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ABSTRACT
This work presents a toolchain based on the Functional
Mockup Interface (FMI) standard for accelarating the
adoption of model-based Fault Detection and Diagnostics
(FDD) algorithms. The presented toolchain uses nonlin-
ear state estimation techniques to detect multiple simul-
taneous faults in presence of noisy sensor measurements.
The toolchain enables the use of a dynamic model that
emulates correct and faulty equipment, while keeping the
computing effort low. The FDD toolchain allows import-
ing dynamic models through an interface that complies
with the FMI standard, an application programming in-
terface for the exchange of models which is supported
by many simulation tools. This functionality reduces the
modeling effort required to setup a model-based FDD
algorithm because it allows taking advantage of models
available in open-source libraries for building components
and HVAC systems that can model various fault scenarios.

INTRODUCTION
In large commercial building energy systems, equipment
routinely degrades or malfunctions. Set-points, valves,
controls, and schedules are often adjusted manually for
a specific or unique event and then not returned to their
normal operation. Unfortunately, a sufficient number of
sensors are rarely deployed in most buildings or building
systems to detect these faults in a reasonably short period
of time. In many commercial heating, ventilation, and
air conditioning (HVAC) systems, various types of sub-
standard operations can occur, leading to uncomfortable
occupant conditions, damage to equipment, and energy
waste. Just 13 of the most common faults in U.S. com-
mercial buildings in 2009 are estimated to have caused
over $3.3 billion in energy waste (Mills 2009). Building
hardware and software for simple and rapid fault detec-
tion and diagnosis (FDD) are a key tool to reduce some of
these significant energy wastes.
This work presents a toolchain for accelerating the adop-
tion of FDD algorithms that use advances in the nonlinear
state estimation techniques to detect multiple simultane-
ous faults even in presence of noisy sensor measurements.
The presented approach allows the use of first principles
dynamic models that may account for several operating
modes, while keeping the computing effort low enough
to provide fault estimates within few seconds. The pre-
sented toolchain also reduces the modeling effort required
to setup a model-based FDD because dynamic models can

be integrated into the FDD algorithms using the Func-
tional Mockup Interface (FMI) standard, a standard for
exporting simulation models supported by many simu-
lation programs (e.g. Dymola, OpenModelica, Matlab,
etc.). The framework takes advantage of the models avail-
able in open-source libraries such as the Modelica Build-
ings Library (Wetter et al. 2014) to setup real-time FDD
strategies for buildings components and HVAC systems.
The major contribution of the work is the integration of
state estimation and filtering techniques with models that
comply with the FMI standard. The result is a FDD
toolchain that can easily leverage the models used dur-
ing the design phase in the commissioning or operation.
Reusing models lead to a better identification of the causes
of a fault; nonetheless it saves time and money.
The paper is structured as follows. The first section con-
tains a brief literature review that supports the need for
model-based FDD strategies. The second section pro-
vides a description of the proposed FMI model-based
FDD framework. The last section contains an example
that shows how the proposed framework can be coupled
with a Modelica model to set up an FDD algorithm.

REVIEW ON FDD
There is a large body of literature about FDD strate-
gies, both generally (Venkatasubramanian et al. 2003c;
Venkatasubramanian et al. 2003b; Venkatasubramanian
et al. 2003a), and in the context of building-specific ap-
plications (Katipamula and Brambley 2005a; Katipamula
and Brambley 2005b). These works classify three cate-
gories of FDD methods: quantitative model-based, qual-
itative model-based and process history-based. The au-
thors also provide a systematic comparison of these meth-
ods.
Although FDD is not used in the business-as-usual oper-
ation and maintenance of today’s commercial buildings,
the literature provides many examples of process history-
based and qualitative and quantitative model-based FDD
developed for building HVAC applications. Desired at-
tributes of FDD approaches for building applications in-
clude:

• Robustness to sensor errors and data paucity.

• Applicability to both dynamic and steady-state
equipment operation.

• Ability to identify numerous or simultaneous faults.
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• Fast enough for near-real time execution and feed-
back to operators.

