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Abstract  

More than 80% of energy is consumed during operation phase of a building’s life cycle, so 

energy efficiency retrofit for existing buildings is considered a promising way to reduce 

energy use in buildings. The investment strategies of retrofit depend on the ability to quantify 

energy savings by “measurement and verification” (M&V), which compares actual energy 

consumption to how much energy would have been used without retrofit (called the “baseline” 

of energy use). Although numerous models exist for predicting baseline of energy use, a 

critical limitation is that occupancy has not been included as a variable. However, occupancy 

rate is essential for energy consumption and was emphasized by previous studies. This study 

develops a new baseline model which is built upon the Lawrence Berkeley National 

Laboratory (LBNL) model but includes the use of building occupancy data. The study also 

proposes metrics to quantify the accuracy of prediction and the impacts of variables. 

However, the results show that including occupancy data does not significantly improve the 

accuracy of the baseline model, especially for HVAC load. The reasons are discussed further. 

In addition, sensitivity analysis is conducted to show the influence of parameters in baseline 

models. The results from this study can help us understand the influence of occupancy on 

energy use, improve energy baseline prediction by including the occupancy factor, reduce 

risks of M&V and facilitate investment strategies of energy efficiency retrofit.  
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1 Introduction  

The buildings sector consumes 40% of the total primary energy in the United States [1], and 

the consumption has continued to increase, particularly in developing countries [2]. The 

buildings sector is thus responsible for a quarter of the total global greenhouse gas (GHG) 

emissions [3], and this proportion can reach around 50% in the United States (U.S.) with 

adverse impact on global environment, healthcare, and economy [4]. Furthermore, in the life 

cycle of a building, more than 80% of energy consumption occurs during the actual operation 

stage, rather than the construction stage [5]. Therefore, improving the energy efficiency of 

existing buildings is a key issue for reducing the total energy consumption and GHG 

emissions. 

Energy efficiency retrofit for existing buildings is considered a promising method to achieve 

the target of energy savings [6]. Numerous previous studies indicated energy retrofit can 

significantly benefit the environment, society, and economy by improving energy efficiency 

[6,7], reducing emissions [8,9], controlling resource usage [10], enhancing the reputation of 

building owners [11], improving the health and productivity of occupants [12,13], reducing 

operation costs [14], increasing rent and occupancy rates [15,16], and creating job 

opportunities [17]. 

Owing to the significant benefits on energy conservation and other aspects of society, energy 

efficiency retrofit has been emphasized around the world. For example, the U.S. government 

passed the Energy Policy Act (EPA) of 2005 and Executive Order (EO) 13423, which require 

that 15% of the total number of existing buildings should be retrofitted to improve energy 

efficiency by 2015 compared with the 2003 baseline. Approximately 30 billion US dollars are 

assigned to conduct energy efficiency retrofit of existing buildings and facilities [7]. Incented 

by the policies, the market to provide energy efficiency services through energy service 

companies (ESCOs) has been blooming in the last decade [8].  
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Energy performance contracting (EPC), which is a financing package provided by ESCOs, is 

a commonly used market mechanism to implement energy efficiency retrofit. EPC includes 

energy savings guarantees and associated design, implementation and operation services [2, 

9]. The profit (or the payment to ESCOs) of an EPC is mainly from the amount of energy 

cost savings after retrofit. The energy savings can be defined as the difference between how 

much energy the building consumed after retrofit, and how much it would have consumed 

without the retrofit. The former can be obtained from utility meters, and the latter, which is 

referred to as the energy use “baseline”, is not measurable but can only be obtained by 

prediction. The accuracy of the baseline prediction can significantly impact the energy saving 

assessment, investment return and payback period. Furtherly, it can likewise impact the 

investment strategies and development of the building retrofit market. 

The whole process of predicting baseline and assessing energy saving is called “measurement 

and verification” (M&V) [10]. The mechanism of M&V approaches is first monitoring the 

energy use of buildings, then developing mathematical models trained by observed data, and 

finally predicting baseline of energy use based on the developed models. Xia and Zhang [10] 

present a mathematical description of the M&V problem and cast a scientific framework for 

the basic M&V concepts, propositions, techniques and methodologies. Mathieu, et al. [11] 

proposed a regression-based model to predict baseline electricity consumption of commercial 

buildings and industrial facilities. Coughlin, et al. [12] evaluated the performance of three 

average-based models for baseline. Granderson, et al. [13] proposed an automated M&V 

method for evaluating model performance. Granderson and Price [14] summarized five 

baseline models, including both average-based models and regression-based models, and 

compared the predictive accuracy of these models with several metrics. More complex 

mathematical models of M&V have been emerged, including multivariate regression models, 

exponential smoothing models, neural network models, and Fourier series models [15-18]. 
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Uncertainty of M&V models is important, since not only the value of the baseline, but also 

the accuracy and reliability of the prediction are critical to energy efficiency retrofit. It 

provides the stakeholders (e.g., ESCOs, building owners, facility managers) the information 

of investment risk, which is critical in decision making. For example, if the post-retrofit 

energy use will be 30% lower than the baseline, but the uncertainty exceeds 30%, it is then 

very risky to invest in this retrofit project. Walter, et al. [8] emphasized the influence of 

uncertainty and assessed uncertainty of M&V for 17 buildings by calculating the percent 

differences between predicted baseline and observed data. The results showed there was 

considerable uncertainty in baseline prediction: 5 out of 17 buildings had more than 20% 

uncertainty, and in an extreme case it was more than 60%. 

