
ACCELERATION OF RADIANCE FOR LIGHTING SIMULATION BY USING
PARALLEL COMPUTING WITH OPENCL

Wangda Zuo, Andrew McNeil, Michael Wetter, Eleanor Lee

Building Technologies Department,
Environmental Energy Technologies Division,

Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA

ABSTRACT
We report on the acceleration of annual daylighting
simulations for fenestration systems in the Radiance
ray-tracing program. The algorithm was optimized to
reduce both the redundant data input/output
operations and the floating-point operations. To
further accelerate the simulation speed, the
calculation for matrix multiplications was
implemented using parallel computing on a graphics
processing unit. We used OpenCL, which is a cross-
platform parallel programming language. Numerical
experiments show that the combination of the above
measures can speed up the annual daylighting
simulations 101.7 times or 28.6 times when the sky
vector has 146 or 2306 elements, respectively.
INTRODUCTION
Due to the increasing demands in accuracies and
resolutions, building simulations requires more and
more computing power. Since increasing the clock
rate alone cannot meet the rapidly growing demands
on computing power, it is more feasible to compute
in parallel on multiple processors. Parallel computing
on supercomputers is already widely used in other
industries and there are also a few applications in
building industry (Wenisch et al. 2007, Hasama et al.
2008, Mazumdar and Chen 2008). However,
purchasing and maintaining supercomputers is
usually too expensive for small businesses that make
up the majority of the building industry. A low-cost
and high-performance parallel computing is
necessary to meet the increasing computational needs
of building simulations. Besides cloud computing
(Armbrust et al. 2009), there are two other promising
options for parallel computing. One is to use
single/multiple CPUs with multi-cores, which are
widely adopted by personal computers. The other is
computing on graphics processing units (GPUs). The
GPU is the core of a computer graphics card and has
hundreds of low-frequency processors. Both options
cost only a few hundred US dollars and can be
realized on a desktop computer or a laptop computer.
For example, Zuo and Chen (2010) accelerated an
indoor flow simulation up to 30 × using a GPU on a
desktop computer.

Radiance is a highly accurate ray-tracing program
that is widely regarded as best in class for lighting
simulation (Larson and Shakespeare 1998). A recent
addition to Radiance, known as three-phase
simulation method, enables users to perform annual
daylight simulations for complex and/or dynamic
fenestration systems (Ward 2010, Ward 2011).
The three-phase method breaks luminous energy
traversal of the model into three phases: from sky to
exterior of the fenestration, through the fenestration
and from interior of the fenestration to the sensor
points. Luminous energy transfer for each phase is
described by a matrix of coefficients. The daylight
(exterior) matrix characterizes how energy from each
of 145 Tregenza sky patches arrives into 145
directional Klems patches at the window. The
daylight matrix characterizes the external
environment including obstructions. The fenestration
transmission matrix characterizes how light incident
on the fenestration in each of 145 incident patches
leaves through 145 exiting patches. The transmission
matrix characterizes transmission properties of a
fenestration system, including diffusion and
redirection of daylight. And finally the interior, or
view, matrix characterizes how lighting leaving the
fenestration in each of the 145 directional patches
arrives at each of the illuminance sensor points. The
view matrix characterizes flux transversal through
the interior space model. Each matrix is independent
of the others so, for example, the daylight matrix can
be changed in order to simulate a different
orientation or additional external obstructions
without changing the other two matrices.
The three-phase method uses Radiance’s rtcontrib
program to produce the daylight and view matrices.
The transmission matrix can either be produced using
Radiance’s genBSD, Window 6 or a combination of
the two.
To generate an illuminance result we first create a
sky vector using Radiance’s genskyvec. The sky
vector is 145 values, the luminance of the 145
Tregenza patches for a given time, location and sky
type. The sky vector is multiplied by the other three
coefficient matrices to generate a result for all of the
sensor points. The three-phase method allows users
to generate annual results for many different

