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ABSTRACT
This paper describes an open-source simulator for cyber-
physical systems called CyPhySim that is based on Ptolemy
II. This simulator supports classical (Runge-Kutta) and
quantized-state simulation of ordinary differential equations,
modal models (hybrid systems), discrete-event models, the
Functional Mockup Interface (FMI) for model-exchange and
co-simulation, discrete-time (periodic) systems, and alge-
braic loop solvers. CyPhySim provides a graphical editor,
an XML file syntax for models, and an open API for pro-
grammatic construction of models. It includes an innovation
called “smooth tokens,” which allow for a blend of numerical
and symbolic computation, and for certain kinds of system
models, dramatically reducing the computation required for
simulation.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: General

1. INTRODUCTION
The heterogeneity of cyber-physical systems presents con-

siderable challenges to software simulation techniques. Cy-
PhySim is a new open-source software simulator (BSD li-
cense) that supports the most promising combination of
technologies. The core of the system is a discrete-event sim-
ulation engine, continuous-time solvers, and state machine
modeling infrastrcture from the open source Ptolemy II sys-
tem [23].

The paper begins in Section 2 with an analysis of the com-
putational aspects of modeling continuous dynamics using
numerical solvers. In Section 3, we review models of time
that are well suited to modeling cyber-physical systems. In
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Section 4, we explain how to use modal models to construct
hybrid systems. In Section 5, we switch to discrete-event
models, and introduce the notion of smooth tokens, which
permit modeling continuous dynamics using discrete events.
Section 6 leverages this discrete-event approach to show that
quantized-state solvers can be very effective for certain kinds
of continuous dynamics and particularly for cyber-physical
dynamics where digital controllers affect an analog physi-
cal plant. Section 7 shows how algebraic loop solvers can
be cleanly mixed with the other types of solvers described
here. Section 8 concludes with a summary of other issues
not covered and open issues.

2. CONTINUOUS DYNAMICS
To model the physical side of cyber-physical systems, we

need to represent dynamics, the evolution of the state of
a system in time. Continuous-time dynamics is typically
modeled using ordinary differential equations (ODEs)
or differential algebraic equations (DAEs).

An example of a nontrivial nonlinear continuous dynamics
given by a system of ODEs is the well-known Lorenz attrac-
tor, a chaotic system defined by the following equations,

ẋ1(t) = σ(x2(t)− x1(t)),

ẋ2(t) = (λ− x3(t))x1(t)− x2(t),

ẋ3(t) = x1(t)x2(t)− bx3(t),

with given initial conditions x(t0) = x0 and t ∈ [t0,∞).
A Ptolemy II implementation of this system is shown in
Figure 1, in this case constructed graphically using the Vergil
graphical editor for Ptolemy II models. A plot produced by
a simulation is shown in Figure 2. Note that this is a
chaotic system, so arbitrarily small perturbations can yield
arbitrarily large consequences.

In this paper, we are most interested in how to model
such continuous dynamics in combination with discrete phe-
nomena such as digital controls, abrupt mode changes, and
sampling. Moreover, we are interested in the computational
aspects of the model. Even though the model refers to con-
tinuous dynamics, where both time and values exist in a
continuum, the model is a computational artifact. It is
executable on a computer, and hence has an intrinsically
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Figure 1: Graphical model of the Lorenz attractor.

discrete semantics. Let us begin with a careful examination
of the most primitive element in such models, the integrator.

2.1 Integrators
The Integrator actors in Figure 1 have a derivative input

and a state output, as shown in Figure 3. At time t, the
state output is

x(t) = x0 +

∫ t

t0

ẋ(τ)dτ,

where x0 is the initialState, a parameter of the actor, t0 is
the start time of the model execution, and ẋ is the deriva-
tive input. Note that this can be written using a derivative
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Figure 2: Plot of signals for the Lorenz attractor.

Figure 3: Integrator in Ptolemy II.

instead of an integral as

ẋ(t) =
d

dt
x(t),

where ẋ is the input signal and x is the output. (The rela-
tionship between these representations is the fundamental
theorem of calculus.)

Note that x(t) does not depend on the value of ẋ at time
t. This is a key causality property of the actor, and it
ensures that the feedback loops of Figure 1 are construc-
tive [11]. At each time t, there is no cyclic dependency in
a feedback loop. The values of the signals at time t can be
determined without knowing the inputs to the integrators at
time t. Once these are known, the inputs to the integrators
at time t become known. But these inputs will only affect
future outputs of the integrators. This is an example of a
computational property of these models.