The occupancy rate is a key uncertainty factor of M&V. Numerous previous studies indicated 

that the occupancy rate had significantly positive correlation with the energy use in buildings 

[19-26]. Occupants in buildings influence energy use in buildings in three major ways [27]: 

(1) sensible and latent heat gains from occupants, (2) occupants’ need of thermal comfort, 

visual comfort and indoor air quality, and (3) occupant behavior and interactions with 

building systems and controls [28, 29]. In addition, in commercial buildings, the occupancy 

rate may increase after energy retrofit, due to lower utility bills, better indoor environment 

and higher social reputation [30-32]. Miller, et al. [33] indicated the office buildings with 

green features will have 2-4% occupancy rate premium. Wiley, et al. [34] specified that the 

office buildings with LEED certification will increase up to 16-18%. Therefore, if the 

occupancy rate is changed after energy retrofit, the baseline of energy use should be adjusted.  

Although a number of previous studies emphasized the importance of occupancy factor in 

predicting the baseline, few studies, if not none, used occupancy factor in baseline prediction 

models, probably due to the highly stochastic activities and data limitation. Therefore, several 

research questions related to M&V remain to be answered: Does occupancy rate significantly 
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impact the accuracy of baseline prediction? If yes, how to quantitatively evaluate the impact 

on prediction accuracy? How is the influence of occupancy on baseline models compared to 

that of other impact factors (e.g., outdoor air temperature, day of week), stronger, weaker or 

equal? Is it feasible to improve prediction accuracy of energy baseline by using occupancy 

data? Nowadays, most commercial buildings have access control system, which can obtain 

occupancy data in short time intervals. These data provide a new opportunity to deeply 

analyze the impact of occupancy on the accuracy of baseline prediction. 

To address the aforementioned questions, this study proposes a novel method to 

quantitatively evaluate how accuracy of energy baseline models is improved by including the 

occupancy factor. Different from previous models, the proposed model of this study 

considers the occupancy data as independent variables rather than external uncertainty, 

shown in Figure 1. Although influence of occupancy has been emphasized by numerous 

previous studies, traditional models have not included occupancy data in the functions of 

energy prediction. Therefore, in traditional models, occupancy is an external uncertain factor, 

which can negatively impact the accuracy of energy prediction. Contrarily, in this study, the 

occupancy data is considered as an independent variable so that the influence of occupancy 

can be fitted by the function and evaluated by the prediction results. The results of this study 

showed the accuracy of energy prediction is improved. From theoretical perspective, 

including occupancy data can improve the prediction accuracy, since the uncertainty of 

occupancy factor can be controlled and reduced, and less uncertainty can improve the 

prediction accuracy.  
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y=f(x1,x2,...xn)

Influencing factor x1

(temperature)

Influencing factor x2

(time)

……
Influencing factor xn

Energy Prediction y

External uncertain factor
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y=f(x1,x2,x3,...xn)

Influencing factor x1

(temperature)

Influencing factor x2

(time)

……
Influencing factor xn

Energy Prediction y
Influencing factor x3

(occupancy)

Traditional Models

Proposed Model

 

Figure 1 Comparison of traditional models and the proposed model 

 

The results of this study reveal that the influence of occupancy on the accuracy of energy 

prediction. In addition, since the performance of models varies across hours and systems, the 

proposed method zooms into the hourly performance and different systems (i.e., HVAC, 

lighting, plug load and total load) of baseline models. Another important feature of this work 

is it only uses simple algorithm, excluding complex mathematical processing, and the input 

data is available in most commercial buildings. That means the proposed method is relatively 

easy to be implemented, and can be well adopted for practical projects. The results of this 

study can help us understand the quantitative influence of occupancy on energy use and 

energy baseline models. 

2 Methodology  

2.1 Framework of evaluating occupancy impact on baseline prediction 
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The methodology to evaluate occupancy influence on baseline prediction comprises of four 

steps, illustrated in Figure 2. 

Results

Problem definition;

Data collection;

Data cleaning and preparation.

Problem boundary;

Metrics;

Prepared data;

Processes

Evaluate correlation of occupant 

number and energy use using scatter 

plots, statistical analysis, and etc.

Correlated?

Compare prediction accuracy of 

baseline models with an without 

occupancy data 

Improve 

accuracy?

Compare occupancy factor with 

other impact factors

End process and apply results in 

practical projects

End

Yes
Yes

No
No

Yes
Yes

Problem Definition 

and Data Preparation

Problem Definition 

and Data Preparation

Correlation 

Analysis

Correlation 

Analysis

Evaluation of 

Occupancy Influence 

on Baseline 

Prediction

Evaluation of 

Occupancy Influence 

on Baseline 

Prediction

1

Prioritization of 

impact factors

Prioritization of 

impact factors

2

3

4

Model 1 Model 2 ……

EndNo
No

Factor 1 Factor 2 ……

Correlation between occupant 

number and energy use of 

each sub-system

Whether the occupancy data 

improves prediction accuracy;

If yes, the quantitative impact

The contribution of 

occupancy factor compared 

to other factors

 

Figure 2 Framework of evaluating occupancy impact on baseline prediction 

 

Step 1: Problem Definition and Data Preparation. One aim of this step is to clarify problem 

definition, boundary, assumption and key metrics of success. The scope of this study focuses 

on the energy baseline prediction in office buildings. Since there are normally fewer 

occupants in office buildings on weekends, this study only focuses on the energy use on 
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weekdays. The key metric, which is to assess different models and factors, is the similarity 

between prediction results and observed data. 

