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Abstract

This paper presents an approach for speeding up Model-
ica models. Insight is provided into how Modelica mod-
els are solved and what determines the tool’s computa-
tional speed. Aspects such as algebraic loops, code ef-
ficiency and integrator choice are discussed. This is il-
lustrated using simple building simulation examples and
Dymola. The generality of the work is in some cases
verified using OpenModelica. Using this approach, a
medium sized office building including building enve-
lope, heating ventilation and air conditioning (HVAC)
systems and control strategy can be simulated at a speed
five hundred times faster than real time.
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1 Introduction

The Modelica language allows simulations of multidis-
ciplinary problems. Combining multiple disciplines can
lead to models that quickly grow in size and complexity.
Consider for instance building energy modelling where
building envelope, heating, ventilation and air condi-
tioning (HVAC) systems and controls are integrated in a
single model. The building envelope’s thermal response
typically has relatively slow dynamics, and heat transfer
can be modelled using mostly linear equations. Building
HVAC systems however contain a lot of non-linearities,
performance curves and performance tables and typi-
cally have faster dynamics. Building control contains
less dynamic components but contains a lot of discrete
variables. Simulation of these types of systems can
become very time consuming, limiting the use of these
models.

Current literature does not provide a lot of insight into
what determines computational speed and what Model-
ica users and library developers can do to speed up mod-
els. Chapter 14 of (Tiller, 2001) provides some hints on
ways to improve computational performance such as us-
ing equations instead of algorithms, avoiding events, pro-

viding Jacobians of functions, selecting good solvers and
tolerances and eliminating intermediate variables. The
Dymola manual, section 5.7, suggests to limit overhead
for writing results and to avoid chattering, and to use op-
tions such as inline integration and parallelization (Das-
sault Systèmes, 2014).

While the provided tips can be valuable, they are still
high-level and often do not provide a lot of insight and
consequently can be difficult to apply in practice. Also, a
lot of potential for code optimization remains untouched.
This paper provides insight in approaches to increase
computational performance of models, specifically tar-
geted at Modelica users and Modelica library developers.

Related research focuses on creating efficient solvers
such as Quantized State System (QSS) solvers, using fast
Jacobian evaluation techniques and using efficient paral-
lelization strategies. These methods can be useful and
complementary, but are outside of the scope of this work.

Firstly, some technical background about Modelica
is given to allow easier interpretation of the discus-
sion. Secondly, relatively small examples are used to
demonstrate how Modelica code and models can be im-
proved in Dymola and OpenModelica. These examples
are based on the IEA-EBC Annex 60 Modelica library
(Wetter et al., 2015) and are available online. Finally,
the code improvements are applied to a large building
model, demonstrating the potential of Modelica in con-
junction with the solvers available in Dymola 2015 FD01
for whole building simulations.

2 Technical Background

The goal of this section is to provide the technical
background required for understanding the analysis per-
formed in this paper.

2.1 Governing Equations

A typical Modelica model can be mathematically ex-
pressed as an implicit system of Ordinary Differential



Equations (ODE) of the form

F(t, ẋ,x,u) = 0, (1)

with initial conditions x(0) = x0, where F : [0, 1]×Rn×
Rn ×Rm → Rn, for some n,m ∈ N, t is time, x is the
vector of state variables and u are inputs. For simplicity
we omit discrete variables in this discussion. Often the
equations can be manipulated analytically such that this
system of equations can be expressed as an explicit ODE
of the form

ẋ = F̃(t,x,u). (2)

For example, if a heat capacitor with capacitance C is
coupled to a fixed temperature boundary condition u
through a thermal resistor R, then (2) becomes

ẋ =
(u− x)

RC
. (3)

However, if the system of ODE is coupled to algebraic
equations, as is common in building simulation, such
a formulation is often not possible. In this case, the
problem is defined by a system of Differential Algebraic
Equations (DAE) of the form

ẋ = f (t,x,y,u), (4)

0 = g(t,x,y,u), (5)

with initial conditions x(0) = x0, where y ∈Rp, for some
p∈N, are algebraic variables. Under certain smoothness
assumptions and by use of the Implicit Function Theo-
rem, one can show existence of a unique solution to (4)
and (5) (Polak, 1997; Coddington and Levinson, 1955).
This DAE can be solved by first solving (5) for y and
then using y to compute ẋ. For example, consider a per-
fectly mixed volume with thermal capacity C and a pump
that provides a constant pressure head ∆p = u1. Suppose
that the pump provides water to the mixing volume with
temperature u2 and that the water mass flow rate ṁ = y is
defined by a simplified pressure drop equation describing
a pipe as ṁ = k

√
∆p or, equivalently, y = k

√
u1. Equa-

tions (4) and (5) are then

ẋ =
(u2 − x) · y · cp

C
, (6)

0 = y− k
√

u1, (7)

where cp is the specific heat capacity of water and k is a
constant.

2.2 Solution of Algebraic System

At time t, equation (5) needs to be solved for the alge-
braic variables y. Note that g(·, ·, ·, ·) consists of p equa-
tions 0 = gi(·, ·, ·, ·). Ideally, these can be reformulated
using computer algebra and block-lower triangulariza-
tion such that y can be explicitly computed.