Near real-time execution enables embedding FDD in
commercial performance management tools. It has the
potential to minimize energy wastes, shorten unsatisfac-
tory occupant conditions, or reduce the chance of rapid
component degradation. While critical in some FDD
applications, the need to detect novel faults not known
a priori is less important in buildings because the most
common problems with highest energy and operational
impacts are well documented. For example Comstock,
Braun, and Groll (2001) provide a comprehensive review
of chiller faults and similar documents exist for other
building systems and components. The need for FDD
techniques that are robust to the poor-quality sensor data
in buildings has been reported by Dexter and Pakanen
(2001). Several solutions have been investigated to build
robust FDD strategies. Two examples are algorithms that
use adaptive thresholds (Zhou, Wang, and Ma 2009), or
principal component analysis (PCA) techniques for the
detection of sensor faults in air handling units (Wang and
Xiao 2004) and centrifugal chillers (Wang and Cui 2006).
While robustness to sensor error was demonstrated in the
PCA approach by Wang and Cui (2006), the compari-
son of FDD techniques provided by Venkatasubramanian
et al. (2003a) indicates that both PCA and neural networks
(NN) approaches may have difficulty in identifying multi-
ple simultaneous faults, which is another desired charac-
teristic of FDD for building applications. (Venkatasubra-
manian et al. 2003a) showed that the approaches based
on state observers, also known as state estimators, are
thought to be more suitable for detecting multiple faults
and dealing both with nonlinearities of the models and
uncertainties. A drawback of observer-based strategies is
that they require a higher modeling effort, e.g., to include
explicit fault descriptions in the model itself. However,
various modeling tools (e.g. EnergyPlus, TRNSYS), and
modeling libraries for buildings (Modelica Buildings li-
brary (Wetter et al. 2014)) are available, and they provide
two main advantages: reducing the effort required to set
up the model, and reducing the risk of modeling errors
since they are validated and tested. This work presents
a model-based FDD toolchain that is based on advanced
nonlinear state estimation techniques and leverages the
FMI standard. The main advantage of this approach is the
ability to connect the FDD algorithm with models that are
already available in the building simulation community,
such as the Modelica Buildings library, thereby reducing
the effort required to set up model-based FDD algorithms.

THE FMI STANDARD
The Functional Mockup Interface (FMI) is a tool indepen-
dent standard that supports the exchange of dynamic mod-

els for co-simulation. The development of FMI was ini-
tiated within the ITEA2 project MODELISAR, a project
that involved 29 partners among manufacturers, simula-
tion tool vendors and research institutes. The project
started in 2008 and ended in 2011. The primary goal
of FMI was to support the exchange of simulation mod-
els between suppliers and equipment manufacturers when
different simulation programs are used. Today more than
40 simulation programs support the FMI, and the stan-
dard is now managed by a group of companies, insti-
tutes and universities organized under a noprofit asso-
ciation. Applications that use the FMI standard range
from software/model/hardware-in-the-loop simulation to
embedded systems.
A simulation model exported according to the FMI stan-
dard is called a Functional Mockup Unit (FMU). An FMU
comes in the form of a zip-file, which contains the FMI
model description file, which is an XML-file with infor-
mation needed by an import tool, C-code and/or shared
libraries required to interface with the model or simula-
tion tool, resource files such as tables, and documenta-
tion. Simulation programs or software packages that im-
plement the FMI standard can import FMUs, access their
resources, and run simulation.

THE FMI-BASED toolchain
The use of computer based tools for the design of build-
ings and HVAC systems is increasing. These tools embed
the knowledge needed to predict performances and behav-
ior of HVAC and buildings. These information are help-
ful to support designers’ work. For example engineers use
simulation programs to study the behavior of the building
or HVAC system under certain conditions like hot summer
and cold winter days. If the results of the simulations sat-
isfy the design requirements, they proceed with the con-
struction, commissioning and finally operation. During
the operation, problems causing energy wastes or compo-
nent degradation may appear. At this stage FDD tech-
niques are needed. Ideally, FDD techniques should be
able to directly access the knowledge established during
the design phases and reuse it during the operation.
The presented FDD toolchain allows taking advantage of
the models developed during the design stages and estab-
lishing a connection between design and operation, two
typically disconnected tasks. The presented toolchain pro-
vides such a connection based on the FMI standard. The
toolchain reduces the effort required to set up FDD strate-
gies that use model-based approaches, easing the adop-
tion of these techniques. The grey area shown in Figure 1
represents the FMI-based FDD toolchain. The toolchain
links the simulation programs, typically used by design-
ers, with Energy Information Systems (EIS) that are used
by building operators, energy manager and technicians.
The FMI standard interface allows such a link. The
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Figure 1: The FMI-based FDD toolchain

toolchain is composed of three main components. (1) A
real-time state estimator and smoother. The state estima-
tor is a technique that estimates any variables in real-time,
while the smoother improves the quality of the estimations
when measurements are noisy. (2) A parameter estimator
that estimates in real-time parameters or can be used to
calibrate the models off-line. (3) The FDD module that
post-processes the results of the estimators and computes
fault status and probabilities. The following subsections
describe the details of the toolchain as well some details
of the three main components.