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 110 -

fenestration systems including those with dynamic
components.
The Radiance program that performs the matrix
multiplication, called dctimestep, is a sequential code
written in C language. The main calculation for this
feature is to multiply matrices with large dimensions,
which may take hours for an annual simulation
depending on the number of illuminance sensor
points. Accelerating dctimestep will enable users to
quickly evaluate different fenestration systems and
optimize the design of fenestration systems through
parametric study. This could accelerate the adoption
of emerging daylighting technologies by reducing the
technical and market barriers.
To accelerate dctimestep, the key is computing the
matrices multiplication more efficiently, such as
computing them in parallel using multi-core CPUs or
GPUs. There are various parallel programming
languages, such as OpenMP (Chapman et al. 2007),
MPI (Gropp et al. 1999), CUDA (NVIDIA 2007) and
OpenCL (Munshi 2010). Since Radiance is a publicly
released code running on various types of computing
hardware, it is important that the programming
language is supported by various platforms so that
we can save a lot of repeated efforts on code
development. Thus, we selected OpenCL because it
is a cross-platform language and supported by major
CPU and GPU vendors.
OPENCL
OpenCL is the first open standard for parallel
programming on heterogeneous platforms, including
CPUs, GPUs, embedded processors and other
processors. The development of OpenCL was
initiated by Apple Inc in 2008 and is currently led by
Khronos Group. The most recent release of OpenCL
was version 1.1 in 2010. The official website of
OpenCL is http://www.khronos.org/opencl/.
OpenCL adopts a host-device platform model (Figure
1). A host is the commander that connects to one or
more devices. A device contains one or more
compute units. A compute unit can be further divided
into one or more processing elements. The
processing element is the basic unit for computing on
a device. For instance, a computer may have two
CPUs and one GPU. Each CPU has 2 processors and
4 cores per processor. The GPU has 42 processors
and 8 cores on each processor. In OpenCL platform
model, one CPU can be the host, the other CPU and
GPU can be two devices. The device 1 (CPU) has 2
compute units (processors) and 4 processing units
(cores) on each compute unit. The device 2 (GPU)
has 42 compute units (processors) and 8 processing
elements (cores) on each compute unit.
To execute an OpenCL program, we need a host
program running on the host and one or more kernels
running on devices. The host program identifies and
initializes the OpenCL hardware, creates the OpenCL
environment, defines and manages the kernel. The
parallel computing is conducted through kernels on

devices. Users can specify different kernels on
various devices depending on the parallel modeling
they use. Currently, OpenCL supports both data
parallel programming and task parallel programming.
For more details of OpenCL, one can refer the
OpenCL specification (Munshi 2010).

Figure 1 Platform model in OpenCL

IMPLEMENTATION
The dctimestep code was written for sequential
computing. Additionally dctimestep was written to
produce a result for one time step. To perform an
annual simulation, dctimestep would be called
roughly 4380 times by a script. To speed it up, it is
critical to profile and identify potential parts for
parallelization, modify algorithms for parallel
computing, and optimize the implementation for
better performance. This section will first introduce
the analysis and optimization to reduce redundant
computation and input/output (I/O) operation of the
dctimestep algorithm for annual simulation. After
that, we will discuss the further speedup by
implementing matrices multiplication in OpenCL on
a GPU.
Analyses and Optimization of Daylighting
Simulation for a Period
The dctimestep is to calculate an illuminace vector,
VI(t), at each simulation sensor point for one time
step:

VI(t) = MVMTMDVS(t), (1)
where MV is a view matrix defining lighting
connection from the exiting directions of the
windows to the sensors. MT is a matrix converted
from bidirectional transmittance distribution function
(BTDF), which describes transmission of the light
passes through the surface of studied windows. MD is
a daylighting matrix defining coefficients between
incoming directions for the windows and sky
patches. VS(t) is the sky vector defining sky patch
radiance for a specific time step, t (Ward 2010). The
implemented calculating sequence in dctimestep is

VR(t) = MDVS(t), (2)
 VC(t) = MTVR(t), (3)

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 111 -

http://en.wikipedia.org/wiki/Heterogeneous_computing
http://www.khronos.org/opencl/

VI(t) = MVVC(t), (4)
where VR(t) and VC(t) are temporary vectors.
dctimestep calculates VI(t) for three basic colors (red,
green and blue). For each color, the dimensions of
MV, MT, MD and VS(t) are the same although the value
of entries may be different. Suppose VS(t) is a column
vector with N entries and MD, MT and MV are the N ×
N matrices, to calculate an entry vRi,j(t) in VR(t) for
one color, we need 2N – 1 floating-point operations,
including N multiplications and N-1 additions. VR(t)
has N entries so that we need N(2N – 1) floating-
point operations in total for calculating VR(t). We also
need the same number of floating-point operations
for equations (3) and (4). Thus, the total number of
floating-point operations for these matrices
multiplications is 3N (2N – 1) ≈ 6N2 (when N » 1). To
calculate three colors at one time step, dctimestep
needs 6N2 × 3 = 18N2 floating-point operations. For n
time steps, dctimestep has to be invoked n times, so
the total number of floating-point operations is about
18nN2.
Considering MV, MT and MD are constant during the
simulation, the other approach is to calculate
MVMTMD once and use the result for the rest of
simulation:

