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Abstract

This paper proposes a solution for creating a model-
based state and parameter estimator for dynamic sys-
tems described using the FMI standard. This work
uses a nonlinear state estimation technique called un-
scented Kalman filter (UKF), together with a smoother
that improves the reliability of the estimation. The al-
gorithm can be used to support advanced control tech-
niques (e.g., adaptive control) or for fault detection and
diagnostics (FDD). This work extends the capabilities
of any modeling framework compliant with the FMI
standard version 1.0.
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1 Introduction

In many applications, after the system has been de-
signed, controls and/or fault detection and diagnostics
(FDD) algorithms are developed and deployed. These
techniques should be able to leverage the models de-
veloped during the earlier design stages, thereby in-
creasing the productivity of the overall product devel-
opment. Advanced control (such as adaptive control
or model predictive control) and FDD techniques re-
quire an enhanced knowledge of the system state. For
example, the flight controller of an airplane should try
to estimate the real velocity and position of the air-
craft while compensating for measurements errors and
sensor noises. When dealing with dynamic system,
having an enhanced knowledge about the system state
means estimating its state variables with associated er-
ror bounds.

This paper proposes a solution for creating a model-
based state estimator for dynamic systems described
using the FMI standard. This work extends the ca-
pabilities of any modeling framework compliant with
the FMI standard version 1.0. The FMI is a stan-

dard that allows to embed a simulation model within
a unified interface in order to couple simulation mod-
els developed using different simulation programs. Al-
though the FMI standard has been created mainly for
co-simulation, we leverage this standard for provid-
ing an algorithm that is compatible with a large num-
ber of simulation and modeling platforms, including
Modelica-based ones.

There are several characteristics intrinsic of any
model-based state estimation technique. These char-
acteristics are related to the model properties (e.g., the
Kalman filter is applicable just to linear models), the
assumptions introduced when describing the probabil-
ity distribution of the state variables (e.g., assuming
they are Gaussian) and the computational performance
of the underlying algorithm (e.g., the number of simu-
lations or computations to be done in order to provide
an estimation).

The state estimation technique used in this work is
the unscented Kalman filter (UKF) [1, 2]. The UKF is
able to deal with nonlinear systems and it just requires
to perform function evaluations of the model in order
to compute the evolution of its state variables and the
value of its outputs. The UKF has less requirements
about the knowledge of the model with respect to other
nonlinear state estimation techniques. For example the
extended Kalman filter needs to linearize the model
[3]. The computational performances of the UKF are
modest with respect to other Monte Carlo based tech-
niques (like particle filters [4]), enabling its use for
real-time applications.

The proposed work leverages the UKF technique
and provides a state and parameter estimation algo-
rithm for a dynamic system (e.g., modeled with Mod-
elica or Matlab) embedded according to the FMI stan-
dard as a Functional Mockup Unit (FMU). The model,
once exported as FMU can be used to set up a state
and parameter estimator to

• calibrate the model during the commissioning
phase in order to check if it performs as expected,

• compute a probabilistic estimation of unknown
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variables of the system (e.g., observable but not
measured) for control or FDD.

The paper is structured as follows. Section 2 starts
with a brief introduction about the state estimation
and it continues with a description of the unscented
Kalman filter and smoothing algorithm, including the
modifications required to extend the state estimation
procedure to the parameters. Subsection 2.5 gives
more information about the implementation details,
while subsection 2.6 contains a code snippet that
shows how to use the proposed algorithm. Section 3
contains an example that shows how the proposed al-
gorithm can be used to identify faulty operation in a
valve in the presence of measurement errors.

2 Method

The FMI-based state and parameter estimation algo-
rithm consists of two components: (i) a filter for the
state and parameter estimation, (ii) a smoother that im-
proves the quality of the estimation when the measure-
ments are noisy and sometimes erroneous. The pro-
posed algorithm has been written in Python and uses
PyFMI [5]. Some of the basic methods and classes
provided by PyFMI have been extended to fit our pur-
poses. For example, we modified how FMUs are exe-
cuted in parallel.