Computers perform discrete calculations. How can they
integrate a continuous-time signal? Numeric integration
techniques include implicit methods (e.g. backward Eu-
ler, which computes x(tk+1) = x(tk) + ẋ(tk+1) (tk+1 − tk))
and explicit methods (e.g. forward Euler, which com-
putes x(tk+1) = x(tk) + ẋ(tk) (tk+1− tk)). Implicit methods
sacrifice the causality property, requiring that at time t, the
input ẋ(t) be known in order to determine the output x(t).
Implicit methods, therefore, change the causality properties
of fundamental calculus, and create causality loops when
used in feedback systems. Causality loops can also arise
when models are given by DAEs rather than ODEs. We
will say more about this below, but for now, we assume that
only explicit solvers will be used.

An ordinary differential equation (ODE) can be writ-
ten as

ẋ(t) = f(x(t), u(t), t), (1)

where x is the state variable (or vector), u is the input,
t is time, and f is a function giving the derivative in terms
of the state, the input, and the time. If x and u are scalars,
f has the form f : R3 → R. Given an initial condition
x0 = x(t0), this is equivalent to

x(t) = x0 +

∫ t

t0

ẋ(τ)dτ =

∫ t

t0

f(x(τ), u(τ), τ)dτ.

The general structure of such a system is shown in Figure 4.

2.2 Classical ODE Solvers
Under certain circumstances, the value of a continuous

signal at a future time t + h can be given by a Taylor se-
ries, which expresses that value in terms of the value and
derivatives at the current time t,

x(t+ h) = x(t) + hẋ(t) +
h2

2!
ẍ(t) + · · ·



Figure 4: Pattern of ODE problems.

The function f in (1) is said to be analytic at t if all the
derivatives exist (the function is smooth), and this sum
converges to x in some neighborhood of t. I.e., there exists
a δ > 0 s.t. the Taylor series converges to x(t+ h) for all h
in (−δ, δ).

Various classical ODE solvers are based on truncating
and approximating this series. If the series converges, the
terms become small quickly, enabling accurate approxima-
tions with a finite summations, and also enabling estimating
the local approximation error (i.e., for the current time step)
by examining the terms just beyond the truncation. Such
local error estimates can be used to design variable step
solvers, which adjust the time offset h to keep the error suit-
ably small.

CyPhySim provides by default classical Runge-Kutta
(RK) solvers, which are widely used variable-step-size ex-
plicit solvers [6]. RK solvers improve the accuracy in part
by evaluating the function f at multiple points in time be-
tween t and t + h. Upon completing the calculation, these
solvers estimate the error, and if it is too high, reject the
step size h and redo the step with a smaller step size. In
an executable model, of course, the function f is realized
by software. RK solvers require being able to speculatively
evaluate f at various times in the model without commit-
ting to a step size. Hence, the software implementation of
the function f must either be free of side effects (evaluating
it does not change any state), or the software must support
rolling back to a previously stored state in order to redo
the step. Such rollback is also generally required when the
model must respond to unpredictable events such as a zero
crossing of a continuous signal. This is another example of
a computational property of models.

In Simulink and Ptolemy II, actors are realized using two
distinct procedures, one that calculates outputs based on
inputs but has no side effects (called mdl_output in Simulink
and fire in Ptolemy), and another that updates the state of
the actor based on the inputs (called mdl_update in Simulink
and postfire in Ptolemy). FMI for model exchange [19]
provides a function fmi2CompletedIntegratorStep that can
serve the same role as mdl_update and postfire.

In principle, the external input u of Figure 4 can be ab-
sorbed into the definition of the function f , in which case
the problem reduces to an initial value problem, which is
to find a function x satisfying

ẋ(t) = f ′(x(t), t), x(t0) = x0

over some interval t ∈ [t0, t0 + ε], where f ′(x(t), t) =
f(x(t), u(t), t). If f is Lipschitz continuous in its first ar-
gument and continuous in the second, then the Picard-
Lindelöf theorem states that there exists an ε > 0 such
that there is a unique solution to this problem. This unique

solution provides a semantic benchmark against which any
numerical solver can be evaluated for accuracy. This seman-
tic benchmark is called the ideal solver semantics in [15].
This is the third example of computational property. Just as
it is useful to have a theory of real numbers against which to
evaluate the accuracy of floating-point numbers, it is useful
to have an ideal solver semantics against which to evaluate
the accuracy of numerical solvers.

