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ABSTRACT 
We report on the acceleration of annual daylighting 
simulations for fenestration systems in the Radiance 
ray-tracing program. The algorithm was optimized to 
reduce both the redundant data input/output 
operations and the floating-point operations. To 
further accelerate the simulation speed, the 
calculation for matrix multiplications was 
implemented using parallel computing on a graphics 
processing unit. We used OpenCL, which is a cross-
platform parallel programming language. Numerical 
experiments show that the combination of the above 
measures can speed up the annual daylighting 
simulations 101.7 times or 28.6 times when the sky 
vector has 146 or 2306 elements, respectively. 
INTRODUCTION 
Due to the increasing demands in accuracies and 
resolutions, building simulations requires more and 
more computing power. Since increasing the clock 
rate alone cannot meet the rapidly growing demands 
on computing power, it is more feasible to compute 
in parallel on multiple processors. Parallel computing 
on supercomputers is already widely used in other 
industries and there are also a few applications in 
building industry (Wenisch et al. 2007, Hasama et al. 
2008, Mazumdar and Chen 2008). However, 
purchasing and maintaining supercomputers is 
usually too expensive for small businesses that make 
up the majority of the building industry. A low-cost 
and high-performance parallel computing is 
necessary to meet the increasing computational needs 
of building simulations. Besides cloud computing 
(Armbrust et al. 2009), there are two other promising 
options for parallel computing. One is to use 
single/multiple CPUs with multi-cores, which are 
widely adopted by personal computers. The other is 
computing on graphics processing units (GPUs). The 
GPU is the core of a computer graphics card and has 
hundreds of low-frequency processors. Both options 
cost only a few hundred US dollars and can be 
realized on a desktop computer or a laptop computer. 
For example, Zuo and Chen (2010) accelerated an 
indoor flow simulation up to 30 × using a GPU on a 
desktop computer.  