MVSD = MVMTMD, (5)
VI(tk) = MVSD VS(tk), {tk}k=1,…n. (6)

Assuming N » 1, the floating-point operations in
equations (5) and (6) are 2N2(2N – 1) ≈ 4N3 and
nN(2N – 1) ≈ 2nN2, respectively. For three colors, the
total number of floating-point operations will be
around 12N3 + 6nN2.

Compared to the current approach in equation (2) to
(4), the new approach in equations (5) and (6) can
reduce the floating-point operations by 12nN2 – 12N3.
Assume there are 12 hours daylighting per day, we
need to calculate n = 4380 vectors for an hourly
simulation over a year. Suppose N = 145, then the
reduction in floating-point operations is 1.07 × 109,
which is 66% of total computing efforts.
Meanwhile, we found that there were significantly
redundant data I/O operations when repeatedly
calling dctimestep for annual simulation. For a
simulation with n time steps, the current approach
repeatedly reads the matrices MV, MT and MD at each
time step although they were the same. On the
contrary, the new approach reads them only once.
Furthermore, it takes time to identify GPU platform,
setup OpenCL programming environment and
initialize the GPU memory when the GPU program is
invoked. To utilize the high computing capacity of
GPU, we can reduce the number of program
invocations by merging n sky vectors VS(tk) {tk}k=1,…n
into a single matrix, MVS = [VS(t1), ..., VS(tn)].
Combining the optimizations mentioned above, we
implemented a new algorithm for daylighting
calculation over a period:

MVI = MVMTMDMVS , (7)

where MVI = [VI(t1), ..., VI(tn)].
In addition, the entries of the daylighting vector may
be zero when there is no daylighting, such as at night.
Thus, when VS(tk) has only zero entries, we can set
the corresponding entries in VI(tk) to be zeros without
calculation. We used three steps to implement the
filtering-inserting procedure. First, we identify and
remove the zero VS(tk) from MVS, which can reduce
the N × n matrix MVS to a N × n1 matrix M’

VS1 (where
n1 is the number of non-zero sky vectors). Then, we
calculate equation (7) and get a shrunk M’

VI1 by using
MVS1. Finally, we get MVI by inserting the zero
vectors at corresponding columns in M’

VI1.
Using the new approach in equation (7) and the
filtering-inserting approach, we implemented two
programs. One was called dctimestep_gpu that was a
hybrid code of C and OpenCL and ran on both CPU
and GPU. The other was dctimestep_cpu that was a C
code and ran only on CPU. The dctimestep_cpu was
used to compare with dctimestep_gpu to quantify the
performance enhancement by using GPU.
Meanwhile, dctimestep_cpu can be useful for users
who do not have OpenCL supported hardware. Since
the implementation of dctimestep_cpu is straight
forward, this paper will only discuss the
implementation of GPU program dctimestep_gpu in
detail.
Implementation of GPU Program Using OpenCL
We used a computer with an Intel Xeon CPU and a
NVIDIA GeForce GTX 460. The configurations are
given in Table 1. In our implementation, the host was
CPU and the GPU was the device. Although the
Xeon CPU has 4 processors and 24 cores, only one
core is used by the host program. The GTX 460 GPU
has 42 multi-streaming processors and 8 streaming
processors on each multi-streaming processor, which
is corresponding to 42 compute units and 336
processing elements in OpenCL.

