments that originate from typical use cases in building
performance simulation. The use cases include warm
water heating and distribution systems, cooling sys-
tems, ventilation systems, heat demand calculations
of multiple buildings, controls design, co-simulation
and export of models for use in other simulators or in
building automation systems. The use cases aim at op-
timal design and operation of thermal energy systems
as well as district energy systems and model use dur-

ing operation. Thus, we focus on annual whole build-
ing simulation, on single as well as on multiple build-
ings.
Regarding physical resolution, various effects need to
be modeled to ensure suitability for typical use cases.
All mass flow rates are pressure driven to allow sim-
ulations of duct and piping networks. Optionally, it
must be possible to remove the equations for pressure
drop from the model. Fluid flow networks must al-
low adding transport delays. The media models must
be compatible with models from Modelica.Media
to ensure compatibility with other libraries. For air, it
must be possible to model water vapor and trace sub-
stances such as CO2 or VOC concentrations as needed
for simulation of indoor air quality. For cooling de-
vices, no detailed modeling of the state and distribu-
tion of refrigerants is conducted as this would lead to
computing time that is too large for annual building
simulation.1

Regarding dynamic system behavior, models with dif-
ferent idealizations should be implemented. As ap-
plicable, it should be possible to approximate the dy-
namic response of models using a first or higher order
response as needed, and optionally disable the model
dynamics to conduct a quasi steady-state simulation.
For example, the dynamics of sensors can be approxi-
mated by a first order response. This can be disabled to
obtain a steady-state sensor, or to add a more detailed
sensor response to the output signal of the sensor.
To simplify the use and the workflow integration of
the library, Python scripts will be provided to extract
simulations results, provide typical examples that il-
lustrate the use and allow easy integration of typical
boundary conditions such as TMY3 weather data. It
must be possible to export as a Functional Mockup
Unit (FMU) thermofluid components for water, air and
glycol with different concentrations. A simulator must
not have to recompile the FMU when the medium con-
centration changes. All models will exclusively use SI
units.

MATHEMATICAL REQUIREMENTS
Component models from this library are typically
assembled to form system models that lead to sys-
tems of ordinary differential equations, which are
coupled to algebraic systems of linear, nonlinear
and discrete equations. To ensure that these systems
of equations can be solved efficiently, they need
to satisfy certain mathematical properties. In this
section, we describe the main requirements that
have been followed during the development of the
library. For a more detailed list of requirements,
see https://github.com/iea-annex60/
modelica-annex60/wiki/Style-Guide.

For equations that describe the physics, we require the

1For such applications, the AC library from Modelon or the TIL
library from TLK-Thermo GmbH may be used.

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 396 -

following mathematical properties:

Equations must be differentiable and have a con-
tinuous first derivative that is bounded on compact
sets, i.e., they need to be once continuously differen-
tiable on compact sets. This is not only needed for
numerical efficiency, but also to establish existence
of a unique solution to the system of differential
equations (Coddington and Levinson, 1955). For
example, instead of using y(x) = sign(x)

√
|x|, this

equation needs to be approximated by a differentiable
function that has a finite derivative near zero because
limx→0 y

′(x) = limx→0 1/(2
√
|x|) = ∞. Other-

wise, Newton-Raphson solvers may fail if x is close
to zero as the Newton step length is proportional to
the inverse of the derivative of the residual function.

Furthermore, equations where the first derivative
with respect to another variable is zero must be
avoided. For example, let x, y ∈ R and x = f(y). An
equation such as y = 0 for x < 0 and y = x2 is not
allowed. The reason is that if a simulator tries to solve
0 = f(x), then any value of x ≤ 0 is a solution, which
can cause instability in the solver. An example of such
a situation is a valve. If it were to have no leakage
flow, then any value of the pressure drop would cause
zero mass flow rate, which may lead to ill-conditioned
equations for some flow networks. More formally, the
conditions for the Implicit Function Theorem (Polak,
1997) need to be satisfied as this guarantees exis-
tence and differentiability of an inverse of the function.