However, such a reformulation is not always possi-
ble. In our example, the solution is still relatively easy
since ṁ can be calculated directly from ∆p, which is a
known input. ∆p may however be a function of an alge-
braic variable ṁ, for instance if a proportional controller
is tracking a set-point for the mass flow rate. In this case
an algebraic loop is created, with two equations needing
to be solved simultaneously:

0 = ṁ− k
√

d p, (8)

0 = kp · (ṁ− ṁset)−d p, (9)

where kp is the proportional gain of the P controller. Note
that non-linear algebraic loops are typically more expen-
sive to solve than linear systems of equations. Dymola
will try to manipulate algebraic loops to limit the amount
of work required for solving them. Information about the
sizes of these (non-)linear systems before and after ma-
nipulation can be found in Dymola in the Translation tab
under ‘Statistics’.

2.3 Time Integration

For simplicity, we explain the consequences of selecting
explicit versus implicit time integration algorithms based
on the Euler integration algorithm. Let the index i de-
note the current time step and consider a fixed step-size
Euler integration method. The explicit Euler integration
method computes

xi+1 = xi +∆t ẋi = xi +∆t f (ti,xi,yi,ui), (10)

whereas the implicit Euler integration algorithm com-
putes

xi+1 = xi +∆t ẋi+1 = xi +∆t f (ti+1,xi+1,yi+1,ui+1).
(11)

Hence, for the implicit Euler algorithm, if f (·, ·, ·, ·) can-
not be solved symbolically for xi+1, an iterative solu-
tion is required to obtain xi+1. This system of equa-
tions is large if there are many state variables. Solv-
ing it typically involves the calculation of the Jacobian
and requires multiple iterations before convergence is
achieved. This may lead to more work per time step, but
it also allows large time steps being taken. Also, implicit
integrators are better suited to solve stiff ODEs.

The Radau IIa integration is an implicit Runge-Kutta
method. This method is a single-step method, mean-
ing that the solution at the current time step is only af-
fected by information from the previous time step. In-
tegrators such as DASSL (Petzold, 1982) and Lsodar
(Petzold, 1983; Hindmarsh, 1983) are multi-step meth-
ods (Dassault Systèmes, 2014). Multi-step methods use
more than one previous value of the integrator’s solution
to approximate the new solution. For a more detailed
discussion on integrators we refer to Cellier and Kofman
(2006) and Hairer and Wanner (2002).



2.4 Simulation Procedure

The simulation of a Modelica model typically proceeds
as follows. First, the state variables are initialized based
on the initial equations and start values. Then continu-
ous time integration starts and results are saved at inter-
mediate time intervals. At certain points in time, time
or state events may occur, which need to be handled
by the integrator. The equations f (·, ·, ·, ·) and g(·, ·, ·, ·)
that are solved can be found in the Dymola output file
dsmodel.mof in the working directory. Output of this
file can be enabled in the Translation tab. Note that no
distinction between equations of f (·, ·, ·, ·) and g(·, ·, ·, ·)
is made in this file. The file may contain different sec-
tions that determine when the contained code is exe-
cuted, such as the Initial section, Output section, Dynam-
ics section, Accepted section and Conditionally accepted
section. A description of these sections can be found
in Dassault Systèmes (2014). Using dsmodel.mof and
also the C-code in dsmodel.c can be important for de-
bugging model stability and performance.

3 Analysis of Computational Over-

head

This section builds upon the basic simulation pro-
cedure detailed above to provide further insight
into reduction in computing time using illustrative
examples. All numbered examples are available
at https://github.com/iea-annex60/

modelica-annex60, commit e9e247d, in the
Modelica package Fluid.Examples.Performance.
Presented results are based on Dymola 2015 FD01
and OpenModelica 1.9.3+dev (r25881) installed on
Ubuntu 14.04 64 bit running on a virtual machine (Paral-
lels 9.0.24251) on OS X Yosemite. Since the authors are
most familiar with Dymola, all analyses are performed
using Dymola, unless stated otherwise. A selection of
results have been verified using OpenModelica to test
their generality. Models that could not be compiled by
OpenModelica were not verified.

The CPU time required for performing a simulation
can be approximated by

t = O
(

tinit +n f g · t f g +nint · tint +ndata · tdata

)

, (12)

where t are the computation times of different steps,
n are the number of times these steps are evaluated,
and tinit is the time required to solve the initialization
problem. The indices f g, int, data refer, respectively, to
the evaluation of functions f (·, ·, ·, ·) and g(·, ·, ·, ·), the
overhead for the integrator and the data storage.

The total computational overhead can be reduced
by addressing any of these components. Knowing
their values provides an important hint for where
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Figure 1. Example 1 illustration

computing time can be reduced. These values can be
estimated from the Dymola simulation output. Setting
Advanced.GenerateBlockTimers = true in Dy-
mola generates the required output. The parameter n f g

in (12) equals the last column of the block timers. The
value of t f g equals the sum of column ‘Mean’ of rows
‘OutputSection’ and ‘DynamicsSection’. Row ‘Outside
of model’ contains the overhead of the integrator, and
possibly other overhead as well. nint equals the ‘Number
of (succesful) steps’. ndata is determined by the settings
in the ‘General’ and ‘Output’ tabs of the simulation
settings.