Radiance is a highly accurate ray-tracing program 
that is widely regarded as best in class for lighting 
simulation (Larson and Shakespeare 1998). A recent 
addition to Radiance, known as three-phase 
simulation method, enables users to perform annual 
daylight simulations for complex and/or dynamic 
fenestration systems (Ward 2010, Ward 2011).   
The three-phase method breaks luminous energy 
traversal of the model into three phases: from sky to 
exterior of the fenestration, through the fenestration 
and from interior of the fenestration to the sensor 
points.  Luminous energy transfer for each phase is 
described by a matrix of coefficients.  The daylight 
(exterior) matrix characterizes how energy from each 
of 145 Tregenza sky patches arrives into 145 
directional Klems patches at the window.  The 
daylight matrix characterizes the external 
environment including obstructions.  The fenestration 
transmission matrix characterizes how light incident 
on the fenestration in each of 145 incident patches 
leaves through 145 exiting patches.  The transmission 
matrix characterizes transmission properties of a 
fenestration system, including diffusion and 
redirection of daylight.    And finally the interior, or 
view, matrix characterizes how lighting leaving the 
fenestration in each of the 145 directional patches 
arrives at each of the illuminance sensor points. The 
view matrix characterizes flux transversal through 
the interior space model.  Each matrix is independent 
of the others so, for example, the daylight matrix can 
be changed in order to simulate a different 
orientation or additional external obstructions 
without changing the other two matrices.  
The three-phase method uses Radiance’s rtcontrib 
program to produce the daylight and view matrices.   
The transmission matrix can either be produced using 
Radiance’s  genBSD, Window 6 or a combination of 
the two. 
To generate an illuminance result we first create a 
sky vector   using   Radiance’s   genskyvec. The sky 
vector is 145 values, the luminance of the 145 
Tregenza patches for a given time, location and sky 
type.  The sky vector is multiplied by the other three 
coefficient matrices to generate a result for all of the 
sensor points.  The three-phase method allows users 
to generate annual results for many different 
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fenestration systems including those with dynamic 
components. 
The Radiance program that performs the matrix 
multiplication, called dctimestep, is a sequential code 
written in C language. The main calculation for this 
feature is to multiply matrices with large dimensions, 
which may take hours for an annual simulation 
depending on the number of illuminance sensor 
points. Accelerating dctimestep will enable users to 
quickly evaluate different fenestration systems and 
optimize the design of fenestration systems through 
parametric study.  This could accelerate the adoption 
of emerging daylighting technologies by reducing the 
technical and market barriers.  
To accelerate dctimestep, the key is computing the 
matrices multiplication more efficiently, such as 
computing them in parallel using multi-core CPUs or 
GPUs. There are various parallel programming 
languages, such as OpenMP (Chapman et al. 2007), 
MPI (Gropp et al. 1999), CUDA (NVIDIA 2007) and 
OpenCL (Munshi 2010). Since Radiance is a publicly 
released code running on various types of computing 
hardware, it is important that the programming 
language is supported by various platforms so that 
we can save a lot of repeated efforts on code 
development. Thus, we selected OpenCL because it 
is a cross-platform language and supported by major 
CPU and GPU vendors. 
OPENCL 
OpenCL is the first open standard for parallel 
programming on heterogeneous platforms, including 
CPUs, GPUs, embedded processors and other 
processors.  The development of OpenCL was 
initiated by Apple Inc in 2008 and is currently led by 
Khronos Group. The most recent release of OpenCL 
was version 1.1 in 2010. The official website of 
OpenCL is http://www.khronos.org/opencl/.  
OpenCL adopts a host-device platform model (Figure 
1). A host is the commander that connects to one or 
more devices. A device contains one or more 
compute units. A compute unit can be further divided 
into one or more processing elements. The 
processing element is the basic unit for computing on 
a device. For instance, a computer may have two 
CPUs and one GPU. Each CPU has 2 processors and 
4 cores per processor. The GPU has 42 processors 
and 8 cores on each processor. In OpenCL platform 
model, one CPU can be the host, the other CPU and 
GPU can be two devices. The device 1 (CPU) has 2 
compute units (processors) and 4 processing units 
(cores) on each compute unit. The device 2 (GPU) 
has 42 compute units (processors) and 8 processing 
elements (cores) on each compute unit. 
To execute an OpenCL program, we need a host 
program running on the host and one or more kernels 
running on devices. The host program identifies and 
initializes the OpenCL hardware, creates the OpenCL 
environment, defines and manages the kernel. The 
parallel computing is conducted through kernels on 

devices. Users can specify different kernels on 
various devices depending on the parallel modeling 
they use. Currently, OpenCL supports both data 
parallel programming and task parallel programming. 
For more details of OpenCL, one can refer the 
OpenCL specification (Munshi 2010).    

 
Figure 1 Platform model in OpenCL   

IMPLEMENTATION 
The dctimestep code was written for sequential 
computing. Additionally dctimestep was written to 
produce a result for one time step. To perform an 
annual simulation, dctimestep would be called 
roughly 4380 times by a script. To speed it up, it is 
critical to profile and identify potential parts for 
parallelization, modify algorithms for parallel 
computing, and optimize the implementation for 
better performance. This section will first introduce 
the analysis and optimization to reduce redundant 
computation and input/output (I/O) operation of the 
dctimestep algorithm for annual simulation. After 
that, we will discuss the further speedup by 
implementing matrices multiplication in OpenCL on 
a GPU.  
Analyses and Optimization of Daylighting 
Simulation for a Period 
The dctimestep is to calculate an illuminace vector, 
VI(t),  at each simulation sensor point for one time 
step:  