The other aim of this step is to prepare data for the analysis in the next steps. It includes 

acquiring, harmonizing, rescaling, cleaning and formatting data. Due to the failure of sensors, 

stochastic noise and other interference factors, the raw data set may contain missing data, 

error data and unstructured data. Before data mining, the raw data should be pre-processed to 

provide the valid data for further analysis. In this study, three types of data are required (i.e., 

outdoor air temperature, energy use and occupancy count data). Outdoor air temperature can 

be obtained from sensors outside buildings or database of weather stations. Energy use data 

can be obtained from electricity meters in buildings. Occupant number can be obtained from 

the records of access control system. All these data are recorded with timestamps of short-

time intervals, typically at 5 to 15 minutes. Using the short-time “interval data” can 

significantly reduce the duration of data required in baseline models [8]. 

Step 2: Correlation Analysis. This step is to verify the correlation between occupancy rate 

and total energy consumption of buildings. The total energy consumption can be divided into 

several sub-systems (e.g., HVAC, lighting system and plug load) by using sub-meters. Then, 

the more occupancy-dependent sub-systems, which have higher correlation with occupancy 

rate, can be revealed. Scatter plots are applied to visualize correlations qualitatively, while 

statistical analysis is applied to calculate correlations quantitatively. Correlation coefficients 

and significance levels are main criteria of correlation test. If occupancy rate and energy use 

are significantly correlated, the next step will be executed. 

Step 3: Evaluation and Comparison of Accuracy of Baseline Models. This step is to 

quantitatively evaluate the influence of occupancy on the accuracy of baseline models. First, 

three baseline prediction models are implemented to predict baseline of energy use based on 

the observed data. Two models, which do not include occupancy factor, are adopted from 
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previous studies. The other one, using occupancy data, is the proposed method in this study. 

The algorithms of the three models will be illustrated in detail in Section 2.2. Then, the 

prediction results are compared across the three models. The method and metrics of the 

evaluation will be introduced in detail in Section 2.3. The results can show whether the 

occupancy data improves the accuracy of baseline prediction. If the prediction accuracy is 

significantly improved by occupancy data, the next step will be executed. 

Step 4: Prioritization of Impact Factors. Based on horizontal comparison across models in the 

last step, this step further evaluates influence of occupancy factor by vertical comparison 

across factors. Besides the number of occupants, there are various uncertain factors which 

can impact energy consumption of buildings (e.g., outdoor air temperature, facility 

degradation and climate change). It is important to understand not only the influence of 

occupancy factor, but also its priority compared to other impact factors. Namely, this step is 

to identify which factor is more critical to the accuracy of baseline prediction. The results can 

provide guidance for selecting factors in baseline models. The method and metrics of the 

factor comparison will be introduced in detail in Section 2.4. 

2.2 Baseline prediction models  

Three baseline models are implemented to demonstrate the methodology. The first model is a 

simplistic “native” model, which only depends on one variable, the time of week. It serves as 

a comparative “floor” of performance [14]. The second model was developed by researchers 

at LBNL (Lawrence Berkeley National Laboratory), which includes two variables, outdoor 

air temperature and the time of week [8]. The third one is based on the LBNL model but 

includes the occupancy variable. The variables included in each model are illustrated in Table 

1. 
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Table 1 The variables included in each baseline model 

 Time of week Outdoor air temperature Occupancy number 

Model 1 

(the MW model) 
√   

Model 2  

(the LBNL model) 
√ √  

Model 3  

(the new model) 
√ √ √ 

 

Model 1: the MW (mean-week) model. This model only depends on one variable, the time 

of week. Consider N observed data points, where data point n  is from time nt including the 

observed load data L , 1,...,n N . The method is presented by Equation (1), where 
p

nL

denotes the prediction of baseline at point n , and time  denotes the time of the week (e.g., 10 

am on Monday). For example, the prediction of 10 am on a Monday is the average of 

historical data for 10 am on all Mondays.  

, ( )p p

n n time timeL L Mean L                                                  (1) 

 

Model 2: the LBNL model. This is a regression model including the variables of outdoor air 

temperature and the time of week. The temperature is considered as an important factor of 

energy use in buildings. The correlation between temperature and energy use is non-linear. In 

occupied mode, the temperature and energy consumption are normally positively correlated 

at higher temperature (due to cooling), negatively correlated at lower temperature (due to 

heating), and relatively un-correlated at moderate temperature (due to no cooling or heating). 

Therefore, the piecewise-continuous regressions of temperature variable are used in the 

LBNL model. There are two parts of energy use in this model, one is the time-dependent 

portion 
,

p

n timeL and the other one is temperature-dependent portion ,

p

n tempL . 
p

nL , the predictive 

baseline of total energy use at point n , is the sum of these two portions, shown in Equation 

(2). 
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, ,

p p p

n n time n tempL L L                                                         (2) 

The time-dependent portion 
,

p

n timeL  mainly represents the different features of energy 

consumption among different times. For example, the load is normally lower at night than at 

working time. 
,

p

n timeL  is modeled by dividing a week into 120 one-hour time slots (24 hours 

multiply 5 weekdays). An indicator ,n i and a coefficient i  are assigned to each time slot iS , 

for 1,...,120i  . The whole time-dependent portion 
,

p

n timeL can be calculated by summing the 

products of indicators and coefficients of all time slots, shown in Equation (3). 

120

, ,1

p

n time n i ii
L  


                                                       (3) 

The indicator ,n i , which is defined in Equation (3), serves to select which coefficient is 

active. For a given point  nt , only one indicator is one, while other 119 indicators are zero. 

When , 0n i  , the coefficients have no effect. 