The FMI Standard Interface

Figure 1 shows the FDD toolchain. The toolchain can
import a model exported according to the FMI standard
(i.e., an FMU). A model that has been developed in a
simulation program like OpenModelica, Dymola or Mat-
lab/Simulink, can be exported as an FMU and used within
the toolchain. The FMU model has to be compliant with
the FMI standard for model exchange version 1.0. An
FMU that complies with this version of the FMI stan-
dard provides two main features required by the FDD al-
gorithm: state and parameter reinitialization. This con-
straint on the FMUs limits the applicability of this ap-
proach. For example EnergyPlus provides an FMU in-
terface but it does not provide access to its internal state
variables. Models developed using the Modelica model-
ing language and exported as FMUs by tools like Dymola,
OpenModelica or JModelica satisfy this requirement. The
main components of the toolchain using the FMU are the
state estimator, the smoother and the parameter estima-
tor. The estimators (as well as the other components of
the toolchain) have been written in Python and they use
PyFMI, a python package for the simulation of models
compliant with the FMI standard (Modelon 2013).

Python Based Infrastructure

The infrastructure of the FDD toolchain has been imple-
mented in Python. Python is available for all major op-
erating systems: Windows, Linux/Unix, OS/2, Mac as
well as cheap embedded hardware prototyping platforms
based on ARM architectures (e.g., RaspberryPI, Beagle-
Bone, etc.). We selected Python as it has been particu-
larly used for the development of scientific applications
because it allows for rapid prototyping of algorithms, and
provides different modules optimized for scientific com-
puting and data visualization (numpy, SciPy, matplotlib).
In the recent years, Python has proven to be a good so-
lution for the development of web servers and web-based
applications. All these characteristics make the presented
toolchain flexible since it can scale from embedded sys-
tems to web-based tools running on cloud computing plat-
form (e.g., Amazon Web Services), depending on the na-
ture of the application. The toolchain can simulate and
work with models compliant with the FMI standard using
PyFMI.
The toolchain interfaces with an Energy Information Sys-
tems or any other software that can acquire measuremenst
from sensors located in the building and save them into a
Data Base Management Systems (DBMS). It is important
that the toolchain can get the data from the DBMS in dif-
ferent formats. For example, in real world applications,
the data may be stored in excel files every month in order
to be processed by energy managers. The toolchain takes
data from Excel files, CSV files, or directly from a DBMS
system and move them to its internal data structure. For
an application currently developed for the U.S. Depart-
ment of Defense, we are using IBM DB2 as the DBMS.
However the toolchain can be extended to interface with
other data bases.
The internal data structure of the FDD toolchain is based
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on data series that are stored in memory. There are two
reasons for working with data in memory: first it improves
the access speed and, second, data are already stored in
a DBMS need not be replicated. The data are managed
using Pandas (McKinney 2012), a Python module for data
analysis that is typically used to manage up to 10 GB of
data. Pandas provides advanced querying, filtering as well
as analytic functionalities.

Real-Time State Estimator and Smoother

The state estimation technique used in the presented FDD
algorithm is the key component of the entire toolchain.
Our implementation uses the Unscented Kalman Filter
UKF (Julier and Uhlmann 1996). UKF is a Bayesian
model-based technique that recursively estimates the state
variables of a generic system, as defined by a set of ordi-
nary differential equations (ODEs). The ODEs may repre-
sent the thermal model of the building, an HVAC plant or
a chiller. The state variables of the system that can be es-
timated by the UKF are typically temperatures, pressures,
and energies. Since complications from building variabil-
ity and data uncertainties are usual, introducing a back
smoother can reduce their effect on the estimation. The
back smoother is an additional refinement of the UKF to
improve the model-to-data reconciliation and rejecting the
effect of noise on the measurements as more data become
available (Sarkka 2008). The FDD algorithm will have
difficulty with some forms of non-random noise, such as
auto-correlation, miss- calibration, and calibration drift.
The type of noise would result in less information con-
tent in a measurement, so the algorithm may take more
samples, and thus take more time, to detect with high
probability a fault. Both the UKF and the smoother re-
quire running different simulations. This requirement can
affect the computing time of the toolchain, in particular
when the model is complex. However, since the simula-
tions are independent from each other, they can be run in
parallel. This feature may be important when real-time
estimations are needed. The toolchain uses a parallelized
implementation of said techniques that is compliant with
the FMI standard (Bonvini, Wetter, and Sohn 2014). The
parallel simulation does not involve the simulation pro-
grams that generates the FMUs. The toolchain dispatches
the simulation to the available processors and then they
are performed by one of the ODE solvers provided by
PyFMI. The requirements of the UKF and the smoother
are limited to functionalities provided by models exported
according the FMI standard for model exchange version
1.0. The requirements include the possibility to initialize
state variables, parameters, and running simulations.