2.3 Differential Algebraic Equations
A more general form of differential equations imposes al-

gebraic constraints as

ẋ(t) = f(x(t), u(t), y(t), t),

0 = g(x(t), y(t), t),

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rk for some
n,m, k ≥ 1. These are supported by Bond graphs [22],
Modelica [25], and SPICE [20]. The two equations have
cycles, in that x depends on y and vice versa, but these cycles
do not automatically lead to causality loops. In particular,
given a system of DAEs, a Modelica compiler will attempt to
remove apparent causality loops through a process known as
index-order reduction, using for example the Pantelides
algorithm [21]. When this process is successful, the model
becomes an ODE. CyPhySim currently requires ODEs for
modeling continuous dynamics. The conversion from DAEs
to ODEs is not automatic, as it is in Modelica, but we be-
lieve that open source Modelica compilers such as JModelica
can be leveraged sometime in the future.

3. MODEL OF TIME
For models that mix discrete and continuous behaviors, it

is well established that the model of time that is used must
support sequences of causally-related instantaneous events
[11, 3]. CyPhySim uses a superdense time model [16,
13]. In this model, a time stamp is a pair (t, n), where
model time t is a digital approximation to a real number,
and the microstep (or index) n ∈ N is a non-negative
integer. Two time stamps (t1, n1) and (t2, n2) are weakly
simultaneous it t1 = t2 and strongly simultaneous if
t1 = t2 and n1 = n2.

For the real number t, CyPhySim uses a representation
that has a fixed precision valid throughout a model (the
precision is a parameter of the model). Unlike floating point
numbers, addition of times is associative, and the precision
does not vary with the magnitude of the number. For details,
see [23].

One key benefit of the superdense model of time is that
it enables better semantics for discontinuous signals. One
mechanism that is widely used to model discontinuities in
otherwise continuous dynamics relies on generalized func-
tions like the Dirac delta function, a function δ : R→ R+

given by

∀ t ∈ R, t 6= 0, δ(t) = 0, and∫ ∞
−∞

δ(τ)dτ = 1.

That is, the signal value is zero everywhere except at t = 0,
but its integral is unity. Suppose a signal w has a Dirac
delta function with weight K occurring at t1 as follows,

w(t) = w1(t) +Kδ(t− t1), (2)



Figure 5: Newtonian model of a mass with impulsive
forces.

Figure 6: Model of a bouncing ball.

where w1 is an ordinary continuous-time signal. Then∫ t

−∞
w(τ)dτ =

{ ∫ t

−∞ w1(τ)dτ t < t1

K +
∫ t

−∞ w1(τ)dτ t ≥ t1

The Dirac delta causes an instantaneous increment in the
integral by K at time t = t1. For an integrator, at time t,
the state output is

x(t) = x0 +

∫ t

t0

ẋ(τ)dτ.

Suppose that ẋ = w, given in (2). The integrator, Figure 3,
has an impulse input to provide the Dirac impulse at time t1.
At time t1, the effect of the impulse is to add immediately to
x(t). The output at time t depends on the impulse input at
time t, but not on the derivative input. This explains why
the CyPhySim Integrator provides two distinct input ports,
impulse and derivative. It is imperative that the impulsive
input be segregated from the derivative input because the
causality properties of these inputs are different.

Consider for example modeling a physical object, such as
a billiard ball, subject to Newtonian mechanics, F = ma,
but also subject to collisions. Collisions can be (and should
be, for most purposes [11]) modeled using impulsive forces,
specifically the Dirac delta function. A model constructed
in CyPhySim of such a physical object is shown in Figure
5. The output v depends immediately on the input Fi, if it
is present. Subtle issues that arise when modeling discrete
phenomena such as collisions this way are considered in [11].

To illustrate the use of such impulsive forces, consider
the classic bouncing ball problem, which models a ball in
free fall (using Figure 5), a level-crossing detector, and
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Figure 7: Bouncing ball position vs. time.

an impulsive force to reverse the direction of the ball upon
collision with a surface. Such a model is shown in Figure 6.
Here, a LevelCrossingDetector actor detects a falling zero
crossing, which then triggers a calculation of an impulsive
force that is fed back to the impulsive force input of the ball
model. To prevent a causality loop, a MicrostepDelay actor
is inserted into the feedback loop. This is valid because no
(real) time elapses between the detection of the zero crossing
and application of the impulsive force.