Clearly, models for controls require discrete variables
that can only take on certain values, such as for switch-
ing equipment on or off. This certainly is allowed, but
must be implemented using a hysteresis to avoid chat-
tering. For example, an equation such as y = 0 if
T > 20◦C and y = 1 otherwise is not allowed as this
can lead to chattering in continuous time solvers.

PROCESS FOR QUALITY CONTROL
The Annex 60 library is used as a foundation on which
different libraries for end users are developed. It
therefore needs to provide reliable models and results.
Thus, a strict process for quality control was imple-
mented from the start of the library development. This
process includes open source code development in a
version control system on GitHub, automated regres-
sion testing of the entire library, and a review pro-
cess before authorizing any code changes. This pro-
cess is supervised by a core development team con-
sisting of the authors of this paper but requirements
are documented in a project Wiki and open to contri-
butions from the community, given that such contribu-
tions meet the set quality standards.
Using git for version control of the source code and
documentation of the library allows for keeping a
record of all development stages and changes of the

library. Stable models are kept in the so-called mas-
ter branch. Additions and code changes are restricted
to dedicated branches for feature development that are
documented in a corresponding issue tracker. In or-
der to prevent any unintended effects of code changes
to existing models, the translation statistics and refer-
ence results for each model are automatically created,
stored, and managed by using the Python package
BuildingsPy. This package includes functions for unit
testing. The implemented process for quality control
requires to provide a scripted test for every model, so
that these tests can be run automatically for the whole
library. When introducing a model and its test, the
simulation results are saved by the unit testing routine.
The unit testing is run before accepting any changes
to the master branch. Differences in the translation
statistics and simulation results between reference re-
sults and the tested model are automatically plotted
and need to be accepted or rejected manually, thus
guarding against introducing unwanted effects on any
of the existing models.
Once code changes have been documented and eval-
uated by unit testing, they need to be reviewed by a
second developer. Thus, the author of the changes is-
sues a pull request to suggest moving the new code
into the master branch. Only after all comments from
the reviewer have been addressed by the original au-
thor of the changes is the new code merged to the mas-
ter branch. At the time of writing, this process has
been applied to over 200 issues and 800 changes to the
code base. Finally, the underlying version control sys-
tem can serve as a safety net if changes need to be re-
verted despite of the described quality control process.
As each step of code change as well as the responsi-
ble author is documented at all times, such corrections
would require little effort.

REQUIREMENTS FOR ADDING CLASSES
The Annex 60 library aims at following a co-
herent set of conventions and requirements
to ease maintenance and further develop-
ment. For a detailed list of requirements, see
https://github.com/iea-annex60/
modelica-annex60/wiki/Style-Guide.
The library follows and extends the conventions of the
Modelica Standard library. In addition, the names of
models, blocks and packages must start with an upper-
case and be a combination of adjectives and nouns us-
ing camel-case to combine multiple words, whereas
instances of these models, blocks and packages start
with a lower case letter. Instance names are usually a
character, such as T for temperature and p for pres-
sure, or a combination of the first three characters
of a word, such as TSet for temperature setpoint or
higPreSetPoi for high pressure set point.
New components of fluid flow systems must extend
the partial classes defined in Annex60.Fluid.
Fluid.Interfaces. If the new class is partial or

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 397 -

https://github.com/iea-annex60/modelica-annex60/wiki/Style-Guide
https://github.com/iea-annex60/modelica-annex60/wiki/Style-Guide