Parameter Estimator

The toolchain contains a UKF and a smoother that have
been extended to estimate parameters in addition to state
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Figure 2: Estimation of the variable representing the
fault, together with its σ-confidence interval, and how it
can be seen as a fault probability.

variables (Wan and Van der Merwe 2000). State variables
vary with respect time and their evolution is governed by
differential equations. Parameters are quantities that do
not change as a function of time during normal opera-
tion. Examples of parameter are heat exchange coeffi-
cients, or the thermal conductivity of a wall. The UKF and
the smoother are capable of computing parameter estima-
tions in real-time. The real-time estimations of parame-
ters are used together with the state variables estimations
to detect anomalies. There are other techniques that use
the ability of state and parameter estimation and smooth-
ing techniques for identifying parameters. One example is
the coupling between the Expectation Maximization algo-
rithm and the unscented smoother proposed by Yokoyama
(2011). Unfortunately, these type of algorithms require a
higher computational effort and, hence, may not be appli-
cable to identify parameters in real-time. However they
can be used to calibrate models, for example during the
commissioning phase.

Fault Detection and Diagnosis

Once the state and parameter estimations have been com-
puted, they need to be converted to fault probabilities. As
shown in Figure 1, this step requires additional informa-
tion based on the knowledge of the monitored system.
This knowledge can be used to define thresholds or values
associated to the fault free operation. Once these thresh-
olds have been identified, they define a fault region, a
subset of the parameter or variable space representing the
faulty operation. Given the fault region, it is possible to
compute the probability of the fault region containing the
estimated variable. Figure 2 shows this process. The esti-
mator and the smoother compute, sequentially, the mean
and covariance of the fault variable or parameter. The esti-
mations are Gaussian variables. The probabilities of faults
are computed as
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Figure 3: Schematic of the system.

∫
Ω

P(s)ds (1)

where P(·) is the probability distribution function (pdf)
of the fault variable or parameter, and Ω indicates the
fault region (in Figure 2 the gray area subtended by the
pdf). Note that the fault region boundaries can be adjusted
adaptively, for example to enhance the ability of the algo-
rithm to detect faults or avoid false positives.

EXAMPLE
This section contains an example that shows how the FMI-
based fault detection algorithm can be used to identify
faults in a valve in presence of noisy and wrong mea-
surements. The example emulates measurements using
simulations for the subsystem shown in Figure 3. During
the simulation, two faults have been added: the first fault
represents a leakage while the second fault is a blockage.
The data generated by simulation have been corrupted by
noise in order to test the robustness of the algorithm. The
considered system is a valve that regulates the water flow
rate in a water distribution system. The system is

ṁ(t) = φ(x(t))Av
√

ρ(t)
√

∆p(t), (2a)
x(t)+ τẋ(t) = u(t), (2b)

where ṁ(·) is the mass flow rate passing through the valve,
∆p(·) is the pressure difference across it, u(·) is the valve
opening command signal, x(·) is the valve opening posi-
tion, τ is the actuator time constant, φ(x(·)) is the power-
law opening characteristic, Av is the flow coefficient and
ρ(·) is the fluid density. In our implementation the square
root of the pressure difference is regularized around zero
flow for numerical reasons. The system has three sen-
sors that measure the pressure difference across the valve
∆pN(·), the water temperature T N(·) and the mass flow
rate passing through it ṁN+D(·). All the sensors are af-
fected by measurement noise. In addition, a thermal drift
affects the mass flow rate sensor. The measurement equa-
tions are

T N(t) = T (t)+ηT (t), (3a)

∆pN(t) = ∆p(t)+ηP(t), (3b)

ṁN+D(t) = (1+λ(T (t)−Tre f ))ṁ(t)+ηm(t), (3c)

Figure 4: Schematic diagram of the Modelica model.
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Figure 5: The green line is the sensor thermal drift co-
efficient, while the red and blue lines are the estimations
of the thermal drift coefficient computed by the UKF and
smoother (the area surrounding the estimation is the σ-
confidence interval).

where the superscript N indicates a measurement affected
by noise, the superscript N+D indicates the presence of
both noise and thermal drift, Tre f is the reference temper-
ature at which the sensor has no drift, λ is the thermal drift
coefficient and ηT (·), ηP(·) , and ηm(·) are three uniform
white noises affecting the temperature, pressure and mass
flow rate measurements. These signals are sampled every
two seconds. The model has been implemented in Mod-
elica and its schematic diagram is shown in Figure 4.