VI(t) = MVMTMDVS(t),                  (1) 
where MV is a view matrix defining lighting 
connection from the exiting directions of the 
windows to the sensors. MT is a matrix converted 
from bidirectional transmittance distribution function 
(BTDF), which describes transmission of the light 
passes through the surface of studied windows. MD is 
a daylighting matrix defining coefficients between 
incoming directions for the windows and sky 
patches. VS(t) is the sky vector defining sky patch 
radiance for a specific time step, t (Ward 2010). The 
implemented calculating sequence in dctimestep is  

VR(t) = MDVS(t),                   (2) 
 VC(t) = MTVR(t),                    (3) 
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VI(t) = MVVC(t),                   (4) 
where VR(t) and VC(t) are temporary vectors.  
dctimestep calculates VI(t) for three basic colors (red, 
green and blue). For each color, the dimensions of 
MV, MT, MD and VS(t) are the same although the value 
of entries may be different. Suppose VS(t) is a column 
vector with N entries and MD, MT and MV are the N × 
N matrices, to calculate an entry vRi,j(t) in VR(t) for 
one color, we need 2N – 1 floating-point operations, 
including N multiplications and N-1 additions. VR(t) 
has N entries so that we need N(2N – 1) floating-
point operations in total for calculating VR(t). We also 
need the same number of floating-point operations 
for equations (3) and (4). Thus, the total number of 
floating-point operations for these matrices 
multiplications is 3N (2N – 1) ≈  6N2 (when N » 1). To 
calculate three colors at one time step, dctimestep 
needs 6N2 × 3 = 18N2 floating-point operations. For n 
time steps, dctimestep has to be invoked n times, so 
the total number of floating-point operations is about 
18nN2.  
Considering MV, MT and MD are constant during the 
simulation, the other approach is to calculate 
MVMTMD once and use the result for the rest of 
simulation:  

MVSD = MVMTMD,                       (5) 
VI(tk) = MVSD VS(tk),  {tk}k=1,…n.  (6)   

Assuming N » 1, the floating-point operations in 
equations (5) and (6) are 2N2(2N – 1) ≈   4N3 and 
nN(2N – 1) ≈  2nN2, respectively. For three colors, the 
total number of floating-point operations will be 
around 12N3 + 6nN2.   

Compared to the current approach in equation (2) to 
(4), the new approach in equations (5) and (6) can 
reduce the floating-point operations by 12nN2 – 12N3. 
Assume there are 12 hours daylighting per day, we 
need to calculate n = 4380 vectors for an hourly 
simulation over a year. Suppose N = 145, then the 
reduction in floating-point operations is 1.07 × 109, 
which is 66% of total computing efforts.   
Meanwhile, we found that there were significantly 
redundant data I/O operations when repeatedly 
calling dctimestep for annual simulation. For a 
simulation with n time steps, the current approach 
repeatedly reads the matrices MV, MT and MD at each 
time step although they were the same. On the 
contrary, the new approach reads them only once.         
Furthermore, it takes time to identify GPU platform, 
setup OpenCL programming environment and 
initialize the GPU memory when the GPU program is 
invoked. To utilize the high computing capacity of 
GPU, we can reduce the number of program 
invocations by merging n sky vectors VS(tk) {tk}k=1,…n 
into a single matrix, MVS = [VS(t1), ..., VS(tn)].  
Combining the optimizations mentioned above, we 
implemented a new algorithm for daylighting 
calculation over a period: 

MVI = MVMTMDMVS ,                                        (7) 

where MVI = [VI(t1), ..., VI(tn)].  
In addition, the entries of the daylighting vector may 
be zero when there is no daylighting, such as at night. 
Thus, when VS(tk) has only zero entries, we can set 
the corresponding entries in VI(tk) to be zeros without 
calculation. We used three steps to implement the 
filtering-inserting procedure. First, we identify and 
remove the zero VS(tk) from MVS, which can reduce 
the N × n matrix MVS to a N × n1 matrix M’

VS1 (where 
n1 is the number of non-zero sky vectors). Then, we 
calculate equation (7) and get a shrunk M’

VI1 by using 
MVS1. Finally, we get MVI by inserting the zero 
vectors at corresponding columns in M’