if it is not intended for the end-user, it must be added to
a BaseClasses package. Each new model must be
used in at least one model contained in the Examples
or Validation package, which illustrates or vali-
dates its behavior and is included in the unit tests.
Each class needs to be documented. Every vari-
able and parameter must have a documentation string.
The documentation section of the model provides
a more comprehensive documentation describing the
main equations, model assumptions and limitations,
typical use, options, validation, implementation and
references. Some of these sections are optional as they
are not applicable to all models. Each class also con-
tains a list of revisions made by the developers to keep
track of the changes and their rationale.
The robustness of the models is also a key require-
ment, and the guidance explained in the section “math-
ematical requirements” needs to be followed. Fluid
flow models must be stable near zero mass flow rate
even under the assumption that flow rates or heat in-
put are approximate solutions obtained using an itera-
tive solver. Fluid flow models must be well-behaved if
the mass flow reverses direction.2 Furthermore, fluid
flow models use the Media models, which have phys-
ical constraints such as the valid temperature range or
relative humidity bounds outside which they are not
valid. These bounds need to be taken into account by
the models in order to avoid non-physical situations
or convergence problems. Parameters and variables
should whenever possible use units from Modelica.
SIunits and they should declare bounds for mini-
mal and maximal values. Default values for parame-
ters, which can be adapted by the end-user, should be
declared using the start attribute so that the user gets a
warning if no other value has been provided.
Each model must be validated using either measure-
ment data, cross validation with other simulators or
with analytical solutions. Validation models need to be
added to the Validation package and be included
in the unit tests.
Finally, new models should be in line with the scope of
the library as described in the functional requirements.

DESIGN DECISIONS
This section describes the main design decisions for
the Annex 60 library.

Media
In Modelica, component models typically call func-
tions to obtain thermodynamic properties such as the
specific enthalpy.
We experimented with two implementations. One ap-
proach called MediaFunctions is using functions
for the thermodynamic properties of a medium, with

2By well-behaved, we do not mean, for example, that a
performance-curve based model of a direct expansion cooling coil
computes the right physical results if there is a slight backward flow,
but rather that the model is robust. For example, it suffices to add no
energy to the air if there is slight backward flow.

an enumeration as a function argument that declares
the medium type such as air or water. The other ap-
proach called MediaPackages is using a separate
Modelica package for each medium type, as is done
in Modelica.Media.
The main differences between these two implementa-
tions are as follows:
1. For MediaFunctions, models of HVAC equip-

ment require parameters for the medium type and
for the default values of pressure, temperature, mass
concentration and trace substances. The medium
type needs to be propagated to the functions that
compute the thermodynamic properties.

2. For MediaPackages, there is one package for
each media type, as in Modelica.Media. Mod-
els of HVAC equipment contain a replaceable pa-
rameter for the medium package that needs to be
set to medium type. Prior to the model translation,
the medium type such as water, air or glycol must
be declared, but its concentration can be changed
after translation.

Based on these implementations, we decided to or-
ganize media in packages as is done in Modelica.
Media. The benefits are:
1. Full compatibility with Modelica.Media.
2. Default values for the medium, such as the default

pressure and mass concentration, can be propagated
through its declaration because packages can con-
tain constants.

3. Modelica translators can verify that connected fluid
ports contain the same medium, and refuse to trans-
late the model if this is not satisfied.

The advantage of using MediaFunctions would
be that only two sets of FMUs need to be generated,
one for the single species medium water, and one
for the dual-species media such as air and glycol.
However, the cost of separately compiling FMUs
for air and for glycol is small as this can be fully
automated and be done as part of a simulation engine
development.

While the implementation of Annex60.Media is
compatible with Modelica.Media, we generally
use simpler implementations. For example, in
Annex60.Media.Air, water is only present in va-
por form even if the water vapor pressure is above the
saturation pressure. This allows to compute temper-
ature from specific enthalpy and mass concentration
without requiring iterations, thereby leading to more
efficient models.

Fluid connectors
We decided to use the same fluid connectors as defined
in Modelica.Fluid. These connectors declare the
medium package (used to assert that only models with
the same medium are connected), the mass flow rate
as the conserved quantity, the absolute pressure as the
potential variable, and the following variables that are

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 398 -

carried by the mass flow: the specific enthalpy, option-
ally the mass fraction such as to declare the mass con-
centration for water vapor in air, and optionally trace
substances. Trace substances are concentrations that
can be neglected for the thermodynamic calculations
such as CO2 or VOC concentrations.
We also explored using temperature instead of spe-
cific enthalpy in the connector. Modelica’s concept of
flow and stream variables allows connecting mul-
tiple fluid ports. It then automatically generates the
conservation equation χmix =