Decreasing any of these factors will result in a lower
simulation time. However it is not always clear how this
should be achieved. A measure for decreasing one fac-
tor may also cause an increase in another. The following
sections provide more insight into how to influence these
different factors. Firstly the overhead for each function
evaluation t f g is discussed. Secondly the number of eval-
uations n f g is discussed. Whenever possible, example
models are provided based on the Annex 60 library. Fi-
nally a methodology is proposed for increasing the sim-
ulation speed of large building models.

3.1 Overhead per Evaluation

Evaluation of f (·, ·, ·, ·) and g(·, ·, ·, ·) involves the evalua-
tion of sequential code, algorithms, linear and non-linear
algebraic loops, etc. We discuss how the overhead for
this code can be reduced.

3.1.1 Algebraic Loops

When multiple equations are interdependent, an alge-
braic loop is formed. Depending on the type of equa-
tions the algebraic loop can be linear or non-linear. Solv-
ing non-linear algebraic loops requires iterative solutions
such as encountered in a Newton-Raphson algorithm and
is therefore more expensive. The user should therefore
try to simplify or remove these systems where possible.
We present some examples that demonstrate how this can
be approached.



Algebraic Loops Iterating on Enthalpy Consider
Example 1 shown in Figure 1. The presented hydraulic
system contains a heater, a three-way valve and a pump
setting the mass flow rate. The pump is connected to
nRes.k parallel pressure drop components res. The only
two states are the temperatures of the heater and the
pump with a time constant of 10 and 1 seconds, re-
spectively. A pulsed signal sets the mass flow rate of
the pump and the outlet temperature of the heater. The
valve opening is set to 50%. The results are generated
for nRes.k = 20 unless stated otherwise.

For the given configuration Dymola generates the
following algebraic loops:

Sizes nonlinear systems of equations {6, 21, 46}
Sizes after manipulation {1, 19, 22}

Based on the C-code generated by OpenModelica, the
following algebraic loops are generated:

Sizes nonlinear systems of equations {7, 41, 47}
Sizes after manipulation {1, 20, 23}

In Dymola, these algebraic loops can be analysed us-
ing the dsmodel.mof file. The first system solves for
the mass flow rate in the left part of the fluid loop. The
second system solves for the mass flow rate in the right
part of the fluid loop. The third system solves for the en-
thalpies of the components in the right part of the fluid
loop.

Dymola’s BlockTimers generate the following output
for the system dynamics:

Name of block, Block, CPU[s],

DynamicsSection: 14, 0.200, ...

Dynamics 2 eq: 15, 0.000, ...

Dynamics code: 16, 0.000, ...

Nonlin sys(1): 17, 0.007, ...

Dynamics code: 18, 0.000, ...

Dynamics 20 eq: 19, 0.066, ...

Dynamics code: 20, 0.002, ...

Nonlin sys(22): 21, 0.122, ...

Dynamics code: 22, 0.001, ...

Blocks 17, 19 and 21 clearly dominate the computa-
tional cost of this example. The Dymola file dsmodel.c
shows that these block numbers correspond to the three
non-linear systems. We explain how these systems can
be simplified or removed.

The third system is created because there are no
enthalpy states in the right circuit except in the pump. In
general, the fluid can flow in both directions. Therefore
the inlet and outlet enthalpies of all res components can
be a function of all other res components, depending on
the flow direction. This causes an algebraic loop since
all enthalpy values depend on each other.
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Figure 2. Example generating linear system of 2 equations

A common approach for decoupling algebraic loops
is adding additional states (Zimmer, 2013). However,
this can introduce fast dynamics, necessitating short time
steps during parts of the simulation. The values of the
state variables are solved by the integration algorithm,
and hence they reduce the size of the algebraic loops. A
simple example is shown in Figure 2 where a system of
two linear equations is generated when the heat capacitor
is unconnected. This system is decoupled when a heat
capacitor is added, since the temperatures at the ports
connecting the two conductances are then equal to the
state variable of this heat capacitor and need no longer
be obtained by solving an algebraic loop.

The enthalpy calculation of Example 1 can be
simplified in a similar way by adding nRes.k mixing
volumes at the location of the blue dot in Figure 1,
introducing a state in the flow path with a time constant
for the enthalpy of 10 s. The state values for the
enthalpy cause the system to become decoupled. The
system size is now reduced from 46/47 to 4/7 before
the manipulation, and from 22/23 to 1/3 after the
manipulation for Dymola/OpenModelica, regardless
of the value of nRes.k. Note that adding states also
changes the simulation results.

In this example, a second approach is possible. We
know that the fluid will always flow from the pump into
the resistance. Therefore the inflow enthalpy of the resis-
tances is always equal to the enthalpy leaving the pump.
This knowledge can be passed on to the model by setting
allowFlowReversal=false in the components where
no flow reversal occurs. This causes the min and max at-
tributes of the m_flow variable of the fluid ports to be
set to zero. Dymola utilizes this and simplifies equations
such as
H_out = semiLinear(port_a.m_flow,

inStream(port_a.h_outflow),
port_a.h_outflow)

into
H_out = port_a.m_flow * inStream(port_a.h_outflow)

or
H_out = port_a.m_flow * port_a.h_outflow .