VI1. 
Using the new approach in equation (7) and the 
filtering-inserting approach, we implemented two 
programs. One was called dctimestep_gpu that was a 
hybrid code of C and OpenCL and ran on both CPU 
and GPU. The other was dctimestep_cpu that was a C 
code and ran only on CPU. The dctimestep_cpu was 
used to compare with dctimestep_gpu to quantify the 
performance enhancement by using GPU. 
Meanwhile, dctimestep_cpu can be useful for users 
who do not have OpenCL supported hardware. Since 
the implementation of dctimestep_cpu is straight 
forward, this paper will only discuss the 
implementation of GPU program dctimestep_gpu in 
detail.  
Implementation of GPU Program Using OpenCL 
We used a computer with an Intel Xeon CPU and a 
NVIDIA GeForce GTX 460. The configurations are 
given in Table 1. In our implementation, the host was 
CPU and the GPU was the device. Although the 
Xeon CPU has 4 processors and 24 cores, only one 
core is used by the host program. The GTX 460 GPU 
has 42 multi-streaming processors and 8 streaming 
processors on each multi-streaming processor, which 
is corresponding to 42 compute units and 336 
processing elements in OpenCL.   

Table 1 Configurations of computer hardware 
CATEGORY COMPUTER 1 

GPU Type NVIDIA GeForce GTX 460  
GPU Cores 336 
GPU Processor  Clock 1350 MHz 
GPU Memory 
Bandwidth  

115.2 Gb/s 

GPU Memory  1 GB GDDR5 
Host-Dev Bandwidth 2767.6 MB/s 
Dev-Host Bandwidth 2910.1 MB/s 
CPU Type Intel Xeon  
CPU Processor Clock  2.67 GHz 
CPU Cores 24 
CPU Cache 48 MB 
CPU Memory Clock 1333 MHZ 
Operating System Ubuntu 10.04 

NVIDIA GPUs supports the OpenCL by running it 
on the CUDA architecture that is designed for 
NVIDIA GPUs. The basic computing unit in CUDA 
is thread and one multi-streaming processor can 
support 756 threads. Thus, the GeForce GTX 460 
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GPU can support up to 1,354,752 CUDA threads. For 
details about CUDA, one can refer the CUDA 
programming guide (NVIDIA 2007).  
Figure 2 shows the schematic of implementation. The 
host programs are “dctimestep_gpu.c”   and  
“matrixmul.c”. The   “dctimestep_gpu.c”   is   C   code  
modified   from   “dctimestep.c”.   It   reads MV, MT, MD, 
and MVS which contain data for three colors. Thus, we 
split them so that each matrix only contain data for 
one color. It also writes the MVI when the simualtion 
is done.   
The “matrixmul.c”  prepares for matrix multiplication 
on GPU. It was modified from a matrix 
multiplication sample code in NIVIDA OpenCL 
SDK (NVIDIA 2011). It identifies and initializes the 
OpenCL device, creates OpenCL programming 
environment, allocates device memory and copies the 
data from host memory to device memory, and 
defines input parameters needed by the kernel 
functions. The original SDK code was written in C++ 
and we changed it to C code to be compatible with 
“dctimestep_gpu.c”.   In   addition,   the   SDK code was 
desigend for 16a × 16b matrices, where a and b are 
positive integers. Since the dimensions of matrices in 
our application can be arbitrary numbers, we modfied 
the code to eliminate this limitation.   
After the initialization, a kernel   “matrixmul.cl”   is  
launched for matrix multiplication in parallel on 
device. In our implementation, one thread computes 
one entry by using the following code:  
__kernel void 
matrixMul ( __global float* C, __global float* A, 
__global float* B, int uiWA, int uiWB){ 
  float Cele = 0; 
  int i; 
     
  //Identify the coordinate of thread 
  int col = get_global_id(0); 
  int row = get_global_id(1); 
 
  //Matrix multiplication for element C(row, col)   
  for(i = 0; i < uiWA; i++) 
        Cele += A[uiWA * row + i]*B[i*uiWB +col]; 
   
  //Copy data from temporary variable to matrix   
  C[row*uiWB+col] = Cele; 
} 
__kernel is an OpenCL key word which defines 
kernel functions. Function get_global_id ( ) returns 
the indices of a thread.  All the data are stored in 
GPU global memory, which is the main GPU 
memory.  