2.1 State Estimation

Kalman Filter (KF) [3] are often used to estimate state
variables. However, as they are only applicable for
linear systems, they are not suited for our applications.
For systems that are described by nonlinear differential
equations, the state estimation problem can be solved
using an Extended Kalman Filter (EKF) [3]. The EKF
linearizes around the current state estimate the origi-
nal nonlinear model. However, in some cases, this lin-
earization introduces large errors in the estimated sec-
ond order statistics of the estimated state vector proba-
bility distribution [6]. Another approach is to simulate
sample paths that generate random points in the neigh-
borhood of the old posterior probability, for example
by using Monte Carlo sampling, and adopting particle
filters for the state estimation [4]. These techniques
are robust with respect to model nonlinearities, but
they are computationally expensive. The UKF faces
the problem representing the state as a Gaussian ran-
dom variable, the distribution of which is modeled non
parametrically using a set of points known as sigma
points [1]. Using the sigma points, i.e., by propagating

a suitable number of state realizations through the state
and output equations, the mean and the covariance of
the state can be captured. The favorable properties of
the UKF makes its computational cost far lower than
the Monte Carlo approaches, since a limited and deter-
ministic number of samples are required. Furthermore,
the UKF requirements fit perfectly with the infrastruc-
ture provided by PyFMI since it provides an interface
to the FMU model that allows to set state variables,
parameter and running simulations.

2.2 The Unscented Kalman Filter

The Unscented Kalman Filter is a model based-
techniques that recursively estimates the states (and
with some modifications also parameters) of a nonlin-
ear, dynamic, discrete-time system. This system may
for example represent a building, an HVAC plant or a
chiller. The state and output equations are

x(tk+1) = f (x(tk),u(tk),Θ(t), t)+ q(tk), (1a)

y(tk) = H(x(tk),u(tk),Θ(t), t)+ r(tk), (1b)

with initial conditions x(t0) = x0, where f : ℜn×ℜm×
ℜp ×ℜ → ℜn is nonlinear, x(·) ∈ Rn is the state
vector, u(·) ∈ Rm is the input vector, Θ(·) ∈ Rp is
the parameter vector, q(·) ∈ Rn represents the process
noise (i.e. unmodeled dynamics and other uncertain-
ties), y(·) ∈ Ro is the output vector, H : ℜn×ℜm×
ℜp×ℜ→ℜo is the output measurement function and
r(·) ∈ Ro is the measurement noise.

The UKF is based on the typical prediction-
correction style methods:

1. PREDICTION STEP: predict the state and out-
put at time step tk+1 by using the parameters and
states at tk.

2. CORRECTION STEP: given the measurements
at time tk+1, update the posterior probability, or
uncertainty, of the states prediction using Bayes’
rule.

The original formulation of the UKF imposes some
restrictions on the model because the system needs to
be described by a system of initial-value, explicit dif-
ference equations (1). A second drawback is that the
explicit discrete time system in (1) cannot be used to
simulate stiff systems efficiently. The UKF should be
translated in a form that is able to deal with continuous
time models, possibly including events.

Although physical systems are often described us-
ing continuous time models, sensors routinely report
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time-sampled values of the measured quantity (e.g.
temperatures, pressures, positions, velocities, etc.).
These sampled signals represent the available informa-
tion about the system operation and they are used by
the UKF to compute an estimation for the state vari-
ables.

A more natural formulation of the problem is rep-
resented by the following continuous-discrete time
model

d x(t)
dt

= F(x(t),u(t),Θ(t), t), (2a)

x(t0) = x0, (2b)

y(tk) = H(x(tk),u(tk),Θ(t), tk)+ r(tk), (2c)

where the model is defined in the continuous time do-
main, but the outputs are considered as discrete time
signals sampled at discrete time instants tk. The orig-
inal problem described in equation (1) can be easily
derived as

x(tk+1) = f (x(tk),u(tk),Θ(tk), tk)

= x(tk)+
∫ tk+1

tk
F(x(t),u(t),Θ(t), t)dt (3)

Our implementation uses this continuous-discrete time
formulation and the numerical integration is done us-
ing PyFMI that works with a model embedded as an
FMU. Despite not shown in (2) and (3) the model may
contain events that are handled by the numerical solver
provided with the PyFMI package.