,

            

         

1

0  

n i

n i

n i

if t S

if t S







 


                                                    (4) 

The temperature-dependent portion ,

p

n tempL  mainly represents the different features of energy 

consumption among different temperatures, which is probably most related to the heating and 

cooling systems behaviors. As aforementioned, ,

p

n tempL  is modeled by a piecewise-linear and 

continuous function. A number of temperature intervals need to be divided for this piecewise-

linear function and a temperature component ,n j  and a coefficient i  is assigned to each 

interval. The temperature nT is the sum 
,1

TN

n n jj
T 


 , where TN  is the number of 

temperature intervals and ,n j  is the portion of the nT  in interval j . For example, in the case 

study of [8], four intervals are defined (i.e., 20-40 ℉, 40-60 ℉, 60-80 ℉, 80-100 ℉). If the 
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given temperature 70nT  ℉, the values of four components are 
,1 20n  ℉, 

,2 20n  ℉, 

,3 10n  ℉, ,4 0n  ℉. The whole temperature-dependent portion ,

p

n tempL can be calculated by 

summing the products of temperature components and coefficients of all intervals, shown in 

Equation (5). 

, ,1

TNp

n temp j n jj
L  


                                                       (5) 

The predictive baseline 
p

nL  by Equation (2) can be transformed to Equation (6), where the 

coefficients i  and j can be computed by training with observed data. 

 
120

, , , ,1 1

TNp p p

n n time n temp i n i j n ji j
L L L   

 
                                 (6) 

Model 3: the new model. This new model is developed from the LBNL model by including 

the occupancy variable. Besides the outdoor air temperature and the time variables, the 

occupancy variable is added in this model. The predictive baseline 
p

nL  comprises three 

portions (i.e., the time-dependent portion 
,

p

n timeL , the temperature-dependent portion ,

p

n tempL  

and the occupancy-dependent portion 
,

p

n occL ). It is described in Equation (7), where the 

methods for computing 
,

p

n timeL  and ,

p

n tempL  are the same as the LBNL model. 

, , ,

p p p p

n n time n temp n occL L L L                                                  (7) 

The occupancy-dependent portion 
,

p

n occL  mainly represents the different features of energy 

consumption among different occupant numbers, which is probably most related to the 

occupant behaviors (e.g., turning on lights when arriving). Similar to ,

p

n tempL , 
,

p

n occL  can be 

modeled by a piecewise-linear and continuous function, since the dependence of load on 

occupant number is not a linear function either. The occupant number and energy 

consumption are normally positively correlated when buildings are moderate-occupied, but 
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are relatively un-correlated when buildings are heavily-occupied, since no more appliances 

can be turned on. 

A number of occupancy intervals need to be divided for this piecewise-linear function and an 

occupancy component ,n k  and a coefficient k  is assigned to each interval. The Occupant 

number nO  is the sum 
,1

ON

n n kk
O 


 , where ON  is the number of occupancy intervals and 

,n k  is the portion of the nO  in interval k . For example, if occupant intervals are defined (i.e., 

0-10, 10-20, 20-50, 50-100, 100-200) and the given number of occupants 120nO  , the 

values of five components are ,1 10n  , ,2 10n  , ,3 30n  , ,4 50n  , ,5 20n  . The whole 

occupancy-dependent portion 
,

p

n occL can be calculated by summing the products of occupancy 

components and coefficients of all intervals, shown in Equation (8). 

, ,1

OINp

n occ k n kk
L  


                                                       (8) 

The predictive baseline 
p

nL  by Equation (7) can be transformed to Equation (9), where the 

coefficients i  , j  and k  can be computed by regressing with observed data. Then the 

baseline of energy consumption can be predicted with the obtained coefficients. 

 
120

, , , , , ,1 1 1

T ON Np p p p

n n time n temp n occ i n i j n j k n ki j k
L L L L     

  
                    (9) 

In the model of this case study, TN  is set to 2 with the intervals (0-45℉, 45-100℉), and ON  

is set to 4 with the intervals (0-10, 10-50, 50-100, 100-200). 

 

2.3 Computing the accuracy of baseline models 

The accuracy of baseline models can be quantified by the metric CVRMSE  (coefficient of 

variation of the root mean square error) [14]. CVRMSE  is the root mean square error divided 



14 

by the mean of the data, which indicates the relative size of error. For example, a value of 0.1 

means the difference between prediction and observed data is 10% of observed data. The 

equation for CVRMSE  is provided in Equation (10), where ob

nL  and p

nL  are the observed data 

and baseline prediction reprehensively, and N is the size of the data set. 

2

1

1

( )
N ob p

n nn

N ob

nn

L L

N
CVRMSE

L

N












                                                    (10) 

Cross-validation is applied to facilitate the quantification of the baseline accuracy. The 

observed data is partitioned into several subsets. Some parts of them are used for model 

fitting and training, and other parts are used for validating. Then, the process is iterated by 

changing training set and validation set. In this study, the time interval to partition observed 

data is one month, since it is normally the utility bill period. First, the model is fitted by the 

data in one or several intervals (the training length can vary, and the sensitivity analysis of 

training length will be discussed in Section 3.5), and is validated by the data in the next 

interval. Then, the training set and validation set are shifted, and the process of training and 

validating is repeated until the end of data set. The schematic of the cross-validation 

processes is shown in Figure 3. 
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Training Comparing
CVRMSE1

Training Comparing
CVRMSE2

Training Comparing

CVRMSEm

Step 1

Step 2

Step M

…………

Training Set Validation Set Predictive Baseline

 

Figure 3 Schematic of the cross-validation processes 

 

In each step, a CVRMSE value can be obtained, and the finial indicator of prediction accuracy 

is the average of CVRMSE , CVRMSE . The equation for CVRMSE  is shown in Equation (11), 

where mCVRMSE  is the nMAE in the m-th step, and M is the number of steps. 