It can conduct this simplification because the solver can
now take into account that the mass flow rate will never
become negative (or positive). Due to the simplified
structure of the problem, the solver is able to sort the
enthalpy equations in such a way that no algebraic loop
is formed: the solver can evaluate the equations se-
quentially, following the fluid downstream starting from



Succesful Jacobian Function Continuous Mean time Total time
steps evaluations evaluations n f g time states dynamics sec. [µs] dynamics sec. [s]

N: Initial model 55 21 647 2 310 0.200
N: Enthalpy state 54 20 1448 22 103 0.150
N: No flow reversal 55 21 647 2 109 0.071
A: Enthalpy state 54 20 547 22 137 0.075
A: No flow reversal 55 20 557 2 116 0.065

Table 1. Solver output for 3 configurations of Example 1 (Figure 1), with nRes.k = 20 and analytic (A) or numeric (N) Jacobian

(a) numeric Jacobian (b) analytic Jacobian

Figure 3. Simulation time for three variants of Example 1

known values of state variables. This causes the equa-
tions to be solved explicitly. OpenModelica does not
make this simplification and consequently the algebraic
loop size remains unchanged.

A different approach can be taken to break algebraic
loops without relying on the solver to make simplifica-
tions. Many fluid components contain equations such as
port_a.h_outflow = inStream(port_b.h_outflow);
port_b.h_outflow = inStream(port_a.h_outflow);

which may be simplified into
port_a.h_outflow = if allowFlowReversal

then inStream(port_b.h_outflow)
else Medium.h_default;

port_b.h_outflow = inStream(port_a.h_outflow);

because the value of port_a.h_outflow should
never be required for calculations upstream of port_a.
Therefore it does not matter what its value is. Choosing
a fixed value has the advantage that it allows breaking
algebraic loops. Note that when the flow does reverse,
the model equations will be wrong, which may cause
unstable dynamics.

Figure 3a shows the influence of these two measures
on the simulation time. Adding enthalpy states only re-
duced the computing time for nRes.k>20. However,
setting allowFlowReversal=false led to faster sim-
ulations. Note that the speed increase for the first case
depends on the time constants of the new states. Larger
time constants in general lead to faster simulations, but
may introduce non-physical dynamics.

The first three rows of Table 1 allow analysing the re-
sults in further detail. Both measures allow reducing the
computational work for each evaluation of f and g in
the dynamics section from 310 µs to ∼ 106 µs.
The overall speed when using allowFlowReversal=

false is however better due to the lower number of

function evaluations that is required: 647 instead of
1448. The increased number of function evaluations is
caused by the increased number of states in the model. It
turns out that the higher number of state variables leads
to significantly more function evaluations, probably be-
cause by default, Dymola computes a numerical approx-
imation to the Jacobian based on numeric differentiation.

Due to the performance penalty for approximating
the Jacobian, the simulations are repeated using an an-
alytic Jacobian, which can be done in Dymola by setting
Advanced.GenerateAnalyticJacobian=true. In
OpenModelica, an option for this exists in the simula-
tion setup. Results are shown in Figure 3b and in Ta-
ble 1. The penalty for adding new states is almost com-
pletely removed when using an analytic Jacobian. Some-
how the average execution time for the dynamics sec-
tion increased slightly, even though the equations did not
change. The reason for this is unclear. The results indi-
cate that the analytic Jacobians should be used whenever
possible, especially for models with a large amount of
states.

From this analysis we conclude that the user
should be cautious when adding states for decou-
pling algebraic loops. If they are added, setting
Advanced.GenerateAnalyticJacobian=true may
reduce computing time. An alternative approach is to use
physical insight to simplify the equations where possi-
ble, in a way similar to setting allowFlowReversal=

false. Also, it may be beneficial to remove the
states that are added by default in three-way valves and
other components containing mixing volumes. This can
be done by setting energyDynamics=massDynamics=
SteadyState. Most likely this change will create larger
systems, but often these can be simplified using the ap-
proach explained above.



Figure 4. Example 1 illustrating computation time for solving
mass flow rates through parallel resistances

Algebraic Loops Iterating on Mass Flow Rates
and Pressures When setting allowFlowReversal=

false, the remaining computation time is almost en-
tirely used for computing the mass flow rates and pres-
sures. We now focus on reducing this computing time
further.

The pressure drop equations in this non-linear system
can be written either as ṁ= f (∆p) or as ∆p= f−1(ṁ) for
some function f (·) or its inverse f−1(·). The value of the
parameter res.from_dp will pick one or the other for-
mulation. If from_dp=false, then the system has size
21/22 before and 19/20 after manipulation, otherwise it
has sizes 21/22 and 1/1 in Dymola/OpenModelica. This
can be explained as follows. When from_dp=true, the
mass flow rate is calculated as a function of the pressure
difference ∆p. Therefore ∆p is chosen as an iteration
variable. The symbolic processing algorithm detects that
all resistances are in parallel and hence must have the
same pressure drop. Therefore, they can all use the same
iteration variable, leading to a much smaller system. This
leads to a significant speed improvement, as shown in
Figure 4.