The UKF is based on the the Unscented Transfor-
mation [1] (UT), which uses a fixed (and typically low)
number of deterministically chosen sigma-points1 to
express the mean and covariance of the original distri-
bution of the state variables x(·), exactly, under the as-
sumption that the uncertainties and noise are Gaussian
[1]. These sigma-points are then propagated simulat-
ing the nonlinear model (2) and the mean and covari-
ance of the state variables are estimated from them.
This is significantly different from Monte Carlo ap-
proaches because the UKF chooses the points in a de-
terministic way. One of the most important proper-
ties of this approach is that if the prior estimation is
distributed as a Gaussian random variable, the sigma
points are the minimum amount of information needed
to compute the exact mean and covariance of the pos-
terior after the propagation through the nonlinear state
function [6].

1The sigma-points can be seen as the counterpart of the parti-
cles used in Monte Carlo methods.

Figure 1 illustrates the filtering process which we
will now explain. At time tk, a measurement of the
outputs y(tk), the inputs and the previous estimation
of the state are available. Simulations are performed
starting from the prior knowledge of the state x̂(tk−1),
using the input u(tk−1). Once the results of the simula-
tions x̂sim(tk) and ŷsim(tk) are available, they are com-
pared against the available measurements in order to
correct the state estimation. The corrected value (i.e.
filtered) becomes the actual estimation. Because of
its speed, the estimation can provide near-real-time
updates, since the time spent for simulating the sys-
tem and correcting the estimation is typically shorter
than the sampling time step, in particular for building
or HVAC applications, where computations take frac-
tions of second and sampling intervals are seconds or
minutes.

The Algorithm 1 summarize the steps performed by
the UKF. The interested reader can find more informa-
tion and details of the actual implementation in [7].

2.3 Smoothing to Improve UKF Estimation

In this subsection, we discuss an additional re-
finement procedure to the UKF. The distribution
P(x(tk)|y(t1), . . . ,y(tk)) is the probability to ob-
serve the state vector x(tk) at time tk given all
the measurements collected. By using more data
P(x(tk)|y(t1), . . . ,y(tk), . . .y(tk+N)), the posterior dis-
tribution can be improved through recursive smooth-
ing. Hence, the basic idea behind the recursive
smoothing process is to incorporate more measure-
ments before providing an estimation of the state. Fig-
ure 2 represents the smoothing process. While the fil-
ter works forwardly on the data available, and recur-
sively provides a state estimation, a smoothing proce-
dure back-propagates the information obtained during
the filtering process, after some amount of data be-
comes available, in order to improved the estimation
previously provided [8].

The smoothing process can be viewed as a delayed,
but improved, estimation of the state variables. The
longer the acceptable delay, the bigger the improve-
ment since more information can be used. For example
if, at a given time, a sensor provides a wrong measure-
ment, the filter may not be aware of this and it may
provide an estimation that does not correspond to the
real value (although the uncertainty bounds will still
be correct). The smoother observes the trend of the es-
timation will reduce this impact of the erroneous data,
thus providing an estimation that is less sensitive to
measurement errors.
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Figure 1: On-line state estimation filtering procedure.

Procedurally, the smoothing algorithm starts from a
user-specified point in the data stream and back up-
dates the previously filtered estimation. Algorithm 2
describes the smoothing procedure.