∑
i ṁ

+
i χi/

∑
i ṁ

+
i ,

where χ is the conserved quantity, ṁ+
i = max(0, ṁ)

is the mass flow rate if it is positive and the subscripts
mix stands for the mixture and i for the connected
ports. If χ = h is the specific enthalpy, then hmix

is always correct. If χ = T were temperature, then
Tmix is wrong if the specific heat capacity cp depends
on temperature. We therefore selected the specific en-
thalpy to be in the fluid connector, as is also used in
Modelica.Fluid. 3

Package structure
In Modelica, classes can be collected and organized
hierarchically into packages. This section describes
how the Annex 60 library organizes classes into the
following main packages:
BoundaryConditions contains models for
weather data reader, solar radiation and sky tempera-
ture.
Controls contains models for continuous time and
discrete time controllers and for set point scheduling.
Fluid is the main package that contains fluid flow
components such as heat exchangers, pumps, valves,
air dampers and boilers. We considered introducing
subpackages Fluid.{Air,Water,Glycol} but
have not done so yet as this would lead to duplica-
tion of code and documentation. Consequently, users
always need to assign the media.
Utilities contains the major packages
Psychrometrics, which implement blocks
and functions for psychrometric properties, and
Math, which provides blocks and functions that are
once continuously differentiable approximations to
functions such as min : R × R → R, abs : R → R,
the Heaviside step function or cubic spline inter-
polation. The functions in the Math package are
used to satisfy the earlier discussed differentiability
requirements.

Major packages contain user guides, and all packages
contain an Examples or a Validation package
that demonstrates how to use the models, and that are
used for validation and regression testing.

MAIN CLASSES OF THE LIBRARY
The Annex 60 library provides models for simulating
HVAC systems in buildings, containing both hydronic

3See also https://github.com/iea-annex60/
modelica-annex60/issues/28 for a discussion.

and air flow models. These systems combine different
types of components such as energy and mass transfer
models, media models for air and water, control mod-
els and supporting utilities. These types are grouped
in separate packages. This section gives the highlights
of these packages.

Fluid component models
A typical HVAC system contains components such
as valves, pumps, dampers and heat exchangers. Es-
sentially these are all components that transfer mass
and/or energy. These models are therefore grouped in
the Fluid package. The most important parts of this
package are now discussed.

Conservation of energy and mass

Since all of these models need to conserve mass and
energy, the Fluid package heavily relies on the
ConservationEquation model that implements
these conservation laws. The model is implemented
in a generic way such that it can be used for different
types of media: compressible and incompressible and
media with or without moisture or trace substances.
The energy and mass conservation laws can be con-
figured to be a steady state or dynamic balance. The
ConservationEquationmodel is instantiated by
the MixingVolume model, which is used by most
equipment models.

Flow networks

Since the physics of fans and pumps is similar, they are
implemented using the same models in the Movers
subpackage. This package contains four mover mod-
els, each using a different control signal.
1. FlowControlled_m_flow directly sets the

mass flow rate, independent of the head pressure
that results from the duct or pipe network simula-
tion.

2. FlowControlled_dp, directly sets a pressure
head, independent of the mass flow rate that results
from the duct or pipe network simulation.

3. SpeedControlled_Nrpm sets the speed. Mass
flow rate and pressures are calculated from similar-
ity laws, from a user-provided pump curve and the
duct or pipe network simulation.

4. SpeedControlled_y is identical to
SpeedControlled_Nrmp, except that the
input signal is normalized by the nominal speed.

Various types of flow resistance are implemented. For
example, FixedResistanceDpM implements a
pressure curve according toKv = ṁnom/

√
∆pnom =

ṁ/
√

∆p, where ṁnom is the nominal mass flow rate,
∆pnom is the nominal pressure drop, and ṁ and ∆p
are the actual mass flow rate and pressure drop. In
a neighborhood around zero, this function is regular-
ized. In valves and dampers, theKv value is a function
of the actuator input y. The library implements mod-
els in the Actuators subpackage where the relation
between Kv and y is expressed using a linear, quick

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 399 -

https://github.com/iea-annex60/modelica-annex60/issues/28
https://github.com/iea-annex60/modelica-annex60/issues/28

opening or an equal percentage characteristic. Custom
opening characteristics using a table can also be used,
as well as a pressure independent characteristic. Var-
ious dampers, two-way and three-way valves of these
types are implemented.