As we have already mentioned, detecting level crossings
of continuous signals is semantically problematic. Compu-
tational models cannot directly deal with either time or
space continuums. Level-crossing detection ultimately de-
pends on numerical approximations to real numbers. It can
only be done up to some precision. In this particular imple-
mentation, a level-crossing is asserted when the signal value
matches or passes the level, and if it passes the level, it is
still within a specified tolerance of the level. Figure 7 shows
that this policy inevitably results in the ball traversing the
surface in such a way that when the bounce occurs, the im-
pulsive force is insufficient to cause the ball to rise above the
surface again. This results in the ball tunneling through the
surface.

One could, of course, solve this problem with much more
detailed modeling of the physics. Collisions between rigid
objects, for example, involve localized plastic deformation,
viscous damping in the material, and acoustic wave propa-
gation. Much experimental and theoretical work has been
done to refine models of such phenomena, leading to consid-
erable insight into the underlying physical phenomena. Such
detailed modeling rarely helps in developing insight about
macroscopic system behavior, however [11]. A better ap-
proach is to recognize that every model is valid only within
some circumscribed regime of operation, and that outside
that regime, it is inappropriate to use that model. When
the height of the bounce is small, the model of Figure 6 is
invalid, and we should switch to a new model. Such switch-
ing is described below in Section 4.



3.1 Piecewise Continuity
So that we can leverage standard, well-understood numer-

ical integration methods, we require signals to be piecewise-
continuous in a specific technical sense. Consider a real-
valued superdense-time signal x : R× N→ R. At each real-
time t ∈ R, we require that x(t, n) settle to a final value and
stay there. Specifically, we require that for all t ∈ R, there
exist an m ∈ N such that

∀n > m, x(t, n) = x(t,m). (3)

A violation of this constraint is called a chattering Zeno
condition. The value of the signal changes infinitely often at
a time t. Such conditions would prevent an execution from
progressing beyond real time t, assuming the execution is
constrained to produce all values in chronological order.

Assuming x has no chattering Zeno condition, then there
is a least value of m satisfying (3). We call this value of m
the final microstep and x(t,m) the final value of x at t.
We call x(t, 0) the initial value at time t. If m = 0, then x
has only one value at time t.

Define the initial value function xi : R→ R by

∀ t ∈ R, xi(t) = x(t, 0).

Define the final value function xf : R→ R by

∀ t ∈ R, xf (t) = x(t,mt),

where mt is the final microstep at time t. Note that xi and
xf are conventional continuous-time functions. A piece-
wise continuous signal is defined to be a function x of the
form x : R×N→ R with no chattering Zeno conditions that
satisfies three requirements:

1. the initial value function xi is continuous on the left
at all t ∈ R;

2. the final value function xf is continuous on the right
at all t ∈ R; and

3. x has only one value at all t ∈ R\D, where D is a
discrete subset of R.

The last requirement is a subtle one that deserves further
discussion. First, the notation R\D refers to a set that con-
tains all elements of the set R except those in the set D. D
is constrained to be a discrete set, defined to be one where
there exists an order embedding f : D → N, where N is the
set of natural numbers.1 Intuitively, D is a set of time values
that can be counted in temporal order. It is easy to see that
if D = ∅ (the empty set), then xi = xf , and both xi and xf
are continuous functions. Otherwise each of these functions
is piecewise continuous.

Such piecewise-continuous signals coexist nicely with stan-
dard ODE solvers. At the time of a discontinuity or discrete
event, the final value signal provides the initial boundary
condition for the solver. The solver then works with an
ordinary continuous signal until the time of the next discon-
tinuity or discrete event, and the solver provides the initial
value of the signal at the time of that next event.

Carsdoso et al. [4] give techniques for constructing mod-
els that produce only piecewise-continuous signals. For our
purposes here, it is sufficient to note that modal models, as
defined below, always produce piecewise-continuous signals.

1An order embedding is a one-to-one monotonic f : X →
Y , for partially ordered sets X,Y .

Figure 8: Structure of a modal model.