2.4 Parameter Estimation

The importance of the state estimation has been
stressed, and we described the UKF and Smoother as
solutions to this problem. While state estimation is
particularly important for controls, parameter estima-
tion is important for model calibration and fault detec-
tion and diagnostics. Consider, for example an heat
exchanger. Suppose it is characterized by one heat ex-
change coefficient that influences the heat transfer rate
between the two fluids. During the design of the heat
exchanger it is possible to compute an approximation
of it. However, it is not possible to know its value
exactly. After the heat exchanger is created, identify-
ing the value of it is important to verify if the design
requirements have been met. Another example is real-
time monitoring in which it is continuously monitored
during the operation in order to continuously check if
it has been reduced by fouling and the heat exchanger
need to be serviced.

Continuous parameter estimation is possible by ex-
tending the capabilities of the UKF and Smoother to
estimate not just the state variable, but also the param-
eters of the system. The approach is to include the
parameter in an augmented state xA(·), defined as

xA(·) =
[
x(·) xP(·)

]T
, (4)

where xP(·) ⊆ Θ(·) is a vector containing a subset of
the full parameter vector Θ(·) to be estimated. The
new components of the state variables need a function
that describe their dynamics. Since in the normal op-
eration, these values are constant, the associated dy-
namic is

d xP(t)
dt

= 0, (5)

where 0 is a null vector. These null dynamics have to
be added (2). The result is a new continuous-discrete
time system

d xA(t)
dt

= FA(xA(t),u(t),Θ(t), t) (6a)

y(tk) = H(xA(tk),u(tk),Θ(tk), tk)+ r(tk), (6b)

with

FA(xA(t),u(t),Θ(t), t) =

[
F(x(t),u(t),Θ(t), t)

0

]
(7)

Note that augmenting the state variables leads to a non-
linear state equation even if F(·, ·, ·, ·) is a linear func-
tion. Therefore, for parameter estimation, a nonlinear
filtering and smoothing technique is required.

2.5 Implementation

The former sections explained on the state and param-
eter estimation. This section describes the software
implementation and describes specific issues that we
addressed.
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Algorithm 1: Filtering

Notation: The superscript (i) indicates that the quantity is related to the i− th sigma point, w(i)
m and w(i)

c are the weights asso-
ciated to the i− th sigma point, n is the dimension of the state vector x(·), and [·]i is an operator that if applied to a matrix A returns its
i− th column. Vectors are indicated with bold characters.

Given the initial knowledge of the state distribution x(t0)∼ N(µ0,P0), and given the output measurement covariance matrix R0

1. Initialize k = 0 and set parameters α , β , λ (with 0≤ α ≤ 1 – other configuration details in [2] )

2. Define 2n + 1 sigma-points

x(tk)(0) = µk,

x(tk)(i) = µk +
[√

(n + λ )Pk

]
i
, i = 1 . . .n,

x(tk)(i) = µk−
[√

(n + λ )Pk

]
i−n

, i = n + 1 . . .2n.

3. Compute the weights associated to each sigma-point

w(0)
m = λ/(n + λ ),

w(0)
c = λ/(n + λ )+(1−α2 + β ),

w(i)
m = 1/2(n + λ ) , i = 1 . . .2n,

w(i)
c = 1/2(n + λ ) , i = 1 . . .2n.

4. Compute the predicted state (i.e. perform a simulation) for each sigma-point, and the predicted weighted mean, and the predicted
covariance

x(tk+1)(i) = f (x(tk)(i),u(tk),Θ(tk), tk) , i = 0 . . .2n + 1,

µ−k+1 =
2n+1

∑
i=0

w(i)
m x(tk+1)(i),

P−k+1 = Pk +
2n+1

∑
i=0

w(i)
c

(
x(tk+1)(i)−µ−k+1

)(
x(tk+1)(i)−µ−k+1

)T
.

5. Redefine the new sigma-points x(tk+1)(i) using the predicted mean µ−k+1, and covariance P−k+1 as shown in step (1).

6. Compute the measured outputs using the new sigma-points, then compute the mean output ŷk+1 and its covariance Sk+1

y(tk+1)(i) = H(x(tk+1)(i),u(tk+1),Θ(tk+1), tk+1) , i = 0 . . .2n + 1,

ŷk+1 =
2n+1

∑
i=0

w(i)
m y(tk+1)(i),

Sk+1 = R0 +
2n+1

∑
i=0

w(i)
c

(
y(tk+1)(i)− ŷk+1

)(
y(tk+1)(i)− ŷk+1

)T
.