Energy transfer

The library provides the model HeaterCooler_T,
which is a heater or cooler that maintains an outlet
temperature, subject to optional capacity limits. The
outlet temperature is obtained from an input signal.
The model HeaterCooler_u is a variant of this
model that takes as an input a control signal that is
proportional to the heat to be added to or removed
from the fluid. A heat exchanger with constant ef-
fectiveness can be used to transfer energy between
different fluid streams. A similar model exists for a
mass exchanger that transfers moisture. The model
RadiatorEN442_2 implements a radiator model
based on the EN 442-2 norm.

Other models

Various models are available for integrating fluid com-
ponents in larger models. Models from the Sensors
package can be used for integrating control compo-
nents and for performing analysis. The Sources sub-
package implements components for enforcing bound-
ary conditions on fluid ports. The user can configure
the model to obtain the mass flow rate or pressure from
a parameter or from an input signal. In a similar way,
the leaving temperature, enthalpy, species or trace sub-
stance concentrations can be defined.

Media

The library contains media implementations for wa-
ter and air. Water is considered to be incompressible
with constant thermal properties. Air contains mois-
ture, has a pressure-dependent density and constant
thermal properties. More detailed implementations are
available in the package Media.Specialized.

Control models

The Controls package contains basic control com-
ponents such as PID controllers and blocks for set
point resets. Our intention is to expand this package to
provide control blocks and template control sequences
that are commonly used in building control systems.

Utilities

The Utilities package contains models that sim-
plify the consistent implementation of other compo-
nents. The Psychrometrics subpackage, for ex-
ample, contains functions and models for relating the
vapor fraction and partial pressure to the humidity and
wet bulb temperature. The Math subpackage con-
tains commonly needed once continuously differen-
tiable approximations to mathematical functions.

Figure 1: Schematic model view of a hydronic heating
system implemented using the Annex 60 library.

ILLUSTRATIVE EXAMPLES
This section describes two example models that illus-
trate the library. Both are currently being developed
for numerical benchmarking.

Hydronic heating
This system is used as a hydronic benchmark. It is kept
simple to allow comparison with other simulators.
Figure 1 shows the schematic model view. The main
models are a room (roo), a radiator (rad), three pipes
(pip1 to pip3), a valve (val), an ideal boiler (hea),
an expansion vessel (exp), a pump (pum), a thermo-
static controller (the) and climate data (cli) for the
weather data.
In this model, the pump generates a constant pressure,
and the boiler produces a constant outlet temperature
of 60◦C. Depending on the room temperature, a ther-
mostat, implemented using a P-controller, outputs the
valve control signal to track 22◦C. The valve resis-
tance causes the flow to the radiator to vary. The out-
side temperature is read from a data file. The nom-
inal value of the mass flow in the hydraulic loop is
ṁnom = 0.01 kg/s. The room model is approximated
by a first-order model, and hence cannot distinguish
between radiative and convective heat transfer. Thus,
the radiator model transfers all heat by convection. All
pipe models calculate the pressure losses, but they are
adiabatic. Figure 2 shows results of a yearly simula-
tion with a typical weather file for North Europe with
cold winters and mild summers.
The computing time for an annual simulation is only a
few seconds, as most components are steady state (e.g.
pump or valve) or low-order (e.g. building).