1

M

mm
CVRMSE

CVRMSE
M




                                                 (11) 

2.4 Calculating the influence of variables  

Besides comparing the accuracy of models, understanding the impact of each influencing 

factor is critical in baseline prediction. As shown in Figure 4, Model 1 includes the variable 

of time while Model 2 includes the variables of time and temperature. If the accuracy of 

Model 2 is improved, it should be caused by the incremental information of temperature.  
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Model 3

Time Temp Occ

Inputs:

Accuracy of Prediction

Outputs:

Model 2

Time Temp
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Accuracy of Prediction
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-

Accuracy Improvement 

by Temperature

-

Accuracy Improvement 
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State of the art 
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The proposed model 
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Figure 4 The process of calculating the influence of variables 

 

Since Model 1 and 2 are linear models, the impact of temperature factor tempImpact can be 

defined as the accuracy improvement of Model 2 compared to Model 1, shown in Equation 

(12). 

2 1

2

(%) 100%Model Model
temp

Model

CVRMSE CVRMSE
Impact

CVRMSE


                           (12) 

Likewise, as shown in Figure 4, the contribution of occupancy factor occImpact can be defined 

as the accuracy improvement of Model 3 compared to Model 2, shown in Equation (13), 

since the only difference between these two models is the variable of occupancy. If there are 

other impact factors involved in baseline models, the contribution of one factor can be 

defined with the same method: comparing the accuracy by controlling all other factors and 

changing the target factor. 



17 

3 2

3

(%) 100%Model Model
occ

Model

CVRMSE CVRMSE
Impact

CVRMSE


                           (13) 

3 Results 

3.1 Data preparation 

A case study was conducted to show how to quantify the availability of occupancy impact on 

the accuracy of baseline prediction by the proposed method. Building 101 in the Navy Yard, 

Philadelphia, Pennsylvania U.S. was used in this case study. The building is one of the 

nation’s most highly instrumented office buildings and is the temporary headquarters of the 

U.S. Department of Energy’s Energy Efficient Building Hub (EEB Hub) [35]. Various 

sensors have been installed by EEB Hub since 2012 to acquire building data of occupants, 

facilities, energy consumption and environment. The profile of Building 101 is shown in 

Table 2. 

Table 2 The profile of Building 101 

 

Location Philadelphia, US 

Size 6410 m
2
  

Floor 3 floors 

Constructed Year  1911 

Building Usage Office 

 

 

Four sensors are installed at the gates of the building to record the number of occupants 

entering and exiting. The sensors are located at the first floor in Building 101, shown in 

Figure 5. This study uses the data from the year 2014 and the time step is five minutes. The 

data format of raw sensor records is shown in Table 2. The set ( 1,in nN , 2,in nN , 3,in nN , 4,in nN ) 

denotes the number of entering occupants, while the set ( 1,out nN , 2,out nN , 3,out nN , 4,out nN ) denotes 

the number of exiting occupants at the n-th time step. Therefore, the number of total 

occupants in building can be calculated by Equation (14). 
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1, 2, 2, 2, 3, 3, 4, 4,( )O in n out n in n out n in n out n in n out n

n

N N N N N N N N N                    (14) 

Sensors
Unused Doors
Occasional Door

 

Figure 5 locations of occupancy sensors in Building 101 

 

 

 

Table 3 The data format of sensor records 

 

Time step 
Sensor1 Sensor2 Sensor3 Sensor4 

In Out In Out In Out In Out 

1/1/2014 0:00 Nin1,1 Nout1,1 Nin2,1 Nout2,1 Nin3,1 Nout3,1 Nin4,1 Nout4,1 

1/1/2014 0:05 ….. ….. ….. ….. ….. ….. ….. ….. 

1/1/2014 0:10 ….. ….. ….. ….. ….. ….. ….. ….. 

….. ….. ….. ….. ….. ….. ….. ….. ….. 

12/31/2014 23:50 ….. ….. ….. ….. ….. ….. ….. ….. 

12/31/2014 23:55 Nin1,n Nout1,n Nin2,n Nout2,n Nin3,n Nout3,n Nin4,n Nout4,n 

 
 

The electricity consumption data of the whole building and sub-systems (i.e., lighting, HVAC 

and plug load) was recorded by sub-meters in 15-minute intervals. Based on this data set, the 

hourly, daily and monthly energy use of each system can be calculated. The outdoor air 

temperature was recorded every 15 minutes. Therefore, all the three categories of data 

(occupancy, temperature and energy use) can be obtained by sensors and meters in Building 

101. After harmonizing, rescaling, cleaning and formatting the raw data, it is ready for the 

further analysis. 
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3.2 Correlation between occupancy and energy consumption 

The correlation between occupancy and energy consumption was investigated with three 

methods: time series, scatter plots and correlation coefficient tests. Figure 6 illustrates the 

comparison of the hourly energy consumption and the occupant number. Similar to the 

ASHRAE 90.1 standard, the occupancy curve during 24 hours represents the dual-peak 

feature, but the noon-drop is not as deep as that in the ASHRAE 90.1 standard. According to 

the feature, the occupancy curve can be divided into six periods [36]: (1) the night period (7 

pm to 6 am); (2) the going-to-work period (7 am to 9 am); (3) the morning period (10 am to 

12 pm); (4) the noon-break period (12 pm to 1 pm); (5) the afternoon period (2 pm to 3 pm); 

and (6) the going-home period (4 pm to 6 pm). According to the distribution of the boxplot, 

the higher uncertainties of the occupant number occurred during going-to-work and going-

home periods.  