7. Compute the cross covariance between the state and the output

Ck+1 =
2n+1

∑
i=0

w(i)
c

(
x(tk+1)(i)−µ−k+1

)(
y(tk+1)(i)− ŷk+1

)T
.

8. Compute the filter gain and update the predicted mean and covariance of the state

K = Ck+1S−1
k+1,

µk+1 = µ−k+1 + K [yk+1− ŷk+1] ,

Pk+1 = P−k+1−K Sk+1 KT .

9. Compute the state estimation as x̂(tk+1)∼ N(µk+1,Pk+1).

10. Increment k, and go to step (2).
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Figure 2: Improving the estimation using the smoothing. Backward propagations of the filtering results can
improve the former estimation.

Algorithm 2: Smoothing
1. Initialize k ≥ 0 and define the amplitude of the smoothing window N > 0 such as data at time tk+N are available.

2. Initialize j = 1.

3. Draw the 1 + 2n sigma-points x(tk+N− j)
(i) using x(tk+N− j) as mean value, and Pk+N− j as covariance matrix.

4. Propagate the sigma points through the dynamic model (prediction step) and compute the mean, covariance and cross covariance

x(tk+N− j+1)(i) = f (x(tk+N− j)
(i),u(tk+N− j),Θ(tk+N− j), tk+N− j) , i = 0 . . .2n + 1,

µ−k+N− j+1 =
2n+1

∑
i=0

w(i)
m x(tk+N− j+1)(i),

P−k+N− j+1 = Pk +
2n+1

∑
i=0

w(i)
c

(
x(tk+N− j+1)(i)−µ−k+N− j+1

)(
x(tk+N− j+1)(i)−µ−k+N− j+1

)T
,

Ck+N− j+1 =
2n+1

∑
i=0

w(i)
c

(
x(tk+N− j+1)(i)−µ−k+N− j+1

)(
x(tk+N− j)

(i)−x(tk+N− j)
)T
.

5. Compute the smoother gain, and post-correct the previous estimation providing the smoothed mean and covariance

K = Ck+N− j+1

[
P−k+N− j+1

]−1
,

µs
k+N− j = µ−k+N− j+1 + K

[
x(tk+N− j+1)−µ−k+N− j+1

]
,

Ps
k+N− j = Pk+N− j + K

[
Ps

k+N− j+1−P−k+N− j+1

]
KT .

6. If j < N then set j := j + 1 and go to step (2), otherwise exit.

N.B. At the end of each time step the state is estimated as x̂s(tk+N− j)∼ N(µs
k+N− j,P

s
k+N− j).

The first barrier to overcome was that the state esti-
mation procedure refers to the full vector of state vari-
ables x(·). However in many applications, the number
of state variables is higher than the ones to be esti-
mated. An example are sensors that sometimes contain
a unitary gain first order filter. Including all the state
variables in the estimation is not desirable because

• the number of sigma points required by the UKF,
and thus the number simulations to be run, grows
with the number of state variables.

• for every state variable or parameter estimated the
user must provide an initial guess for mean value
and the covariance.

Therefore, the user is allowed to select a subset of the
state variables and parameters to be estimated by the
UKF algorithm.

Similarly, an FMU may have several outputs, but
only few of them may be measured and used by the
UKF. The outputs for which a measurement is avail-
able and used by the UKF are denominated measured
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outputs. The measured outputs requires additional in-
formation such the covariance (i.e., the uncertainty as-
sociated to the measure) and a time serie containing
the data.

All the inputs and the measured outputs have to be
associated with a time serie. This can be done by as-
sociating them with a specific column of a csv file.