4. MODAL MODELS
CyPhySim imports the modal models of Ptolemy II [12],

which provide hierarchical combinations of state machines
and continuous and discrete event (DE) subsystems. This
combination supports hybrid system modeling with rigorous
deterministic semantics [13]. Modal models can generally be
used to solve the problem that every model is invalid outside
some regime of operation. Typically, the simpler the model,
the smaller the regime. Keeping models simple has much
value, however, so we are incentivized to build models for
more regimes.

The schematic structure of a modal model is shown in
Figure 8. A top-level actor, labeled ModalModel, is a com-
ponent with inputs and outputs. Inside, it contains a state
machine, shown here with two states, with guarded transi-
tions between the states. Each state represents a mode of
operation. The model for each mode is given as a refinement
of the states. When the state machine is in mode1, for ex-
ample, then the behavior of the top-level actor is given by
the refinement of mode1. Each refinement has its own di-
rector, implying that its internal model of computation can
be different from that of its environment.

A solution to the tunneling phenomenon of the bouncing
ball problem is shown in Figure 9. Here, a much simpler
model of the ball is used when the velocity and position of
the ball are both close to zero. Specifically, the mode re-
finement for the sitting mode simply shows the ball standing
still. The guards on the state machine transition govern the
switching between modes.

5. DISCRETE-EVENT SIMULATION
In the style of discrete-event (DE) modeling realized in

CyPhySim, a model is a network of actors with input and
output ports. The actors send each other time-stamped
events, and the simulation processes these events in time
stamp order. This style of DE is widely used for simulation
of large, complex systems [5, 27, 7]. CyPhySim builds on
the particular implementation in Ptolemy II, which has a
sound, deterministic semantics [10, 17].



Figure 9: Modal model for the bouncing ball.

5.1 Smooth Tokens
A key innovation in CyPhySim is the introduction of a

smooth token, which is a discrete event that represents a
change in a continuous signal. A smooth token is a time-
stamped event that has a real value (approximated as a dou-
ble) that represents the current sample of a smooth signal.
But in addition to the sample value, the smooth token con-
tains zero or more derivatives, representing the value of a
function of time at a particular time.

In mathematical analysis, smoothness has to do with how
many derivatives a function possesses. A smooth function is
one that has derivatives of all orders everywhere in its do-
main. A smooth token represents a sample of a function at a
point in time together with some finite number of derivatives
of the function at that same point.

This token will be treated exactly like a real value by any
actor or operation that does not specifically support it, and
it is represented in the Ptolemy II type system as a“double.”
But it can (potentially) carry additional information giving
one or more derivatives of the function from which it is a
sample and giving the time at which it represents a sample
of the signal. This token, therefore, gives a way for actors
that either generate or use this derivative information to
make that information available to other actors that can
use it.

An illustration of the implications is shown in Figure 10,
where a signal on the left, ẋ is piecewise constant as follows,

ẋ(t) =

{
1 0 ≤ t < 2
−1 2 ≤ t < 4

Upon integrating this signal, we get the signal in the middle,
which again can be represented by just two smooth tokens.
Upon integrating the middle signal, we get the signal on the
right.

When a signal is actually smooth over some interval, use
of a smooth token makes it unnecessary to convey additional
samples until something changes so that the extrapolation
implied by a Taylor series expansion is no longer valid. For

example, if a signal is piecewise smooth instead of every-
where smooth, then at the point in time where it is not
smooth, a new smooth token will need to be conveyed, as
shown in Figure 10.

Note that if two smooth tokens are added or subtracted,
then the derivatives also add or subtract. If the times of the
two tokens that are added or subtracted are not the same,
then the one with the lesser time is extrapolated to the larger
time, and the result will be the sum at the later time.

If a smooth token is multiplied by a smooth token, then
the product rule of calculus is used to determine the deriva-
tives of the product. The product rule stipulates that

(xy)′ = x′y + xy′. (4)

Again, if the times of the two tokens are not equal, then the
one with the lesser time will be extrapolated to the larger
time before being multiplied, and the time of the result will
be the larger time.

Division works similarly:

(x/y)′ = x′/y + x(1/y)′ = x′/y − xy′/y2 (5)

where the last equality follows from the reciprocal rule of
calculus. The second derivative of a multiplication or di-
vision is obtained by applying the above rules to x’ and y’
rather than to x and y. Higher-order derivatives are similarly
obtained.