Example 1 uses a pump which sets the mass flow rate
to an input value and which is connected to nRes.k par-
allel pressure drop components. The solver can exploit
the system structure by selecting the common pressure
drop as an iteration variable. The “dual” problem (Ex-
ample 2) could be to consider a pump which takes the
pressure drop as an input value and which is connected to
nRes.k pressure drop components connected in series.
In this case, it is advantageous to set from_dp=false
since Dymola and OpenModelica then select the com-
mon mass flow rate as the iteration variable, as illustrated
in Figure 5.

These were fairly simple problems. In practice, com-
binations of parallel and series connections are used,
making the choice of the parameter from_dp difficult.
However, it is often possible to aggregate multiple pres-
sure drop components that are connected in series. If
all components have the same nominal mass flow rate
m_flow_nominal, then the nominal pressure drops dp_
nominal can be added into one component, reducing
the series branch into a single pressure drop equation.
Otherwise dp_nominal needs to be rescaled. This ap-

Figure 5. Example 2 illustrating computation time for solving
mass flow rates through resistances in series
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Figure 7. Example 4 illustration

proach can also be used when a valve is connected in
series to the pressure drop components. The valve pa-
rameter dpFixed_nominal should then be used.

Figure 6a shows Example 3 where nRes.k paral-
lel instances of a series connection of two resistances
are simulated. The simulation time for this example is
shown in Figure 6b. The parameter mergeDp indicates
whether the two resistances are merged into one. Merg-
ing the two resistances gives much better results, espe-
cially when combined with from_dp=true. However
when the two resistances are not merged, it is better to
set from_dp=false.

Model Design for Avoiding Algebraic Loops Devel-
opers should avoid coupling systems of equations that
are only weakly dependent. Consider for instance the
model of a condensing heat exchanger. Such a model
contains equations for the pressure drop, heat flow rate
and water vapour condensation. One should try to avoid
coupling these equations into one algebraic loop.

Example 4 in Figure 7 shows a simple condensing heat
exchanger model. Along the flow path, first air cools
in the heat exchanger hex, then condensate is extracted
from the stream in vol (steady state) and finally the re-
maining mass is sent through a pressure drop component.
Ideally the solver would be able to first compute the mass
flow rate based on the pressure drop characteristic. Using
this mass flow rate, the heat flow rate can be computed
since it only depends on inlet temperatures and mass flow
rates. Finally moisture can be extracted such that the air
stream becomes saturated. In practice this sequential cal-
culation is not possible because removing water vapour
from the air affects its mass flow rate and therefore also
the pressure drop. As a consequence the equations for the
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mass flow rate, heat flow rate and moisture balance are
coupled into a single system of 12/10 non-linear equa-
tions before manipulation in Dymola/OpenModelica.

As a simplification one could argue that the impact of
the water vapour mass flow rate on the pressure drop is
very small and that it could therefore be removed from
the mass conservation equation ∑ ṁ = 0. This physi-
cal approximation decouples the algebraic loop so that
in both simulation tools the equations can be solved se-
quentially.

We conclude from this discussion that the developer
should consider to approximate equations if such
approximations allow decoupling large systems of
equations while maintaining the accuracy required by
the application.

In some cases analytical solutions to nonlinear sys-
tem of equations may exist. Especially linear system
of equations can often be solved analytically. To en-
able this, the solver needs to be able to establish whether
a system is linear. When using a Modelica function

in a system of equations, it is therefore important that
annotation(Inline=true) is used. When using this
annotation, the model developer suggests to the symbolic
processor to substitute the function call with the body
of the Modelica function, thereby allowing the symbolic
processor to detect the linearity. This allows symbolic
manipulation, such that algebraic loops can be simpli-
fied.

Setting in Dymola the option Evaluate=true may
also cause analytical solutions to be found, especially for
linear algebraic loops. However, this leads to parameter
values to be evaluated during translation, and hence they
can no longer be changed without translating the model
again.

These examples illustrate that even using existing
component models can be a challenge. Ideally this level
of complexity is not exposed to the end user. A possi-
ble approach to do this is to construct often used base
circuits that are preconfigured in an efficient way.

3.1.2 Overhead Due to Inefficient Code

In general, every implemented equation will be evalu-
ated. Simulation tools are able to perform certain code
simplifications such as common subexpression evalua-
tion and detection of alias variables, but the level of op-
timization is not exhaustive. Therefore the developer
should be aware of how the solver treats equations. Here
we illustrate some important aspects.

Inlining functions Inlining functions may allow bet-
ter symbolic processing. It can also lower the func-
tion evaluation time, probably because overhead for call-
ing a C-function is avoided. We recommend to set
Inline=true by default for all functions, unless their
body is large.