Another issue has been encountered regarding the
range of validity of states and parameters. For exam-
ple, the level of water contained in a tank has to be
positive but not greater than the height of the tank. We
addressed this issue by constraining the sigma points
within user specified upper and lower limits. As de-
fault, the min and max values specified in the FMU
model description file are used.

We also implemented the ability to run the simula-
tions in parallel. The computationally demanding part
of the UKF and Smoother is the time integration done
using PyFMI. However this section of the algorithm is
entirely parallelizable. By default, our implementation
uses one less thread as there are processors to run the
simulation, while a thread manages the simulation and
collects the results. The simulation results generated
by PyFMI can optionally be written to files or not.

All these functionalities have been embedded in few
classes that use PyFMI. In particular we have defined
a new class representing the FMU model in a more
general term since the state estimation is a task that
involves more than a simple simulation, which is the
aim of PyFMI.

2.6 Code snippet

This subsection contains a code snippet that illustrates
how the FMU-based state and parameter estimation
framework works. In this example the FMU model
represents a mass-spring-damper system, where the in-
put is the force F applied to the mass, and the mea-
sured output is the mass acceleration a. The two cor-
responding data series are stored in a csv file named
data.csv. The states to be estimated are the position x
and its velocity v.
# Path o f t h e FMU model
f i l e P a t h = " . / model . fmu "

# I n s t a n t i a t e t h e model
m = Model ( f i l e P a t h , a t o l =1e−5, r t o l =1e−4)

# Path o f t h e CSV f i l e t h a t c o n t a i n s t h e da ta s e r i e s
c s v P a t h = " . / d a t a . c sv "

# A s s o c i a t e t h e columns o f t h e c s v f i l e t o t h e i n p u t
i n p u t = m. GetInputByName ( "F" )
i n p u t . GetCsvReader ( ) . OpenCsv ( c s v P a t h )
i n p u t . GetCsvReader ( ) . S e t S e l e c t e d C o l u m n ( " Force " )

# A s s o c i a t e t h e columns o f t h e c s v f i l e t o t h e o u t p u t
o u t p u t = m. GetOutputByName ( " a " )
o u t p u t . GetCsvReader ( ) . OpenCsv ( c s v P a t h )
o u t p u t . GetCsvReader ( ) . S e t S e l e c t e d C o l u m n ( " a c c e l e r a t i o n " )

# S p e c i f y t h a t t h i s o u t p u t has t o be compared a g a i n s t
# measured da ta c o n t a i n e d i n t h e CSV f i l e
o u t p u t . Se tMeasu redOutpu t ( )

# S p e c i f y o u t p u t measurement c o v a r i a n c e
o u t p u t . S e t C o v a r i a n c e ( 1 . 0 )

# S p e c i f y t h e s u b s e t o f t h e s t a t e s t o be e s t i m a t e d
m. AddVar i ab le (m. G e t V a r i a b l e O b j e c t ( " x " ) )
m. AddVar i ab le (m. G e t V a r i a b l e O b j e c t ( " v " ) )

# Get a r e f e r e n c e t o t h e s t a t e s t o be e s t i m a t e d
var_x = m. G e t V a r i a b l e s ( ) [ 0 ]
va r_v = m. G e t V a r i a b l e s ( ) [ 1 ]

# S p e c i f y i n i t i a l v a l u e f o r t h e p o s i t i o n
# and t h e boundary l i m i t s ( e . g . , p o s i t i o n x must be p o s i t i v e )
var_x . S e t I n i t i a l V a l u e ( 2 . 5 )
va r_x . S e t C o v a r i a n c e ( 0 . 5 )
va r_x . SetMinValue ( 0 . 0 )

# S p e c i f y i n i t i a l v a l u e f o r t h e v e l o c i t y
var_y . S e t I n i t i a l V a l u e ( 0 . 0 )
va r_y . S e t C o v a r i a n c e ( 0 . 2 )