You can construct an instance of this token in the Ptolemy
expression language using the smoothToken(double, dou-

ble, {double}) function, as illustrated in Figure 10. The
first argument specifies the value, and the second argument
specifies the time, and the third specifies the derivatives.

In a practical implementation, instances of smooth token
will need to be truncated to have no more than some number
N of derivatives. In our CyPhySim realization, this defaults
to N = 3.

6. QUANTIZED-STATE SYSTEMS
A relatively recent development in numerical simulation of

ordinary differential equations is the emergence of so-called
quantized-state systems (QSS) [26, 9, 6, 8, 1]. In a classi-
cal ODE simulator, a step-size control algorithm determines
sample times, and a sample value is computed at those times
for all states in the model. In a QSS simulator, each state
has its own sample times, and samples are processed using a
DE simulation engine in time-stamp order. The sample time
of each state is determined by quantizing the value of each
state and producing samples only when the value changes
by a pre-determined tolerance, called the quantum. Higher-
order variants incorporate knowledge of higher-order deriva-
tives of a state to predict trajectories and produce samples
only when these higher order prediction differs by more than
the quantum [18]. For some systems, QSS yields efficient
simulation by producing samples only when predicted state
trajectories exceed the quantum. Moreover, state events can
be scheduled using an explicit equation, avoiding iteration
in time.

6.1 QSS Integrator
Inputs to the QSS integrator are discrete events that in-

dicate significant changes in the input signal, and output
events indicate significant changes in the output signal. The
value of the input signal is the derivative of the output.
Here, for the integrator output, “significant” means that the
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signal has changed by more than the specified quantum, as
defined by the selected solver, explained in detail below.

Three types of solvers are provided:

1. QSS1: Input u is assumed to be piecewise constant.

2. QSS2: Input u is assumed to be piecewise affine.

3. QSS3: Input u is assumed to be piecewise quadratic.

An input event can be a smooth token, which carries not
only a value, but also zero or more derivatives of the input
signal at that time. To provide a piecewise affine input to a
QSS2 integrator, for example, you can specify an input with
the expression smoothToken(2, 0, {1}), which specifies a
value of 2 at time 0 with a first derivative of 1. All other
derivatives are assumed to be zero. A QSS1 integrator will
ignore all derivatives on the input. A QSS2 integrator will
ignore all but the first derivative on the input. A QSS3
integrator will ignore all but the first and second derivatives
on the input.

The integrator produces an output whenever a quantiza-
tion event occurs. For QSS1, a quantization event occurs
when the state of the integrator changes by the quantum
(see below for an explanation of the quantum). For exam-
ple, if the input is a constant 1 and the quantum is 0.1, then
an output will be produced every 0.1 seconds, because the
input specifies that the state has slope 1, so it will increase
by the quantum every 0.1 seconds.

For QSS2, a quantization event occurs when a piecewise
linear approximation of the state trajectory deviates from
a piecewise quadratic approximation by the quantum. For
example, suppose we have t = t0, input u(t), current state
x(t0) and quantum q > 0, for some q ∈ R. Then, the piece-
wise linear approximation to the state trajectory is

l(t) = x(t0) + ẋ(t0) (t− t0) (6)

on t ∈ [t0, τ ] for some, yet to be determined τ , whereas the
piecewise quadratic approximation is

x(t) = x(t0) + ẋ(t0) (t− t0) + ẍ(t0) (t− t0)2/2. (7)

We seek

τ ∈ arg min{t > t0 | q = |l(t)− x(t)|}
= arg min{t > t0 | q = |u̇(t0) (t− t0)2/2|}. (8)

Hence, the next quantization happens at τ = t0 +√
2 q/|u̇(t0)|, at which time an output will be produced, un-

less the function u changes earlier.
For QSS3, a quantization event occurs when a piecewise

quadratic approximation of the state trajectory deviates
from a piecewise cubic approximation by the quantum.

When an output is produced, its value will be the current
state of the integrator. In addition, it may contain derivative
information. For QSS1, the input is semantically piecewise
constant, so the output is piecewise affine; hence each out-
put event will be a smooth token that is piecewise affine,
with a first derivative equal to the most recently received
input value (see Section 6.4 below for an elaboration of this
behavior). For QSS2, the output will have a first and second
derivative obtained from the input. For QSS3, the output
will have first, second, and third derivatives.