Discussion
During the operation, at t = 80 s, the valve becomes faulty.
The fault affects the ability of the valve to control its open-
ing position. The valve opening cannot go below 20%
(causing a leakage) and over 60% (it gets stuck). At t =
250 s, the valve stuck position changes from 60% to 90%.
Both faults are observable only when the opening com-
mand signal reaches the fault area (i.e., the leackage is
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Figure 6: Measured mass flow rate (green scattered points); real mass flow rate (green line); estimated mass flow rate
using the UKF+Smoother (blue line). The image on the left shows the estimation that does not account for sensor drift,
while the image on the right includes the estimation of the sensor drift.
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Figure 7: Valve opening command (green line); actual opening (red line); estimated opening using the UKF and
Smoother (blue line). The blue area around the estimation represents the σ-confidence interval. The black lines rep-
resents the fault status identified by the FDD algorithm, while the grey area represents the presence of a fault. The
image on the left shows the estimation that does not account for sensor drift, while the image on the right includes the
estimation of the sensor drift.

observable only when the valve is almost closed).

The fault identification procedure identifies when the
valve does not work as expected, that is its opening po-
sition differs from the command signal. The fault iden-
tification uses the UKF that has as input signals for its
model the noisy pressure difference, the noisy water tem-
perature and the command signal. Two experiments have
been performed. The first experiment tries to estimate the
fault conditions (i.e., valve stuck or valve leaking) without
accounting fro the sensor thermal drift; the second exper-
iment includes the model of the sensor (see equation (3))
affected by thermal drift.

Figure 6 compares the outputs of the UKF and the

smoother with the estimation of measured mass flow rate
that is affected by both noise and thermal drift. The effect
of the thermal drift is visible where the green dots rep-
resenting the measured mass flow rate diverge from the
green line that is the actual mass flow rate. The UKF and
the smother estimate the valve opening position x(·). Fig-
ure 5 shows that during the experiment that includes the
detailed model of the sensor, the thermal drift coefficient
λ is estimated too. Figure 6 shows that the measured mass
flow rates (green dots) are far from the real mass flow rates
(green line). The UKF and the Smoother compute an es-
timation of them. As shown in Figure 6 (left) the filter
and the smoother try to reconcile the estimation with the
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measured data. As shown in Figure 6 (right), an advanced
description of the measurement process introduces a ben-
efit, in fact the estimated mass flow rates x̂(·) converge to
the real unknown values x(·). Figure 5 shows the UKF
and the smoother estimates of the thermal drift coefficient
λ. They both start with an initial value equals to zero and
converge to a neighborhood of the real unknown value.
The smoother improves the estimation of λ at the begin-
ning of the simulation experiment.
Figure 7 shows the estimation of the opening position x̂(·)
with respect to the command signal u(·). The green line
is the opening command while the red line is the actual
opening position. Every time there is a discrepancy be-
tween the lines, the valve has a fault. Since the actual po-
sition is not known and cannot be measured, the UKF and
the smoother estimate it. The blue line is the estimation of
the opening position. The blue area around the estimation
represents the σ-confidence interval. Once the estimate
of the position is available, it can be used to determine if
the valve has a fault or not. The black lines in Figure 7
represent the detection of faults associated to the valve,
while the grey areas indicate when the fault conditions
have been introduced. As expected, when the FDD algo-
rithm uses a model that includes the measurement equa-
tions, the faults are correctly identified, as shown in Figure
7 (right). When the model does not contain the measure-
ment equation it does not recognize a fault when the valve
gets stuck at 90% at t = 250 s. As expected the smoother
is able to provide a better estimation since it uses more
data.

CONCLUSION
We presented an FMI-based FDD toolchain that uses
advanced state and parameter estimation techniques for
dynamic nonlinear systems. As the tool-chain allows
importing of FMI standard compliant models, it al-
lows coupling the FDD-algorithm with models devel-
oped using general purpose simulation programs like Mat-
lab/Simulink, OpenModelica or Dymola. The toolchain
facilitates bridging the gap between the design stage of
buildings or HVAC systems and their operation. By
means of this connection, it is possible to reuse the knowl-
edge and know-how embedded into the models developed
during the design stages for monitoring the performances
and detecting faults that potentially affect the energy per-
formance during operation. This toolchain represents a
step towards the adoption of model-based FDD strategies
in real world applications because. The main advantage
introduced by this toolchain is the reuse of models in con-
junction with advanced FDD algorithms. Reusing models
allows to cut the costs associated with their development
as well as their integration with FDD algorithm. The au-
thors believe that all these favorable properties will make
FDD algorithms developed using this technology avail-

able to a broader audience.
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