The main feature of energy consumption is similar to that of the number of occupants (lowest 

at night, increasing in the morning and decreasing in the afternoon), but is not quite 

synchronized. The energy consumption curve can be divided into four periods: (1) the valley 

period (10 pm to 3 am); (2) the increasing period (4 am to 9 am); (3) the peak period (10 am 

to 5 pm); (4) the decreasing period (6 pm to 9 pm). The energy consumption rises about three 

hours earlier than occupants arriving, and falls around two hours later than occupants leaving. 

It indicates that the operation schedule of building energy systems is around five hours longer 

than occupied time in this building. In addition, it needs to be noted that the energy 

consumption does not have dual-peak feature. Namely, the energy consumption keeps the 

peak value during noon-break, which indicates the lights, HVAC and other plug load 

equipment are not turned off when occupants leave for lunch.  



20 

Figure 6 Hourly Energy consumption and occupant number in weekdays. Boxplots show median, quartiles, 

extreme values, means (blue circles) and outliers (+) of the data set. 

Figure 7 shows the correlation between the number of occupants and energy consumption by 

scatter plots. The color bar indicates the time of the day. The color is closer to red when time 

is closer to noon, while the color is closer to blue when time is closer to midnight. The total 

load and occupant number present positive correlation. Although not very significant, the 

trend can be discovered: the more occupants there are, the higher the total load is. The 

lighting and plug load systems show more significant positive correlation between energy use 

and occupant number. Especially in the plug load system, the slope is high, which means a 

given change of occupant number will cause relatively large change of energy use. 

Nevertheless, the occupant number does not show significant correlation with energy use in 

HVAC systems. 
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Figure 7 The correlation between the number of occupants and energy consumption 

To compare with occupancy, the temperature was likewise analyzed to show the correlation 

with energy use. As shown in Figure 8, during night (blue dots), the total load is not related to 

temperature. During daytime (yellow and red dots), there is significantly positive correlation 

when temperature is higher than 40 ℉, otherwise, there is no significant correlation between 

them. The HVAC system is similar to the total load, but the correlation is more significant. 

There is no significant correlation in lighting and plug load systems. Since Building 101 uses 

gas for heating rather than electricity, the total energy use does not rise in lower temperature. 

However, the energy use in plug load system rises slightly in lower temperature, probably 

due to personal electric heaters. 
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Figure 8 The correlation between the temperature and energy consumption 

Besides the visualization of correlation by scatter plots, correlation analysis is adopted to 

calculate the correlation coefficients, shown in Table 4. In vertical comparison, the 

coefficient of occupant number (0.74) is 30% higher than that of temperature (0.44) in total 

energy use. This premium becomes greater in lighting and plug load systems, which are 60% 

and 81% respectively. The coefficients in HVAC system are approximately equal. Therefore, 

overall, the occupant number has much higher correlation with energy use than outdoor air 

temperature. 

In horizontal comparison, the occupancy is more correlated to lighting and plug load systems, 

while the outdoor temperature is more correlated to the HVAC system. These results are 

consistent with common sense and previous studies [36, 37], because the lighting and plug 

load are controlled by occupants, but the HVAC system mainly depends on the outdoor air 

temperature. 
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Table 4 The correlation coefficients between occupancy/temperature and energy consumption 

 
Total Electric 

Load 
HVAC Lighting Plug Load 

Number of Occupants 0.74* 0.54* 0.73* 0.86* 

Outdoor Air Temperature 0.44* 0.58* 0.13* 0.05* 

* p-value <0.001 

 

3.3 Accuracy of baseline models 

The results in Section 3.2 have proved that the occupant number is highly correlated to 

energy consumption. The further question is whether the accuracy of baseline models can be 

improved by including the occupancy variable. To answer this question, Model 3, which uses 

the time, outdoor air temperature and occupancy variables, is implemented to compare with 

the previous methods. Since the volume of results is huge (a whole year in 1-hour intervals), 

it is difficult to show all the results. Therefore, one week of results is shown in Figure 9, with 

comparison of observed data and results of three models. 
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Figure 9 The observed load and predicted load by three models (from 11th-15th August 2014) 

 

The accuracy of each model, measured by CVRMSE , is shown in Figures 10-13. The lower 

value of CVRMSE  indicates the higher accuracy. 

 Figure 10 illustrates the accuracy of baseline models in total load prediction. The 

values of CVRMSE  in Model 1 are around 0.25 during working time. The peak 

values are around 0.45, which are from 4 am to 6 am, and the valley values are around 

0.1 which are at 8 pm. After including the outdoor temperature variable, the accuracy 

of Model 2 is improved significantly. The values of CVRMSE  are mostly below 0.15, 

and higher CVRMSE  values beyond 0.15 occur from 2 am to 6 am. The accuracy of 

Model 3 is slightly improved from Model 2, and the shape of CVRMSE  curve is very 

similar. 
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 Figure 11 illustrates the accuracy of baseline models in HVAC load prediction. It 

indicates that Model 1 is poor at HVAC load prediction. The CVRMSE  values in 

Model 1 are mostly beyond 0.5, which means most prediction values deviate from 

observed value by more than 50%. The peak value is around 0.9 at 4 am. After 

including the temperature variable, the accuracy of Model 2 is improved significantly. 

The values of CVRMSE  drop to below 0.2 during daytime (6 am to 6 pm), but the 

values of CVRMSE  are still higher than 0.5 at night (from 7 pm to 3 am). By 

including the occupancy variable, the accuracy of Model 3 is not significantly 

improved in most time, except 7 pm to 12 am. The shape of CVRMSE  curve is very 

similar. The big differences of accuracy in HVAC load prediction are probably caused 

by the operation schedule, which is related to neither occupancy nor outdoor 

temperature in this building. It will be discussed in detail in Section 4. 

 Figure 12 illustrates the accuracy of baseline models in lighting load prediction. 