Table 1 Configurations of computer hardware
CATEGORY COMPUTER 1

GPU Type NVIDIA GeForce GTX 460
GPU Cores 336
GPU Processor Clock 1350 MHz
GPU Memory
Bandwidth

115.2 Gb/s

GPU Memory 1 GB GDDR5
Host-Dev Bandwidth 2767.6 MB/s
Dev-Host Bandwidth 2910.1 MB/s
CPU Type Intel Xeon
CPU Processor Clock 2.67 GHz
CPU Cores 24
CPU Cache 48 MB
CPU Memory Clock 1333 MHZ
Operating System Ubuntu 10.04

NVIDIA GPUs supports the OpenCL by running it
on the CUDA architecture that is designed for
NVIDIA GPUs. The basic computing unit in CUDA
is thread and one multi-streaming processor can
support 756 threads. Thus, the GeForce GTX 460

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 112 -

GPU can support up to 1,354,752 CUDA threads. For
details about CUDA, one can refer the CUDA
programming guide (NVIDIA 2007).
Figure 2 shows the schematic of implementation. The
host programs are “dctimestep_gpu.c” and
“matrixmul.c”. The “dctimestep_gpu.c” is C code
modified from “dctimestep.c”. It reads MV, MT, MD,
and MVS which contain data for three colors. Thus, we
split them so that each matrix only contain data for
one color. It also writes the MVI when the simualtion
is done.
The “matrixmul.c” prepares for matrix multiplication
on GPU. It was modified from a matrix
multiplication sample code in NIVIDA OpenCL
SDK (NVIDIA 2011). It identifies and initializes the
OpenCL device, creates OpenCL programming
environment, allocates device memory and copies the
data from host memory to device memory, and
defines input parameters needed by the kernel
functions. The original SDK code was written in C++
and we changed it to C code to be compatible with
“dctimestep_gpu.c”. In addition, the SDK code was
desigend for 16a × 16b matrices, where a and b are
positive integers. Since the dimensions of matrices in
our application can be arbitrary numbers, we modfied
the code to eliminate this limitation.
After the initialization, a kernel “matrixmul.cl” is
launched for matrix multiplication in parallel on
device. In our implementation, one thread computes
one entry by using the following code:
__kernel void
matrixMul (__global float* C, __global float* A,
__global float* B, int uiWA, int uiWB){
 float Cele = 0;
 int i;

 //Identify the coordinate of thread
 int col = get_global_id(0);
 int row = get_global_id(1);

 //Matrix multiplication for element C(row, col)
 for(i = 0; i < uiWA; i++)
 Cele += A[uiWA * row + i]*B[i*uiWB +col];

 //Copy data from temporary variable to matrix
 C[row*uiWB+col] = Cele;
}
__kernel is an OpenCL key word which defines
kernel functions. Function get_global_id () returns
the indices of a thread. All the data are stored in
GPU global memory, which is the main GPU
memory.

Figure 2 Schematic of implementation

NUMERICAL EXPERIMENTS
Settings
We evaluated three programs, including current
dctimestep in Radiance, an optimized CPU code
dctimestep_cpu and a GPU code dctimestep_gpu.
They were compared by conducting daylighting
simulation using two kinds of sky vectors. The first
type of sky vectors used Tregenza sky discretization
(Tregenz 1987) and had 146 elements. The second
used Reinhart sky discretization (Reinhart 2001) and
had 2306 elements. A finer sky subdivision provides
more accurate results, but is more time consuming
during matrix multiplication stage. Table 2 lists the
matrices used in our study. We used hourly data for
sky vectors and the n in MVS defines the simulated
period, which varies from a day (n = 24) to a year (n
= 8760). The approach of filtering zero sky vectors
was applied to all programs. It was performed in a
bash script for dctimestep and in C code for
dctimestep_cpu and dctimestep_gpu.

Table 2 Dimensions of matrices used in numerical
experiments

MATRIX SETTING 1 SETTING 2

MV 64 × 145 64 × 145

MT 145 × 145 145 × 145

MD 145 × 146 145 × 2306

MVS 146 × n 2036 × n

MVI 64 × n 64 × n

Computing Time
Figure 3 compares the computing time of dctimestep
with and without filtering zero sky vectors. The time
is elapsed time measured by time command in Linux.
It includes the time to run dctimestep as well as the
time to filter the zero vectors from MVS and insert
zero vectors into MVI that are performed by a bash
script in Linux. When n = 8760, filtering zero vectors
can reduce the total simulation time by 45% for
setting 1 and 28% for setting 2.