 
Figure 2 Schematic of implementation 

NUMERICAL EXPERIMENTS 
Settings  
We evaluated three programs, including current 
dctimestep in Radiance, an optimized CPU code 
dctimestep_cpu and a GPU code dctimestep_gpu. 
They were compared by conducting daylighting 
simulation using two kinds of sky vectors. The first 
type of sky vectors used Tregenza sky discretization 
(Tregenz 1987) and had 146 elements. The second 
used Reinhart sky discretization (Reinhart 2001) and 
had 2306 elements. A finer sky subdivision provides 
more accurate results, but is more time consuming 
during matrix multiplication stage. Table 2 lists the 
matrices used in our study. We used hourly data for 
sky vectors and the n in MVS defines the simulated 
period, which varies from a day (n = 24) to a year (n 
= 8760). The approach of filtering zero sky vectors 
was applied to all programs.  It was performed in a 
bash script for dctimestep and in C code for 
dctimestep_cpu and dctimestep_gpu.  

Table 2 Dimensions of matrices used in numerical 
experiments 

MATRIX SETTING 1 SETTING 2 

MV 64 × 145 64 × 145 

MT 145 × 145 145 × 145 

MD 145 × 146 145 × 2306 

MVS 146 × n 2036 × n 

MVI 64 × n 64 × n 

Computing Time 
Figure 3 compares the computing time of dctimestep 
with and without filtering zero sky vectors. The time 
is elapsed time measured by time command in Linux. 
It includes the time to run dctimestep as well as the 
time to filter the zero vectors from MVS and insert 
zero vectors into MVI that are performed by a bash 
script in Linux. When n = 8760, filtering zero vectors 
can reduce the total simulation time by 45% for 
setting 1 and 28% for setting 2.  
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(a) Setting 1 

 
(b) Setting 2 

Figure 3 Comparison of simulation time used by 
dctimestep with and without filtering zero daylighting 

vectors 
Because time command was used to measure the time 
for dctimestep, we also used it to measure 
dctimestep_cpu and dctimestep_gpu for consistency. 
As we will see later, the elapsed time includes both 
time spending on overhead in Linux and computing 
time used by the program.  
Figure 4 compares the simulation time used by 
different programs for various n in two settings. 
dctimestep_cpu is always faster than dctimestep. This 
indicates that the optimization for sequential code 
can reduce the computing time. On the other side, 
using GPU does not necessarily speed up the 
simulation. dctimestep_gpu is slower than 
dctimestep_cpu when n < 5000 in setting 1 and n < 
1000 in setting 2. Because the GPU needs more time 
for initialization than CPU does, its advantage in 
computing speed can only be seen when computing 
demand is large enough.  
Figure 5 compares the speed ratio of different 
programs. The speed ratio is defined as the ratio of 
computing speed of two programs, which is a 
multiplicative inverse of ratio of computing time. For 
setting 1, dctiemstep_cpu is from 10 × (n = 24) to 
86.9 × (n = 4380) faster than dctimestep (plotted as 
“S1  cpu”). The ratio is 78.8 for annual simulation (n 
= 8760). On the other hand, the ratio of 
dctimestep_gpu to dctimestep (plotted   as   “S1   gpu”) 
increases from 0.36 (n = 24) to 101.7 (n = 8760).      
For setting 2, the speed enhancement by 
dctimestep_cpu is from 11.0 × (n = 8760) to 16.0 × 
(n = 264). The dctimestep_gpu has better 

performance than dctimestep_cpu with a speedup of 
28.6 × at n = 8760.  