Model 1 performs well at lighting load prediction. The CVRMSE  values in Model 1 

are mostly below 0.1. But the CVRMSE  values rise sharply at 6 am and 9 to 10 pm. 

After including the outdoor temperature variable, the accuracy of Model 2 is 

improved significantly at 6 am and 9 to 10 pm, which the CVRMSE  values drop to 

around 0.15. By involving the occupancy variable, the accuracy of Model 3 is slightly 

improved in daytime (from 8 am to 6 pm), but not improved in other hours. The shape 

of CVRMSE  curve is very similar.  

 Figure 13 illustrates the accuracy of baseline models in plug load prediction. Model 1 

performs well at lighting load prediction. The CVRMSE  values in Model 1 are mostly 

below 0.1. The two peak values of CVRMSE  occur at 8 am and 6 pm. After including 
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the outdoor temperature variable, the accuracy of Model 2 is improved, which the 

CVRMSE  values drop to below 0.09. By involving the occupancy variable, the 

accuracy of Model 3 is significantly improved, especially during working time (6 am 

to 7 pm). All the CVRMSE  values of Model 3 drop to below 0.08. Different from the 

other two systems, the shape of CVRMSE  curve of Model 3 for plug load is not 

similar to that of Model 2.  

  

Figure 10 The accuracy of baseline models for total electric load prediction 

 

 

Figure 11 The accuracy of baseline models for HVAC load prediction 
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Figure 12 The accuracy of baseline models for lighting load prediction 

  

Figure 13 The accuracy of baseline models for plug load prediction 
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occupancy and temperature are calculated and compared using the method introduced in 

Section 2.4. 

Figure 14 illustrates the contribution of occupancy data on the accuracy of baseline prediction. 

The results show that occupancy data improves lighting and plug load prediction most 

significantly, especially during working time (8 am to 6 pm). But the improvement is not 

significant in HVAC load prediction, lower than 10%. Overall, the occupancy data improves 

the total energy prediction by around 10% during daytime (6 am to 6 pm), but less 

improvement at other times. 

  

Figure 14 The contribution of occupancy data on the accuracy of baseline prediction 
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but lower contribution on energy prediction, which seems inconsistent. The reasons of this 

problem will be discussed in Section 4. 

Table 5 The statistical profile of the contributions by occupancy and temperature factors 

 
occ

Impact  
temp

Impact  

 Max Mean Median Max Mean Median 

HVAC 9% 5% 5% 72% 46% 64% 

Lighting 21% 12% 7% 38% 13% 10% 

Plug Load 27% 15% 9% 20% 10% 9% 

Total 18% 10% 8% 66% 44% 57% 

 

3.5 Sensitivity analysis  

There are three critical parameters influencing the prediction results in baseline models. First 

is the length of the training data period. The baseline models use previously observed data to 

train and fit models. The length of the training period will impact the training effect and 

further impact the accuracy of baseline prediction. The length should be neither too short nor 

too long [8]. If the training is too short, it cannot provide enough information to fit the model. 

If the training is too long, it may include useless or harmful information to the model. Since 

the building performance and occupant activities change over time, the data of the building in 

the distant past does not help predict the building performance in the future. For example, 

over a period of years, the base load of the building is likely changed. There will be a 

considerable bias if using data from years ago. The number of occupants and their energy use 

behaviors can be likewise changed during a long time, so the historical data can no longer 

reflect the current building performance.  

The other two critical parameters are the piecewise number of occupancy and the outdoor 

temperature in regressions. As mentioned in Section 2.2, Model 3 is piecewise-continuous 

regressions of the occupancy and temperature variables. The piecewise number will impact 

model fitting. Fewer segments will sacrifice accuracy of the model, while too many segments 
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can cause over-fitting and high computing cost. Therefore, how to define these segments 

appropriately is an important issue in the baseline model.  

Sensitivity analysis is applied to evaluate the influence of these parameters on baseline 

models. Figure 15 shows the accuracy of baseline models during different training periods. 

The CVRMSE  of Model 1 first increases with the training period and reaches the peak value 

at five months, then decreases. It can be explained that when the training period is five 

months, it uses training data from winter to predict the building performance in summer. As 

Model 1 does not include the outdoor temperature variable, the prediction should be at lower 

accuracy. It verifies the aforementioned hypothesis, that longer training period may be 

harmful to accuracy. The CVRMSE  of Models 2 and 3 fluctuate in short training periods, and 

reach convergence after three months. Their curves are almost coincident after three months, 

and Model 3 is slightly below Model 2. In short training periods (one to three months), Model 

3 shows faster convergence and narrower range of fluctuation. It can bring not only technical 

but also economic benefits, since the time for data gathering can significantly impact the 

costs, investment return and payback period [8]. 

 

Figure 15 Accuracy of baseline prediction under different training periods  
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Figure 16 shows the accuracy of Model 3 under different piecewise number of occupancy and 

temperature data. For the temperature curve, The CVRMSE  of Model 3 drops sharply from 

one segment to two segments, then decreases slowly with more than two segments, where the 

changes are lower than 2%. It means the piecewise number of temperature should be more 

than 2. For the occupancy curve, the CVRMSE  of Model 3 stays stable over different 

piecewise numbers. Therefore, different segment definitions of the occupancy variable will 

not impact the accuracy of model significantly. 