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 113 -

(a) Setting 1

(b) Setting 2

Figure 3 Comparison of simulation time used by
dctimestep with and without filtering zero daylighting

vectors
Because time command was used to measure the time
for dctimestep, we also used it to measure
dctimestep_cpu and dctimestep_gpu for consistency.
As we will see later, the elapsed time includes both
time spending on overhead in Linux and computing
time used by the program.
Figure 4 compares the simulation time used by
different programs for various n in two settings.
dctimestep_cpu is always faster than dctimestep. This
indicates that the optimization for sequential code
can reduce the computing time. On the other side,
using GPU does not necessarily speed up the
simulation. dctimestep_gpu is slower than
dctimestep_cpu when n < 5000 in setting 1 and n <
1000 in setting 2. Because the GPU needs more time
for initialization than CPU does, its advantage in
computing speed can only be seen when computing
demand is large enough.
Figure 5 compares the speed ratio of different
programs. The speed ratio is defined as the ratio of
computing speed of two programs, which is a
multiplicative inverse of ratio of computing time. For
setting 1, dctiemstep_cpu is from 10 × (n = 24) to
86.9 × (n = 4380) faster than dctimestep (plotted as
“S1 cpu”). The ratio is 78.8 for annual simulation (n
= 8760). On the other hand, the ratio of
dctimestep_gpu to dctimestep (plotted as “S1 gpu”)
increases from 0.36 (n = 24) to 101.7 (n = 8760).
For setting 2, the speed enhancement by
dctimestep_cpu is from 11.0 × (n = 8760) to 16.0 ×
(n = 264). The dctimestep_gpu has better

performance than dctimestep_cpu with a speedup of
28.6 × at n = 8760.

(a) Setting 1

(b) Setting 2

Figure 4 Comparison of computing time used by
different programs

Figure 5 Comparison of speed ratios between the

optimized codes and original code. S1: Setting 1, S2
Setting 2; cpu: dctimestep_cpu/dctimestep; gpu:

dctimestep_gpu/dctimestep
To see the performance change by switching from
CPU to GPU, Figure 6 compares the speed ratio of
dctimestep_cpu and dctimestep_gpu. For setting 1,
the GPU code is slower than CPU code when n <
5000 and there is only a speedup less than 1.5 ×
when n > 6000. For setting 2, GPU code is faster
than CPU code when n > 1000. The speedup reaches
2.5 × when n > 6000. When n = 8760, the ratios are
1.29 for setting 1 and 2.60 for setting 2.

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 114 -

Figure 6 Comparison of speed between the

dctimestep_cpu and dctimestep_gpu. The ratio is
speed of GPU code divided that of CPU

Figures 5 and 6 also indicate some oscillations in the
performance of GPU code. To find the course of
oscillations, we measured the detailed usage of
computing time by dctimestep_gpu:
Elapsed Time = Overhead for Linux
 + Load Sky Vectors
 + Create OpenCL Context
 + GPU Compute
 + Rest, (8)
where Overhead for Linux is the time for Linux
system to invoke the dctimestep_gpu and release it
after the execution is over. It is the difference
between elapsed time measured by Linux time
command and the program running time measured by
a C function gettimeofday() in dctimestep_gpu. Load
Sky Vectors is the time used to read the matrix MVS
from hard disk drive to CPU memory. Create
OpenCL Context is the time to create OpenCL
context by running a OpenCL function
clcreateContext(), which creates a OpenCL context
for a device. clcreateContext() is a part of the
initialization process for computing on device using
OpenCL. The OpenCL runtime uses context for
managing objects such as command-queues,
memory, program and kernel objects and for
executing kernels on devices specified in the context.
GPU Compute is the time to conduct computing on
GPU. Rest is the time used by other parts of the
program, including reading and writing other
matrices, filtering the zero vectors, transferring data
between CPU and GPU, initializing the GPU
hardware and OpenCL programming environment
except clcreateContext().
 Figure 7 shows the details in computing time by
dctimestep_gpu for setting 1. The Overhead for
Linux and Create OpenCL Context (Figure 7a) use
significant amount of time. For instance, they count
for 90% of total time when MVS is a 146 × 24 matrix.
We also found that the time spent on Overhead for
Linux and Create OpenCL Context was random.
They are not related to size of matrices and not
repeatable for different program runs with the same
matrices. They contribute the most to the oscillations

of simulation time. The computing time reported in
this paper was averaged over 20 program runs.