 
(a) Setting 1 

 
(b) Setting 2 

Figure 4 Comparison of computing time used by 
different programs 

 
Figure 5 Comparison of speed ratios between the 

optimized codes and original code. S1: Setting 1, S2 
Setting 2; cpu: dctimestep_cpu/dctimestep; gpu: 

dctimestep_gpu/dctimestep 
To see the performance change by switching from 
CPU to GPU, Figure 6 compares the speed ratio of 
dctimestep_cpu and dctimestep_gpu. For setting 1, 
the GPU code is slower than CPU code when n < 
5000 and there is only a speedup less than 1.5 × 
when n > 6000.  For setting 2, GPU code is faster 
than CPU code when n > 1000. The speedup reaches 
2.5 × when n > 6000. When n = 8760, the ratios are 
1.29 for setting 1 and 2.60 for setting 2.       
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Figure 6 Comparison of speed between the 

dctimestep_cpu and dctimestep_gpu. The ratio is 
speed of GPU code divided that of CPU 

Figures 5 and 6 also indicate some oscillations in the 
performance of GPU code. To find the course of 
oscillations, we measured the detailed usage of 
computing time by dctimestep_gpu: 
Elapsed Time = Overhead for Linux  
                       + Load Sky Vectors  
                       + Create OpenCL Context                                                      
         + GPU Compute  
         + Rest,                                               (8) 
where Overhead for Linux is the time for Linux 
system to invoke the dctimestep_gpu and release it 
after the execution is over.  It is the difference 
between elapsed time measured by Linux time 
command and the program running time measured by 
a C function gettimeofday( ) in dctimestep_gpu. Load 
Sky Vectors is the time used to read the matrix MVS 
from hard disk drive to CPU memory. Create 
OpenCL Context is the time to create OpenCL 
context by running a OpenCL function 
clcreateContext( ), which creates a OpenCL context 
for a device. clcreateContext( ) is a part of the 
initialization process for computing on device using 
OpenCL. The OpenCL runtime uses context for 
managing objects such as command-queues, 
memory, program and kernel objects and for 
executing kernels on devices specified in the context. 
GPU Compute is the time to conduct computing on 
GPU. Rest is the time used by other parts of the 
program, including reading and writing other 
matrices, filtering the zero vectors, transferring data 
between CPU and GPU, initializing the GPU 
hardware and OpenCL programming environment 
except clcreateContext( ).    
 Figure 7 shows the details in computing time by 
dctimestep_gpu for setting 1. The Overhead for 
Linux and Create OpenCL Context (Figure 7a) use 
significant amount of time. For instance, they count 
for 90% of total time when MVS is a 146 × 24 matrix. 
We also found that the time spent on Overhead for 
Linux and Create OpenCL Context was random. 
They are not related to size of matrices and not 
repeatable for different program runs with the same 
matrices. They contribute the most to the oscillations 

of simulation time. The computing time reported in 
this paper was averaged over 20 program runs.  

 
(a) 

 
(b) 

Figure 7 A detailed analysis of computing time used 
by GPU for setting 1 with the 146 × n matrix MVS 

The time for Load Sky Vectors continuously 
increases when the size of MVS increases and it 
becomes significant when MVS is large. For instance, 
when MVS is a 146 × 8760 matrix, it needs 0.696 s to 
load MVS, which is the biggest part in simulation 
time. The GPU computing time (GPU Compute in 
Figure 7b) is less than 0.01s except n = 4380, where 
the matrix actually computed is 146 × 2347 after 
filtering the zero columns. The sudden increase in 
computing time is repeatable and they are caused by 
difficulty in transferring data between GPU memory 
and processors for certain dimensions of array. 
Similar phenomenon was also observed in other work 
(Zuo and Chen, 2010). The time used by other 
features of the program is about 0.2 s (Rest in Figure 
7b). It is increasing with the size of MVS because the 
program needs more time to pre-process and transfer 
data when MVS is getting bigger. 
With a larger matrix (2306 × n), Load Sky Vectors 
becomes the dominant part of GPU computing time 
in setting 2 (Figure 8b). For instance, it counts for 
79% time when MVS is a 2306 × 8760 matrix. Time 
for Linux overhead and creating OpenCL context still 
changes randomly. However, they are less than 2s 
and are less important in total simulation time. The 
GPU computing time is less than 0.3 s except n = 
4380.             
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(a) 

