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ABSTRACT
This demo provides a preview of a pre-release version of
CyPhySim, an open-source simulator for cyber-physical
systems. This simulator supports discrete-event mod-
els, quantized-state simulation of continuous dynamics,
the Functional Mockup Interface (FMI), classical (Runge-
Kutta) simulation of continuous dynamics, modal models
(hybrid systems), discrete-time (periodic) systems, and al-
gebraic loop solvers. CyPhySim provides a graphical editor,
an XML file syntax for models, and an open API for pro-
grammatic construction of models.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: General

1. INTRODUCTION
The heterogeneity of cyber-physical systems presents con-

siderable challenges to software simulation techniques. Cy-
PhySim is a new open-source software simulator (BSD li-
cense) that supports the most promising combination of
technologies. The core of the system is a discrete-event sim-
ulation engine from the open source Ptolemy II system [17].
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2. MODEL OF TIME
For models that mix discrete and continuous behaviors, it

is well established that the model of time that is used must
support sequences of causally-related instantaneous events
[9, 2]. CyPhySim uses superdense time [13, 11].

3. DISCRETE-EVENT SIMULATION
In the style of discrete-event (DE) modeling realized in

CyPhySim, a model is a network of actors with input and
output ports. The actors send each other time-stamped
events, and the simulation processes these events in time
stamp order. This style of DE is widely used for simulation
of large, complex systems [3, 20, 5]. CyPhySim builds on
the particular implementation in Ptolemy II, which has a
sound, deterministic semantics [8, 14].

4. QUANTIZED-STATE SYSTEMS
A relatively recent development in numerical simulation of

ordinary differential equations is the emergence of so-called
quantized-state systems (QSS) [19, 7, 4, 6, 1]. In a classi-
cal ODE simulator, a step-size control algorithm determines
sample times, and a sample value is computed at those times
for all states in the model. In a QSS simulator, each state
has its own sample times, and samples are processed using a
DE simulation engine in time-stamp order. The sample time
of each state is determined by quantizing the value of each
state and producing samples only when the value changes
by a pre-determined tolerance, called the quantum. Higher-
order variants incorporate knowledge of higher-order deriva-
tives of a state to predict trajectories and produce samples
only when these higher order prediction differs by more than
the quantum [15]. For some systems, QSS yields efficient
simulation by producing samples only when predicted state
trajectories exceed the quantum. Moreover, state events can
be scheduled using an explicit equation, avoiding iteration
in time. Unlike classical ODE solvers, QSS solvers never
require backtracking, greatly simplifying simulation.

5. CLASSICAL ODE SOLVERS
Some continuous systems are still better simulated using

classical ODE solvers, so CyPhySim makes available the
Continuous domain of Ptolemy II, which provides Runge-
Kutta solvers. A model can have hierarchical mixtures of
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such classical solvers, QSS models, and DE models.

6. FMI
The Functional Mockup Interface (FMI) is a standard

for model exchange and co-simulation of dynamical models
[16]. CyPhySim supports importing FMI components de-
signed for model exchange, and provides a QSS simulation
engine for numerical integration. This strategy also enables
co-simulation of DE models with FMI, a combination also
described in [18].

7. MODAL MODELS
CyPhySim imports the modal models of Ptolemy II [10],

which provide hierarchical combinations of state machines
and continuous and DE subsystems. This combination sup-
ports hybrid system modeling with rigorous deterministic
semantics [11].

8. DISCRETE-TIME SYSTEMS
Many CPS applications include sampled-data subsystems

with regular, periodic sample rates. CyPhySim leverages the
synchronous-reactive (SR) domain of Ptolemy II to provide
such models, which permits specification of a sample rate
and enables structured multi rate systems. Such SR mod-
els interoperate well with DE, QSS, and Continuous models
[12]. CyPhySim incorporates a new innovation that enables
arbitrary hierarchical nesting of these models. Sampled data
systems can contain continuous or DE subsystems and vice
versa.

9. ALGEBRAIC LOOP SOLVERS
Finally, CyPhySim includes a mechanism for specifying

algebraic loop solvers, including a simple successive substi-
tution mechanism, a Newton-Raphson solver, and a homo-
topy method. The model builder is given explicit control
over the solution method and initial guesses in order to en-
sure deterministic results.
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