(a)

(b)

Figure 7 A detailed analysis of computing time used
by GPU for setting 1 with the 146 × n matrix MVS

The time for Load Sky Vectors continuously
increases when the size of MVS increases and it
becomes significant when MVS is large. For instance,
when MVS is a 146 × 8760 matrix, it needs 0.696 s to
load MVS, which is the biggest part in simulation
time. The GPU computing time (GPU Compute in
Figure 7b) is less than 0.01s except n = 4380, where
the matrix actually computed is 146 × 2347 after
filtering the zero columns. The sudden increase in
computing time is repeatable and they are caused by
difficulty in transferring data between GPU memory
and processors for certain dimensions of array.
Similar phenomenon was also observed in other work
(Zuo and Chen, 2010). The time used by other
features of the program is about 0.2 s (Rest in Figure
7b). It is increasing with the size of MVS because the
program needs more time to pre-process and transfer
data when MVS is getting bigger.
With a larger matrix (2306 × n), Load Sky Vectors
becomes the dominant part of GPU computing time
in setting 2 (Figure 8b). For instance, it counts for
79% time when MVS is a 2306 × 8760 matrix. Time
for Linux overhead and creating OpenCL context still
changes randomly. However, they are less than 2s
and are less important in total simulation time. The
GPU computing time is less than 0.3 s except n =
4380.

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 115 -

(a)

(b)

Figure 8 A detailed analysis of computing time used
by GPU for setting 2 with the 2306 × n matrix MVS

Accuracy
To compare the accuracy of the new codes, we
calculated the relative error ei,j for each entry in MVI:

ei,j = (yi,j – yrefi,j) / yref,i,j , i =1,.., 64, j = 1, .., n (9)
where yi,j is an entry in MVI calculated by
dctimestep_cpu or dctimestep_gpu and yref,ij, is the
reference value computed by dctimestep. If yref,ij = 0,
ei,j will be computed by the following equation:

ei,j = 107yi,j , i =1,.., 64, j = 1, .., n (10)
We compared the distribution of ei,j when n = 8760.
The zero columns in MVI are not counted in
comparison since they are not computed. MVI has
4590 non-zero columns so the number of total entries
in comparison is 64 × 4590 × 3 = 881,280. The
comparison shows that the dctimestep_cpu code
could produce identical results as that by the
dctimestep. The results by dctimestep_gpu were
slightly different from the one by CPU codes. As
shown in Figure 9, the relative errors for both
settings are in a range of -1 × 10-5 to 1 × 10-5. With
more computing efforts, more data in setting 2 has
larger relative errors than setting 1.
DISCUSSION
To further speed up dctimestep_gpu, the key is to
load MVS more efficiently. For instance, it is possible
to reduce the I/O time if one uses solid state drive,
which is significantly faster than traditional hard disk
drive used in the current study.

Figure 9 Distributions of relative errors of GPU
results compared to CPU results when n = 8760

Using GPU does not have much advantage when
computing demand is small. As we have seen, the
initialization of GPU and overhead for Linux system
can count for a large portion of total GPU simulation
time for setting 1. To reduce the influence of
initialization, we should run a larger simulation job
which requires longer simulation time, such as we
did for setting 2.
To avoid the sudden increase in GPU computing
time, such as when MVS is a 146 × 2347 matrix, we
should optimize the data flow in GPU. Furthermore,
we can achieve higher performance by optimizing the
implementation of GPU code for specific GPU
hardware to fully utilize the capacity of GPU
hardware (Volkov and Demmel 2008). Since
Radiance is widely used software and may run on
many hardware configurations, it will need too many
resource to optimize Radiance for different hardware
platform. Thus, one must balance one’s choice
between performance and compatibility.
CONCLUSION
By optimizing the dctimestep code and running it in
parallel on a GPU, we have accelerated the annual
daylighting simulation of Radiance by two orders of
magnitudes. The optimization of the algorithm can
speed up an annual daylighting simulation on a CPU
by a factor of 86.9 and 11 using sky vectors with 146
and 2306 elements, respectively. Running in parallel
on a GPU using OpenCL can further accelerate the
simulation by a factor of 1.29 and 2.60. This leads to
total speed-ups of factor 101.7 or 28.6.
As a pilot study, we only tested the OpenCL code on
one GPU hardware. Since OpenCL is a cross-
platform language, it would be interesting to evaluate
the performance of the same code on different
hardware platforms.
ACKNOWLEDGEMENT
This work was supported by the Assistant Secretary
for Energy Efficiency and Renewable Energy,
Building Technologies Program of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231 and by the California Energy
Commission through its Public Interest Energy
Research (PIER) Program on behalf of the citizens of
California.