# I n i t i a l i z e s i m u l a t o r
m. I n i t i a l i z e S i m u l a t o r ( )

# I n s t a n t i a t e UKF and pass t o i t t h e model
UKF = ukfFMU (m)

# Run t h e f i l t e r from 0 . 0 t o 1 0 . 0 s e c o n d s
t ime , X, Sx , y , Sy = UKF. f i l t e r ( s t a r t = 0 . 0 , s t o p = 1 0 . 0 )

# p l o t t i n g . . .

This framework reduces the effort to set up a state
or parameter estimation. The model can be created in
Modelica and directly imported as an FMU, avoiding
the user to rewrite the model in the right format re-
quired by the UKF. Other functionalities provide an
easy way to specify the state variables or parameter to
be estimated, together with the data series to be used
as inputs and outputs.

3 Application: FDD

This section contains an example that shows how the
FMU-based state and parameter estimation algorithm
can be used for fault detection and diagnosis.

FDD algorithms based on state estimation tech-
niques are known to be more suitable than other ap-
proaches based on neural networks or principal com-
ponent analysis for detecting multiple faults [9, 10,
11], they can compute the fault probabilities and they
provide an indication of what is not working as ex-
pected in the system. All these features are possible
thank to the probabilistic description of the state vari-
ables and parameters the estimation techniques pro-
vide.

A drawback of state estimation based strategies is
that they require a slightly higher modeling effort, e.g.,
to include explicit fault descriptions in the model it-
self. However, various open-source modeling tools
(e.g. OpenModelica and JModelica), and modeling li-
braries for buildings (Modelica Buildings library [12])
are available, and they provide two main advantages:
reducing the effort required to set up the model, and
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Figure 3: Schematic of the system.

reducing the risk of modeling errors since they are typ-
ically validated and tested.

The availability of these tools and libraries together
with the FMU-based state and parameter estimation al-
gorithm put in place a framework for creating with a
low level of effort a model-based FDD algorithm.

The considered system is a valve that regulates the
water flow rate in a water distribution system (see Fig-
ure 3). The system is described by the following equa-
tions

ṁ(t) = φ(x(t))Av
√

ρ(t)
√

∆p(t), (8a)

x(t)+ τ ẋ(t) = u(t), (8b)

where ṁ(·) is the mass flow rate passing through the
valve, ∆p(·) is the pressure difference across it, u(·)
is the valve opening command signal, x(·) is the valve
opening position, τ is the actuator time constant, φ(·)
is the power-law opening characteristic, Av is the flow
coefficient and ρ(·) is the fluid density (please note
that the square root of the pressure difference is reg-
ularized around zero flow in order to prevent singu-
larities in the solution). The system has three sensors
(see Figure 3) that respectively measure the pressure
difference across the valve, the water temperature T (·)
and the mass flow rate passing through it. All the sen-
sors are affected by measurement noise. In addition,
the mass flow rate sensor is also affected by a thermal
drift.

T N(t) = T (t)+ ηT (t) (9a)

∆pN(t) = ∆p(t)+ ηP(t) (9b)

ṁN+D(t) = (1 + λ (T (t)−Tre f ))ṁ(t)+ ηm(t) (9c)

The measurement equations are described in (9),
where the superscript N indicates a measurement af-
fected by noise, the superscript N+D indicates the pres-
ence of both noise and thermal drift, Tre f is the refer-
ence temperature at which the sensor has no drift, λ
is the thermal drift coefficient and ηT (·), ηP(·), and
ηm(·) are three uniform white noises affecting respec-
tively the temperature, pressure and mass flow rate

Figure 4: Input signals of the faulty valve model: wa-
ter temperature (blue) and pressure difference (green).
The lines represent the data generated by simulation,
while the dots represent the sampled and noisy version
provided to the UKF.

measurements. These signals are sampled every two
seconds.

Suppose during the operation, at t = 80 s, the valve
becomes faulty. The fault affects the ability of the
valve to control its opening position. The valve open-
ing cannot go below 20% (causing a leakage) and over
60% (it gets stuck). At t = 250 s, the valve stuck posi-
tion moves from 60% to 90%.