Multizone air exchange
We also implemented a model for a scalable air flow
benchmark that can be used to test media implemen-
tations for air as well as the effects of increasing the
problem size on the numerical solution. The basic set
up of the air flow benchmark is modeled after the ap-
proach used in the Buildings library. As described in
Wetter (2006), this implementation models the air flow

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 400 -

0 50 100 150 200 250 300 350

Time in days

10

0

10

20

30

40

50

60

T
e
m

p
e
ra

tu
re

s
in

 °
C

roo.port_amb.T

roo.heaCap.T

rad.vol[1].T

hea.vol.T

Figure 2: Annual plot of the outside, room, radiator
and heater temperature.

through small orifices, large apertures as well as stack
effects driven by pressure differences. The original
model showed good agreement with a reference sim-
ulation of air flows in CONTAM. In that validation,
a three-room model with two floors was used. Two
rooms on the ground floor were modeled with an open
door between them. Furthermore, small orifices in one
of these rooms made a connection to the outside envi-
ronment, and one orifice each connected these rooms
to one single room in the upper floor. This way, the
interplay of large apertures and small orifices as well
as pressure differences between different heights and
between inside and outside was incorporated.
The air flow benchmark in the Annex 60 library ex-
tends this test approach to be easily scalable to increas-
ing problem sizes in order to investigate the behavior
of different models as the underlying system of equa-
tions grows. Therefore, the different aspects tested in
the three-room model were incorporated into similar
room modules that can be automatically connected in
any chosen number to form a building context for air
flow tests. These modules include a single room, a
hallway element, a representation of the outside en-
vironment, and a staircase element. Any number of
rooms and hallway elements can be combined with
one staircase element to form a scalable floor model.
The staircase element serves as a connection of sev-
eral such floors stacked on top of each other to form
a building. Based on outside pressure conditions and
indoor air temperatures for each room, the model cal-
culates pressure differences and the resulting air flows
between different rooms.
Figure 3 shows a concept drawing of the air flow
benchmark. In this example, three room modules,
three hallway elements, and a staircase module at the
right are used for each floor. The floors are connected
by the two staircase elements. The black arrows illus-
trate how air can flow through the staircase elements,
the open doors, the hallway and its orifices, which rep-
resent leakage air flows to the outside environment.

Figure 3: Concept of the scalable air flow benchmark.

Figure 4: Fluid connections for the air flow bench-
mark.

The larger grey arrows show the dimensions in which
the setup can be extended by adding more hallway ele-
ments and room modules, or by increasing the number
of floors stacked on top of each other.
Regarding the model implementation, each module
consists of one representative air volume. This vol-
ume is calculated from the dimensions of the rooms
and is assumed to be located at the medium height
of the floor. In order to allow for bi-directional flow
through large apertures, each of these are divided into
two halves of the cross section with a fluid connec-
tor each. The distribution of fluid connectors and the
connections between different modules is illustrated in
Figure 4. For each model, internal connections link all
the fluid connectors to the air volume of the room. This
setup will serve as a basis for the benchmark of differ-
ent media and pressure-driven flow computations.

MERGING WITH OTHER LIBRARIES
The Annex60 library is used as the core of the follow-
ing Modelica libraries: AixLib from RWTH Aachen,
which already uses the water-based models and works
on integrating the air-based models, Buildings

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 401 -

from LBNL Berkeley, CA, BuildingSystems
from UdK Berlin, and IDEAS from KU Leuven.
To automatically merge the Annex60 library with
these libraries, developers of these libraries use the
BuildingsPy Python package by executing the fol-
lowing commands:

1 import buildingspy.development.merger as m
2 src=” / home / j o e / model ica−annex60 / Annex60”
3 des=” / home / j o e / model ica−b u i l d i n g s / B u i l d i n g s ”
4 mer=m.Annex60(src, des)
5 mer.merge()

These commands merge the Annex60 library from
the directory src into the library specified by the
variable des and update all hyperlinks, references
to package names and file names that contain the
Annex60 string. Therefore, users will only see the
respective library and do not have to combine models
from different libraries.