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 116 -

The authors would also like to thank Amir Roth from
the U.S. Department of Energy for his constructive
comments on this paper.
REFERENCES
Armbrust, M., A. Fox, et al. (2009). “Above the

Clouds: A Berkeley View of Cloud
Computing,” Electrical Engineering and
Computer Sciences, Technical Report No.
UCB/EECS-2009-28, University of
California at Berkeley.

Chapman, B., G. Jost, et al. (2007). Using OpenMP:
Portable Shared Memory Parallel
Programming, The MIT Press.

Gregg, C., and K. Hazelwood (2011). “Where is the
Data? Why You Cannot Debate GPU vs.
CPU Performance Without the
Answer,” International Symposium on
Performance Analysis of Systems and
Software (ISPASS), Austin, TX.

Gropp, W., E. Lusk, et al. (1999). Using MPI:
Portable Parallel Programming with the
Message-Passing Interface, The MIT Press.

Hasama, T., S. Kato, et al. (2008). "Analysis of
Wind-induced Inflow and Outflow through
a Single Opening using LES & DES."
Journal of Wind Engineering and Industrial
Aerodynamics 96(10-11): 1678-1691.

Larson, G. W. and R. A. Shakespeare (1998).
Rendering With Radiance: The Art And
Science Of Lighting Visualization, Morgan
Kaufmann Publishers.

Mazumdar, S. and Q. Chen (2008). "Influence of
Cabin Conditions on Placement and
Response of Contaminant Detection Sensors
in A Commercial Aircraft." Journal of
Environmental Monitoring 10(1): 71-81.

Munshi, A. (2010). The OpenCL Specification
Version 1.1, Khronos OpenCL Working
Group.

NVIDIA (2007). NVIDIA CUDA Compute Unified
Device Architecture-- Programming Guide
(Version 1.1). Santa Clara, California,
NVIDIA Corporation.

NVIDIA (2011). "NVIDIA OpenCL SDK Code
Samples." Retrieved on 01/26/2011, from
http://developer.download.nvidia.com/comp
ute/opencl/sdk/website/samples.html.

Reinhart, C.F. (2001). “Daylight Availability And
Manual Lighting Control in Office
Buildings: Simulation Studies and Analysis
of Measurement,” Ph.D. thesis, Department
of Architecture, Technical University of
Karlsruhe.

Tregenza, P.R. (1987). “Subdivision of The Sky
Hemisphere For Luminance
Measurements.” Lighting Research &
Technology, 19, 13-14.

Volkov, V. and J.W. Demmel, (2008).
“Benchmarking GPUs to Tune Dense Linear

Algebra.” 2008 ACM/IEEE Conference on
Supercomputing (SC08).

Ward Larson, G. and Shakespeare, R. (1998).
“Rendering with Radiance: The Art and
Science of Lighting Visualization.” San
Francisco, Morgan Kaufmann.

Ward, G., Mistrick, R., et al. (2011). “Simulating the
Daylight Performance of Complex
Fenestration Systems Using Bidirectional
Scattering Distribution Functions Within
Radiance.” Technical report LBNL-4414E,
Lawrence Berkeley National Laboratory.

Wenisch, P., C. v. Treeck, et al (2007).
“Computational Steering on Distributed
Systems: Indoor Comfort Simulations as A
Case Study of Interactive CFD on
Supercomputers." International Journal of
Parallel, Emergent and Distributed Systems,
22(4): 275-291.

Zuo, W. and Q. Chen (2010). "Fast and Informative
Flow Simulations in A Building By Using
Fast Fluid Dynamics Model on Graphics
Processing Unit." Building and
Environment, 45(3): 747-757.

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 117 -

http://developer.download.nvidia.com/compute/opencl/sdk/website/samples.html
http://developer.download.nvidia.com/compute/opencl/sdk/website/samples.html
http://mc.stanford.edu/cgi-bin/images/6/65/SC08_Volkov_GPU.pdf
http://mc.stanford.edu/cgi-bin/images/6/65/SC08_Volkov_GPU.pdf