Model Parameters Consider Example 5 shown in the
code listing below:
model Example5

parameter Boolean efficient = false;
parameter Real[3] a = 1:3;
parameter Real b = sum(a);
Real c;

equation
der(c) = sin(time)*

(if efficient then b else sum(a));
end Example5;

The corresponding code in dsmodel.c is
helpvar[0] = sin(Time);
F_[0] = helpvar[0]*(IF DP_[0] THEN W_[0]

ELSE DP_[1]+DP_[2]+DP_[3]);

adding annotation(Evaluate=true) to the defini-
tion of efficient results in
helpvar[0] = sin(Time);
F_[0] = helpvar[0]*(DP_[0]+DP_[1]+DP_[2]);

This can be further improved by setting efficient=

true

helpvar[0] = sin(Time);
F_[0] = helpvar[0]*W_[1];

The new code contains less operations, even though the
implementation is mathematically identical. Taking this
into account allows implementing more efficient models.



Obsolete Model Variables In some cases it may be
wise to eliminate model variables. Consider for instance
variables a, b and c where b = 2a and c = 2b. If b is
not used in any other equation, then it is better to write
c = 4a and remove b.

It may be important to analyse the effects of such
changes in detail. Consider for instance the model of
a discretised wall. The model consists of a series of tem-
perature states with an adiabatic boundary condition on
one side and a sinusoidal temperature on the other side.
Typically, this will be modelled using thermal capaci-
tances C and thermal resistors R. A Modelica implemen-
tation could be as presented by Example 6.
model Example6
parameter Integer nTem = 500;
parameter Real R = 0.001;
parameter Real C = 1000;
Real[nTem] T;
Real[nTem+1] Q_flow;

equation
Q_flow[1] = ((273.15+sin(time))-T[1])/R;
der(T[1]) = (Q_flow[1]-Q_flow[2])/C;
for i in 2:nTem loop
Q_flow[i] = (T[i-1] - T[i])/R;
der(T[i]) = (Q_flow[i]-Q_flow[i+1])/C;

end for;
Q_flow[nTem+1] = 0;

end Example6;

In this model variables Q_flow are calculated but not
necessarily needed. These variables can be eliminated as
illustrated in Example 7.
model Example7
parameter Integer nTem = 500;
parameter Real R = 0.001;
parameter Real C = 1000;
parameter Real tauInv = 1/(R*C);
Real[nTem] T;

equation
der(T[1]) = ((273.15+sin(time))-2*T[1]+T[2])

*tauInv;
for i in 2:nTem-1 loop
der(T[i]) = (T[i-1]-2*T[i]+T[i+1])*tauInv;

end for;
der(T[nTem]) = (T[nTem-1]-T[nTem])*tauInv;

end Example7;

Comparing Example 7 to Example 6 a variable has been
eliminated but the number of operations within the for

loop remains the same. In particular, there are two ad-
ditions and two divisions in Example 6, and two ad-
ditions and two multiplications in Example 7. How-
ever, Example 7 is ∼ 83% faster in Dymola (2.83 s
→ 0.49 s) and OpenModelica (9.2 s → 1.6 s). It
turns out that this is mostly because a division gener-
ates more overhead than a multiplication, probably be-
cause of guarding against division by zero. This perfor-
mance penalty can be reduced significantly by adding
annotation(Evaluate=true) to parameters R and
C, or by creating a dummy parameter similar to tauInv

and by multiplying with this parameter. This reduces
simulation time to 0.65 s > 0.49 s in Dymola and 2.39 s
> 1.6 s in OpenModelica.1 The reason for the remaining

1These CPU times are based on the total Dynamics section time
in Dymola and the ‘simulation’ timer in the Statistics output of Open-

performance difference is unclear but may be explained
by the extra variables Q_flow, which may generate over-
head.

From this analysis we conclude that there exists unex-
ploited code optimization potential in popular Modelica
tools. Certain variables can be eliminated and dummy
parameters can be introduced to avoid parameter divi-
sions during each time step. Until these issues are re-
solved, users can avoid performance penalties by taking
into account these limitations by reformulating models.

Duplicate Code The developer should avoid making
models that generate duplicate code. A good example is
a window model, which requires the solar irradiance to
be calculated. Since this calculation is influenced by pa-
rameters such as the window orientation and inclination
angle, the developer may choose to include these equa-
tions in the window model. If multiple windows have
the same orientation and inclination, then this means that
the same calculation is repeated multiple times. This
is not necessarily a problem if the overhead is small.
However, in the case of a window model, the compu-
tation involves a lot of trigonometrical calculations and
it would be better to isolate this calculation in a sepa-
rate model. An example implementation of this problem
can be found in the IDEAS library (Baetens et al., 2015).
However, putting the solar irradiation in a separate model
requires the user to keep the radiation computation con-
sistent among multiple models.

An illustration of common subexpression elimination
is given by Example 8.
model Example8

Real a = sin(time+1);
Real b = sin(time+1);

end Example8;

The Dymola C-code evaluates the sine and addition only
once:
W_[0] = sin(Time+1);
W_[1] = W_[0];

This simplification is not made in OpenModelica since it
evaluates the sin(·) function once for a and once for b.

Still, more complicated common subexpressions such
as in IDEAS are not detected by both tools. Therefore,
improving the common subexpression elimination would
allow further performance improvements.