 
(b) 

Figure 8 A detailed analysis of computing time used 
by GPU for setting 2 with the 2306 × n matrix MVS 

Accuracy 
To compare the accuracy of the new codes, we 
calculated the relative error ei,j  for each entry in MVI:  

ei,j = (yi,j – yrefi,j) / yref,i,j , i =1,.., 64, j = 1, .., n   (9) 
where yi,j is an entry in MVI calculated by 
dctimestep_cpu or dctimestep_gpu and yref,ij, is the 
reference value computed by dctimestep. If yref,ij = 0, 
ei,j will be computed by the following equation:  

ei,j = 107yi,j , i =1,.., 64, j = 1, .., n      (10) 
We compared the distribution of ei,j when n = 8760. 
The zero columns in MVI are not counted in 
comparison since they are not computed. MVI has 
4590 non-zero columns so the number of total entries 
in comparison is 64 × 4590 × 3 = 881,280. The 
comparison shows that the dctimestep_cpu code 
could produce identical results as that by the 
dctimestep. The results by dctimestep_gpu were 
slightly different from the one by CPU codes. As 
shown in Figure 9, the relative errors for both 
settings are in a range of -1 × 10-5 to 1 × 10-5. With 
more computing efforts, more data in setting 2 has 
larger relative errors than setting 1.  
DISCUSSION 
To further speed up dctimestep_gpu, the key is to 
load MVS more efficiently. For instance, it is possible 
to reduce the I/O time if one uses solid state drive, 
which is significantly faster than traditional hard disk 
drive used in the current study.   

 
Figure 9 Distributions of relative errors of GPU 
results compared to CPU results when n = 8760 

Using GPU does not have much advantage when 
computing demand is small. As we have seen, the 
initialization of GPU and overhead for Linux system 
can count for a large portion of total GPU simulation 
time for setting 1. To reduce the influence of 
initialization, we should run a larger simulation job 
which requires longer simulation time, such as we 
did for setting 2. 
To avoid the sudden increase in GPU computing 
time, such as when MVS is a 146 × 2347 matrix, we 
should optimize the data flow in GPU. Furthermore, 
we can achieve higher performance by optimizing the 
implementation of GPU code for specific GPU 
hardware to fully utilize the capacity of GPU 
hardware (Volkov and Demmel 2008). Since 
Radiance is widely used software and may run on 
many hardware configurations, it will need too many 
resource to optimize Radiance for different hardware 
platform. Thus, one must balance   one’s   choice  
between performance and compatibility.  
CONCLUSION 
By optimizing the dctimestep code and running it in 
parallel on a GPU, we have accelerated the annual 
daylighting simulation of Radiance by two orders of 
magnitudes. The optimization of the algorithm can 
speed up an annual daylighting simulation on a CPU 
by a factor of 86.9 and 11 using sky vectors with 146 
and 2306 elements, respectively. Running in parallel 
on a GPU using OpenCL can further accelerate the 
simulation by a factor of 1.29 and 2.60. This leads to  
total speed-ups of factor 101.7 or 28.6. 
As a pilot study, we only tested the OpenCL code on 
one GPU hardware. Since OpenCL is a cross-
platform language, it would be interesting to evaluate 
the performance of the same code on different 
hardware platforms. 
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