CONCLUSIONS
Through the IEA EBC Annex 60 project, multiple in-
stitutes started a collaborative development of a free,
open-source Modelica library for building and district
energy systems. This work harmonized the previously
fragmented and duplicative development of libraries
with the goal to collectively develop a library that will
serve the building simulation community. This re-
quired from the developers of previous libraries, each
having a considerable code base, to mutually agree
upon a common process for the development and qual-
ity control that needs to allow for rapid experimenta-
tion as is often done in University settings as well as
ensuring robust and stable development, which is more
important to commercial software companies such as
EQUA and National Labs such as LBNL. It also re-
quired the developers to agree upon various design
decisions and conventions for coding, documentation
and validation, to jointly work on implementation and
vetting of a core of a library, to refactor their existing
libraries, and to open-source previously proprietary
code. The team is now working on benchmarking and
expansion of the scope.
To our knowledge, this is the first international collab-
oration for a library with free, open-source models for
buildings and district energy systems that are built us-
ing an open-standard modeling language.
Our goal is that this will initiate a larger open-source
development that can support IBPSA’s vision of pro-
viding a standard library with fundamental model de-
scriptions that will be supported by manufacturers and
integrated in various building performance simulators.

ACKNOWLEDGEMENT
This research was supported by the Assistant Secretary
for Energy Efficiency and Renewable Energy, Office
of Building Technologies of the U.S. Department of
Energy, under Contract No. DE-AC02-05CH11231.
We gratefully acknowledge the financial support by
BMWi (German Federal Ministry of Economic Affairs
and Energy), promotional reference 03ET1177A, of

the Agency for Innovation by Science and Technology
in Flanders (IWT) in the frame of the PhD Fellowship
of F. Jorissen and IWT and WTCB in the frame of the
IWT-VIS Traject SMART GEOTHERM.
This work emerged from the Annex 60 project, an in-
ternational project conducted under the umbrella of the
International Energy Agency (IEA) within the Energy
in Buildings and Communities (EBC) Programme.
Annex 60 will develop and demonstrate new gener-
ation computational tools for building and commu-
nity energy systems based on Modelica, Functional
Mockup Interface and BIM standards.

REFERENCES
Baetens, R., De Coninck, R., Van Roy, J., Verbruggen,

B., Driesen, J., Helsen, L., and Saelens, D. 2012.
Assessing electrical bottlenecks at feeder level for
residential net zero-energy buildings by integrated
system simulation. Applied Energy, 96:74–83.

Clarke, J. 2015. A vision for building performance
simulation: a position paper prepared on behalf of
the IBPSA Board. Journal of Building Performance
Simulation, 8(2):39–43.

Coddington, E. A. and Levinson, N. 1955. Theory of
ordinary differential equations. McGraw-Hill Book
Company, Inc., New York-Toronto-London.

Constantin, A., Streblow, R., and Müller, D. 2014.
The modelica housemodels library: Presentation
and evaluation of a room model with the ASHRAE
Standard 140. In Association, M., editor, Proceed-
ings of the 10th International Modelica Conference,
pages 293–299.

Lauster, M., Teichmann, J., Fuchs, M., Streblow, R.,
and Mueller, D. 2014. Low order thermal network
models for dynamic simulations of buildings on city
district scale. Building and Environment, 73:223–
231.

Mattsson, S. E. and Elmqvist, H. 1997. Modelica –
An international effort to design the next generation
modeling language. In Boullart, L., Loccufier, M.,
and Mattsson, S. E., editors, 7th IFAC Symposium
on Computer Aided Control Systems Design, Gent,
Belgium.

Nytsch-Geusen, C., Huber, J., Ljubijankic, M.,
and Rädler, J. 2013. Modelica BuildingSystems
eine Modellbibliothek zur Simulation komplexer
energietechnischer Gebäudesysteme. Bauphysik,
35(1):21–29.

Polak, E. 1997. Optimization, Algorithms and Consis-
tent Approximations, volume 124 of Applied Math-
ematical Sciences. Springer Verlag.

Wetter, M. 2006. Multizone airflow model in model-
ica. In Association, M., editor, Proceedings of the
5th International Modelica Conference, pages 431–
440.

Wetter, M., Zuo, W., Nouidui, T. S., and Pang, X.
2014. Modelica Buildings library. Journal of Build-
ing Performance Simulation, 7(4):253–270.

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 402 -