3.2 Number of Evaluations

The previous section focussed on how to reduce the com-
putational overhead for each evaluation of f (·, ·, ·, ·) and
g(·, ·, ·, ·). The current section focusses on how to re-
duce the number of evaluations. Important aspects are
the time constants of the system, the system stability, the
number of events, computing the Jacobian and the inte-
grator choice.

Modelica when performing 100 000 Euler integration steps of Exam-
ple 6 and Example 7.



System Time Constants When a system has fast dy-
namics, then the solver has to track these dynamics with
small step sizes. In general, systems with large time con-
stants have shorter calculation times. It may therefore
be advantageous to make certain dynamics slower, espe-
cially the fastest dynamics in the system. Dymola option
“Which states that dominate error” may be used to iden-
tify these states. Changing the dynamics may however be
non-physical or introduce instability in feedback control
loops. In this case a different option may be to remove
the fast dynamics completely and simulate the system as
a steady state system. Note, however, that this may in-
crease the size of the algebraic system of equations.

The latter approach may be very effective when
considering air flow networks. If air is modelled
as compressible, pressure states are created in in-
stances of MixingVolume, unless massDynamics=

SteadyState. These states however introduce small
time constants if part of a building air flow network. It
may therefore be better to remove them. Again, this may
create larger systems of equations.

System Stability If a feedback control loop is tuned
badly, oscillatory behaviour can occur. A variable time
step integrator may track these oscillations, leading to a
major decrease in simulation speed. Note that it may be
difficult to see these oscillations when the output interval
is set too large.

Number of Events Events require the integration to
stop and restart, typically with a lower order method and
with smaller time steps. In addition, for state events, typ-
ical ODE solvers require an iterative solution to find the
time when the event happens.

Computing the Jacobian Some integrators require the
Jacobian to be calculated. Having more states leads to a
larger Jacobian, as was illustrated in Example 1. Since
by default, Dymola and OpenModelica use numeric dif-
ferentiation to approximate the Jacobian, a lot of finite
differences need to be calculated, each requiring a func-
tion evaluation. Note that in particular models with a
larger number of states benefit more from having an an-
alytic Jacobian, since the number of Jacobian entries
equals the square of the number of states.

Integrator Choice Many integrators use an implicit
integration scheme. This typically requires the compu-
tation of a Jacobian and requires iterations to be per-
formed before reaching convergence. This can lead to
more function evaluations. However, for stiff systems,
implicit integrators are more efficient than explicit inte-
grators.

3.3 Analysis of Large Problems

In the previous sections, computing time was analysed
using small models. In building simulation, models can
however become considerably larger and analysing the
computational speed can be difficult since it depends on
a lot of factors, including the unknown solver implemen-
tation. Still, we predict some trends for the computation
time, based on the size of the model.

Consider a model of a district energy system, includ-
ing building models and an electrical grid. When dou-
bling the size of the district, ideally the computational
time would double as well, such that computational time
scales linearly with problem size. Let us analyse this
further based on Equation 12. Ideally t f g scales linearly
with the problem size. In practice this is not necessar-
ily the case. The electrical grid of the district typically
results in a large non-linear system of equations since
all electrical components have very fast transients and
are therefore modelled as steady state components. Dou-
bling the size of the model therefore also doubles the size
of the algebraic loop. Example 1 has shown that compu-
tational time for algebraic loops does not scale linearly
with size and therefore larger models will become com-
putationally slow. Equations outside algebraic loops can
be solved sequentially. Therefore their computational
time does scale linearly.

Because t f g scales, at best, linearly with size, n f g

should remain constant if we want to obtain overall lin-
ear scaling of the computational time. However, firstly,
generally n f g also grows with problem size, for example
because larger problems have more controllers that may
trigger events. If the amount of buildings doubles, then
the amount of state events may double, which causes a
performance penalty. Secondly, when a numeric Jaco-
bian needs to be computed, then n f g will increase since
the number of states increases linearly with the prob-
lem size. The number of operations for an implicit in-
tegrator typically does not scale linearly either. Solving
dense implicit systems typically requires O(n3) opera-
tions (Hairer and Wanner, 2002). Building model Ja-
cobians are however very sparse. It is not clear how
well this is exploited by Dymola. An integrator such as
Rkfix4 can have an operation count that is linear with
the problem size, unless the fixed time step is changed.
For certain large problems that do not require event han-
dling, it can therefore be advantageous to use these sim-
ple integrators, also because they do not require a Jaco-
bian to be calculated.

3.3.1 Parallelization

Dymola supports parallelization for the cal-
culation of f (·, ·, ·, ·) and g(·, ·, ·, ·) (Dassault
Systèmes, 2014) and analytic Jacobian (see
Advanced.ParallelizeAnalyticJacobian).
However parallelization generates overhead for syn-



Integrator Tolerance CPUtime Dynamics Outside of Function State Time Jacobian Eel

/ step size [s] section [s] model [s] evaluations n f g events events evaluations [error]