6.2 Quantums
The frequency with which the output q of this integrator

is produced depends on the solver choice and the absolute-
Quantum and relativeQuantum parameter values. These
determine when a quantization event occurs, as explained
above. The quantum is equal to the larger of absolute-
Quantum and the product of relativeQuantum and the cur-
rent state value. The simplest case is where the solver is
QSS1 and relativeQuantum is zero. In this case, a quantiza-
tion event occurs whenever the integral of the input signal
changes by the absoluteQuantum. For QSS1, the input is
assumed to be piecewise constant. If the input is a smooth
token, the derivatives of the input are ignored.

When an impulse input is received, the value of that event
is added to the current state of this integrator (any deriva-
tives provided on the impulse input are ignored). Then an
output event is produced and the integrator is reinitialized
so that the next output quantum is relative to the new state
value.

6.3 Performance and Accuracy
In our implementation in CyPhySim, the Lorenz attrac-

tor of Figure 1 executes approximately 2.5 times faster using
QSS3 integrators vs. an RK 2-3 solver. However, since this
system is chaotic, it is not really meaningful to compare
accuracy. Chaotic systems often have the property that ar-



Figure 11: QSS version of a bouncing ball model.
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Figure 12: Position vs. time for the QSS bouncing
ball.

bitrarily small perturbations can have arbitrarily big conse-
quences, a phenomenon known as the butterfly effect.

Consider again the bouncing ball model of Figure 6. This
problem is ideally suited to QSS because the force on the ball
is piecewise constant, and accuracy comparisons are more
meaningful. The velocity of the ball is therefore piecewise
affine, and the position is piecewise quadratic. A QSS model
in CyPhySim is shown in Figure 11, and a plot of its execu-
tion is shown in Figure 12. The upper plot shows the actual
points in time computed by the simulation.

The model in Figure 6 uses an RK 2-3 solver with an error
tolerance of 10−4. Figure 11 uses a QSS2 solver for the left
integrator (which outputs the velocity) and a QSS3 solver
for the right integrator (which outputs the position).2 Both
simulations are run for 14 seconds, taking the model just
past the point of tunneling.

In the QSS model, computation is performed only at 46

2This highlights another advantage QSS, which is that the
choice of QSS order can be optimized for each state vari-
able independently, although in this case, there is very little
observable difference if QSS3 is used throughout.

points in time, as illustrated in the upper plot in Figure
12. At each of these points, a smooth token is produced.
The zero crossings are predictable from these points, so no
rollback is needed to identify the points in time where the
collisions occur. The lower plot is created by sampling the
position signal with a sample interval of 0.01. The samples
between computed points of the upper plot are extrapolated
automatically from the smooth tokens. In the RK 2-3 model,
computation is performed at 14,072 time points, not count-
ing rejected time points due to rollback that is caused by the
zero-crossing detector. On a Mac Powerbook Pro, the RK
2-3 simulation completes in 3.3 seconds, whereas the QSS
simulation completes in 0.085 seconds, on average, so the
QSS simulation is approximately 38 times faster.

As discussed above in Section 2.2, most classical ODE
solvers require rollback to adjust step sizes based on error
estimates and to iterate to the time of events such as for
zero crossings. QSS solvers have the interesting property
that if the QSS1, 2, and 3 assumptions about the integrator
inputs, given above in Section 6.1, are indeed valid, then
rollback is never required. If these assumptions are valid,
then there is no error due to numerical approximation of
the integration, and events such as zero crossings are pre-
dictable in advance. The bouncing ball example illustrates
this well. Fortunately, for certain cyber-physical systems,
these assumptions are indeed valid. Most digital actuators
do, in fact, produce piecewise-constant outputs, so if the
physical reaction to these actuations is sufficiently simple,
then computationally exact simulation is possible, where
the only source of errors is numerical roundoff errors. There
is no error due to numerical integration. When the QSS1,
2, and 3 assumptions are not satisfied, then truncating the
derivatives does, in fact, introduce errors in the numerical
integration. Management of these errors appears to be a rel-
atively unstudied problem, at least to the knowledge of these
authors, except for asymptotically stable linear time invari-
ant systems for which the global error can be computed [6].