The fault identification procedure is asked to iden-
tify whether the valve not works as expected, that is
its opening position follows the command signal. The
fault identification is performed using the UKF that
uses as input signals for its model the noisy pressure
difference (see Figure 4), the noisy water temperature
(see Figure 4) and the command signal (see Figure 6).
The command signal is noise free because it is com-
puted by some external controller and not measured.
The UKF compares the output of its simulations with
the measured mass flow rate (see Figure 5) that is af-
fected by both noise and thermal drift. The effect of
the thermal drift is visible in Figure 5 where the green
dots represent the measured mass flow rate while the
green line is the actual mass flow rate passing through
the valve.

The UKF and the smother estimate the value of the
state variable x(t) representing the valve opening posi-
tion and the parameter λ , the thermal drift coefficient.
The length of the augmented state is n = 2. Hence for
every estimation step, the UKF performs 1+2×2 = 5
simulations. The UKF has the initial conditions x(0)∼
N(0.8,0.05) and λ ∼N(0,0.7 ·10−3), the output noise
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Figure 5: The green line represent the mass flow rate
that is passing through the valve. The green dots are
the measurements of the mass flow rate (affected by
noise and sensor thermal drift) used by the UKF. The
red line is the UKF estimation, while the blue line is
the smoother estimation.

covariance matrix is R = [0.05], and the filter coeffi-
cients are α = 1√

3
, β = 2 and k = 3−n = 1.

As shown in Figure 5, the measured mass flow rate
(green dots) are far from the real mass flow rate (green
line). Despite the measurement error, the UKF and
the smoother provide an estimation with a good accu-
racy (red and blue lines in Figure 5). The mass flow
rates computed by the UKF, ˆ̇m, and the smoother, ˆ̇mS,
are close to the real one, ṁ, because they are able to
estimate both the valve opening position and the sen-
sor drift coefficient, as shown in Figures 6 and 7. As
expected the smoother is able to provide a better esti-
mation since it uses more data. The time spent by the
UKF to perform the simulations and computing the es-
timations was about 0.05 s, that is lower than the sam-
pling time of 2 s. The speed of this UKF based FDD
algorithm allows a real-time implementation for this
particular application.

4 General Applicability

The UKF and in general state/parameter estimation
techniques are well known solutions used in many
fields. We presented an approach that reduces the ef-
fort needed to set up a state and parameter estimation
for models created with simulation programs that are
FMI compliant. The example shows how this tool can
be used for FDD purposes in the context of HVAC sys-
tems. However, this tool can be used in other con-

Figure 6: The green line is the opening valve sig-
nal. The blue line is the actual opening value af-
fected by faults. The red and blue lines are the UKF
and smoother estimations of the valve opening po-
sition (the area surrounding the estimation is the σ -
confidence interval).

texts. For example, state and parameter estimation
techniques are used to support guidance and control
systems in the automotive, robotic and aerospace in-
dustries.

5 Conclusion

We proposed a model-based state and parameter esti-
mator for dynamic systems described using the FMI
standard. The paper explained the nonlinear state esti-
mation and smoothing techniques employed by the al-
gorithm, together with the details necessary to imple-
ment it. The last section shows how the FMU-based
state and parameter estimator can be used to set up a
fault detection algorithm capable of identifying faults
in a valve, even in presence of wrong and noisy mea-
surements.

This algorithm extends the functionalities of any
simulation program that implements the FMI standard
version 1.0. As shown in the example, this algorithm
has a direct application in FDD, but it can also be used
for model calibration and process control together with
adaptive or model predictive control schemes. The
main advantage of this algorithm is that it allows to
reuse models from the design phase, it extends the
capabilities of FMI compliant modeling frameworks
and it reduces the time and investments necessary to
develop advanced control strategies, calibration and
FDD.
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Figure 7: The green line is the sensor thermal drift
coefficient, while the red and blue lines are the estima-
tions of the thermal drift coefficient computed by the
UKF and smoother (the area surrounding the estima-
tion is the σ -confidence interval).
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