Dassl 1 E-6 4261 3538 476 787341 41 8 1235 -4.35 E-6
Dassl 1 E-4 3088 2759 327 546326 36 8 862 3.17 E-3
Radau IIa 1 E-6 4042 2400 1416 453073 37 8 347 1.64 E-3
Lsodar 1 E-6 3450 2666 547 679486 44 8 1047 -4.35 E-6
Lsodar 1 E-4 2073 1435 515 347018 41 8 537 -2.25 E-5
Lsodar 1 E-2 1655 1152 406 256458 38 8 399 4.51 E-3
Dopri45 1 E-6 194 159 17.0 41166 39 8 0 4.68 E-4
Dopri45 1 E-8 199 162 18.3 42017 39 8 0 1.96 E-6
Rkfix4 20 s 15.4 11.3 1.1 2717 39 8 NA 1.34 E-2
Rkfix4 5 s 50.6 42.9 1.5 10233 43 8 NA 2.52 E-3
Rkfix4 1 s 224 202 3.2 50211 38 8 NA 1.28 E-3
Euler 5 s 24.0 18.2 1.7 4271 50 8 NA -2.00 E-3
Euler 0.25 s 446 389 12.8 80233 41 8 NA -4.22 E-4

Table 2. Example building model statistics for various integrators and tolerance options. Results are the solution statistics (when
available, else ‘NA’) and the relative error of Eel

chronization and communication. The authors have not
been able to gain notable improvements in simulation
speed in building applications by using parallelization in
Dymola 2015 FD01.

3.3.2 Example of Large Building Model

The approach explained in this paper was applied to a
building model based on a real case (Solarwind, Lux-
emburg), containing 32 IDEAS (Baetens et al., 2015)
building zones with individual concrete core activation
circuits (Baetens et al., 2015) and Variable Air Vol-
ume (VAV) boxes including heating battery, bore field
model (Picard and Helsen, 2014), solar collector (Wet-
ter et al., 2014), four thermal storage devices (Wetter
et al., 2014), one pellet boiler, four heat pumps (Baetens
et al., 2015), two adiabatic/active heat recuperating air
handling units, pumps (Wetter, 2013) and valves (Wet-
ter et al., 2015) and a control strategy based mostly on
hysteresis controllers, PID controllers, heating/cooling
curves and boolean algebra. The model has 2468 con-
tinuous time states and 28342 time-varying variables.

Special care was taken to make sure that the small-
est time constants are in the order of 30 s. Therefore air
ducts are steady state, pumps and valves have no open-
ing delay or filter and pipes were lumped into only a few
states per circuit branch, thereby allowing to increase
the time constant. Temperature sensors are assumed to
have a time constant in the order of one minute. Using
dynamic sensors avoids coupling the thermal equations
with the control equations into a single algebraic loop.

This model was simulated for tend − tstart = 10 000 s
using various implicit integrators, with numeric Jaco-
bians and explicit integrator Dopri45. The total amount
of function evaluations exceeds 40 000 in each case. This
is on average one function evaluation every 0.25 s, while
the smallest time constant of the system is ∼ 30 s. There-
fore it makes sense to use an explicit fixed step integra-
tor. Table 2 shows the results, including fixed step ex-

Figure 8. Relative errors of Eel for various solvers and toler-
ances or fixed time step sizes

plicit integrators Rkfix4 and Euler. It contains statis-
tics and the error on one simulation result that is of inter-
est, namely the integrated electrical power consumption
of the building Eel . The relative error was calculated us-
ing Dassl with a tolerance of 10−8, which produced a
result of 4.591880 kWh.

From these results and Figure 8 it is clear that implicit
integrators are very slow compared to explicit integrators
for this problem. Fixed step methods are especially fast
when high accuracy is not required, allowing a simula-
tion speed 500 times faster than real time, which is more
than 100 times faster than Dassl. For higher accuracies,
Dopri45 can be used. Lsodar is the fastest implicit inte-
grator that was tested. Note that the simulation can easily
be made faster by using a larger step size, at the cost of
accuracy. Also, using larger step sizes will eventually
lead to numerical instabilities. The user may therefore
want to adjust the dynamics of the system, or set certain
dynamics to steady state. It is thus important that models
expose these parameters and allow easy configuration.

The achieved speed increase is considerable. How-
ever, this still requires about 18 hours for a one-year sim-
ulation. As this is longer than typical building energy
simulations, we think that further research is desirable to
reduce the simulation time further.



4 Conclusion

We conclude that the analysis of algebraic loops, the
optimization of Modelica code and the application of
physical insight can lead to significant simulation time
improvements. Analysis of the model time constants,
avoiding system instabilities, using analytic Jacobians
and proper integrator choice can also be important.
These modifications were applied to a large building
model where removal of all ‘fast’ dynamics allowed ex-
plicit integrators to perform well. Fixed step integra-
tors can also be used if simulation results do not need
to be very accurate. Euler integration performs very
well in terms of computation time, allowing detailed of-
fice building simulations at a speed 500 times faster than
real time.

Further work can focus on analysing and changing the
problem structure in such a way that parallelization can
be used efficiently. It should also be investigated up to
which extent models can be made faster by changing the
model dynamics, which allows larger time steps to be
taken, without introducing too large errors. The pro-
posed changes demonstrate that further symbolic pro-
cessing in Dymola and OpenModelica is possible. We
also propose to use analytic Jacobians by default for all
Jacobian elements where an analytic Jacobian can be
computed.
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