6.4 Derivative Propagation
Mathematically, integration is an operation that always

occurs over a measurable interval. Semantically, this means
that integration always introduces an (infinitesimal) delay
between its input and output. In CyPhySim, this means
that the output of an integrator can be only based on pre-
vious inputs up to, but not including, the current times-
tamp. Semantically, QSS integrator is a composition of an
ordinary integrator with a hysteretic quantizer, the latter of
which suppresses changes in its output until it has deviated
from its old value by one quantum. However, since a QSS
integrator outputs derivative information inside its smooth
tokens, and the derivative is precisely the input itself, one
may ask whether the output should propagate changes in
the input instantaneously at the following microstep, rather
than suppress them until a quantum is reached at a future
time.

While propagating derivative information instantaneously
alters QSS semantics slightly, it can only increase the accu-
racy of the model, since downstream components are noti-
fied earlier of the changes than they otherwise would be.
Of course, it would also come at a computational cost, as
the model is now evaluated much more frequently than the
quantum size would otherwise suggest. Preliminary results,
however, seem to suggest that it is possible for the accu-



Figure 13: RLC circuit requiring an algebraic loop
solver (after Figure 12.8 in [6]).

racy improvement to compensate for the performance loss
by causing the model to correct its errors sooner rather than
later, and hence do so less often. Therefore, to allow for the
potential benefits of such behavior, a QSS integrator in Cy-
PhySim has a propagateInputDerivatives parameter that
dictates whether changes in the input should be propagated
to the output at the current model time.

7. ALGEBRAIC LOOP SOLVERS
CyPhySim includes a mechanism for specifying alge-

braic loop solvers, including a simple successive substitu-
tion mechanism, a Newton-Raphson solver, and a homotopy
method. The model builder is given explicit control over the
solution method and initial guesses in order to ensure deter-
ministic results.

Figure 13 shows the electrical circuit with an algebraic
loop, which is the problem shown in Figure 12.8 in [6]. For
this system, an algebraic loop needs to be solved whenever
a QSS integrator changes its output, or when VoltageSource
triggers an event. Figure 14 shows the CyPhySim imple-
mentation. The actor labeled AlgebraicLoop implements
the algebraic loop that needs to be solved. It has an input
for the voltage source, and two pairs of inputs and outputs
that connect the algebraic loop to the capacitor and the in-
ductor, each having a state variable.

8. FURTHER WORK
Some of the capabilities of CyPhySim are beyond the

scope of this paper. For example, CyPhySim includes
the ability to import functional mockup units (FMUs),
which are components designed in some foreign modeling
language or tool (such as Modelica), and exported with
an interface defined by the FMI standard. The Functional

Figure 14: Model of the RLC circuit of Figure 13.

Mockup Interface (FMI) is a standard for model exchange
and co-simulation of dynamical models [19]. CyPhySim sup-
ports importing FMUs designed for model exchange or co-
simulation. For FMU for model-exchange, it provides a QSS
simulation engine for numerical integration. This strategy
also enables co-simulation of DE models with FMI, a com-
bination also described in [24].

Many CPS applications include sampled-data subsystems
with regular, periodic sample rates. CyPhySim leverages the
synchronous-reactive (SR) domain of Ptolemy II to provide
such models, which permits specification of a sample rate
and enables structured multi rate systems. Such SR mod-
els interoperate well with DE, QSS, and Continuous models
[14]. CyPhySim incorporates a new innovation that enables
arbitrary hierarchical nesting of these models. Sampled data
systems can contain continuous or DE subsystems and vice
versa.

Nevertheless, much work remains to be done. The ap-
proach used to handle algebraic loops in Section 7 is seman-
tically sound, but the graphical syntax of such models is
not satisfactory. The requirement that algebraic loops be
factored out into a different level of hierarchy in the model
leads to good separation of concerns, but it makes the mod-
els considerably less readable. A better approach would be
to graphically or textually describe the structure of the mod-
els in the most natural way, including where appropriate
using acausal ports as in Modelica, and then to automat-
ically transform the model for analysis and execution into
a form that separates concerns and implements the correct
semantics.

The operations on derivatives that are described in Section
5.1 are particularly convenient to implement in CyPhySim,
because in the underlying Ptolemy II system, arithmetic op-
erations on tokens exchanged between actors are polymor-



phic, which means that the token itself defines what addi-
tion, multiplication, division, etc. mean. An interesting pos-
sibility, which is not so trivial to implement in the software,
would extend the manipulation of derivatives to transcen-
dental functions and other common operations on signals. In
effect, this would endow a numerical solver with a measure
of symbolic computation capability, creating an interesting
blend of symbolic and numerical simulation.
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