 

Figure 16 Accuracy of baseline prediction in Model 3 under different piecewise number of occupancy and 

temperature data 
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the three baseline models, time of week is an important variable, which includes 120 one-

hour time slots (24 hours multiply five weekdays). Although occupant number changes over 

time stochastically and is in high uncertainty, the occupant number in each time slot is in 

relatively low uncertainty. As shown in Figure 6, during 12 hours (7 pm to 7 am) of a day, the 

uncertainty of occupancy is close to zero. During the other 12 hours, the uncertainty of most 

occupancy data is under 20%. It means the time variable is highly correlated with occupancy 

and can provide most occupancy information. Therefore, the occupancy variable cannot 

provide much incremental information to the model. 

The other reason is that the operation schedule mainly depends on time rather than occupancy. 

As shown in Figure 6, the operation time is much longer than occupied period. For example, 

the energy consumption significantly rises from 4 am, and the load has reached nearly 80% of 

mean peak load at 6 am, while there are fewer occupants in the building. Figure 6 can 

likewise verify this issue. Except plug load, the energy consumption can nearly reach peak 

value in the early morning and late afternoon. It means building systems are controlled by 

operation schedule rather than occupants. Therefore, the time variable is better to reflect 

energy consumption than the occupancy variable. 

After clarifying the reasons of the last question, there is a further question: whether the 

occupancy variable can be removed from baseline model due to its less contribution. On the 

contrary, although the contribution of occupancy variable to accuracy is not as significant as 

temperature in this case, it can be an important indicator in M&V for energy efficiency 

retrofit. First, it can indicate the occupancy-related risk. According to the aforementioned 

first reason, the contribution of occupancy variable is lower when occupancy is more 

correlated to the time. In this case study, the low contribution of occupancy indicates the 

occupancy-related risk is low in this building, mainly because it is an office building and the 

occupancy is regular during one year. Conversely, the high contribution means the occupancy 
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is highly uncertain and stochastic. If the occupancy-related uncertainty is very high (e.g., 

hotels), it needs to carefully consider the occupancy-related risk in retrofit decision making. 

Furthermore, it can clarify whether the changes of energy use are from retrofit or operation. 

Some buildings cannot achieve the energy saving target after retrofit, and common disputes 

are focused on whether it is caused by ineffective retrofit or inappropriate operation. If the 

occupancy does not significantly change but the contribution of occupancy is abnormally low, 

it indicates the operation schedule is inconsistent with the occupancy schedule and is more 

responsible for the excessive consumption. 

There are three advantages of the proposed baseline model. First, this study defines the 

metrics to quantify the influence of occupancy. Numerous previous studies emphasized the 

impact of occupancy on M&V, however the quantified influence of occupancy is under-

developed. Without this, it is difficult to improve baseline models as well as facilitate real 

projects of energy efficiency retrofit. Based on the proposed metrics, the contribution of 

different variables in the baseline models can be analyzed and compared. The proposed 

metrics can then be used to evaluate other factors in the baseline models.  

Second, the proposed method zooms into the hourly performance and different systems of 

baseline models. Previous studies only provided the overall whole building results of baseline 

prediction, but the performance of model varies across hours and systems. For example, the 

load prediction for HVAC system is very accurate at daytime ( CVRMSE  is less than 0.2), but 

rises dramatically at night ( CVRMSE  is more than 0.6), shown in Figure 11. To improve 

baseline models, future research can pay more attention to these issues. Therefore, this 

method provides a “magnifying lens”, which can help diagnosis and trouble shooting. 

Third, the proposed method requires simple input data and algorithm. Three types of data are 

needed in the model, namely the occupancy data (available in most commercial buildings for 
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security reasons), energy consumption (most commercial buildings have electricity meters 

capable of providing short-interval data [8]) and the outdoor air temperature (available from 

local temperature sensor or weather stations). Data limitation is a main barrier in data mining, 

so the simple data requirement is a considerable benefit for modeling. In addition, this 

method only uses simple regression algorithm, which is easy to implement and fast in data 

processing.  

The results of this study can be applied in energy efficiency retrofit projects. Before retrofit, 

it can offer suggestions of data collection, decision making and risk assessment. For example, 

if the projects are mainly for HVAC, occupancy factor can be ignored. However if the 

projects are mainly for plug load, it is necessary to collect occupancy data before retrofit 

since it influences the energy baseline significantly. For the risk assessment, the results of this 

study can also indicate the uncertainty of energy baseline model impacted by occupancy. If 

the uncertainty is relatively high, the investment strategy may be changed. After retrofit, the 

results of this study can improve the energy saving assessment by including the occupancy 

factor. It is critical for ESCOs, since the profits of ESCOs mainly depend on the calculated 

energy savings. 

5 Conclusions 

Baseline prediction is a key issue in M&V and energy efficiency retrofit of buildings. 

Occupancy, as a critical impact factor of energy consumption, has been emphasized in 

previous studies. However, few previous studies used the occupancy variable in baseline 

models or quantified the influence of occupancy variable on baseline prediction. 

This study develops a new baseline model by including the occupancy data into the existing 

LBNL baseline model, and proposes metrics to quantify the accuracy of prediction and the 

impacts of variables. First, correlation between occupancy and energy consumption is 

visualized and analyzed by time series plot, scatter plot and statistical method. Then, the 



35 

accuracies of the three baseline models are compared with the CVRMSE  metric. Thirdly, 

based on the accuracy of models, the contributions of variables are quantified and compared. 

Finally, the sensitivity analysis is conducted to evaluate the influence of parameters in models. 

The main findings are highlighted as follows: 

1) The correlation between occupancy and total building energy consumption is very 

high. Occupancy is most correlated to plug load and lighting, with the correlation 

coefficients of 0.86 and 0.73 respectively. Outdoor air temperature has much lower 

correlation with energy consumption than the occupancy. 

2) The contribution of the occupancy variable is relatively low (lower than contribution 

of temperature). It is mainly because the time variable can provide most information 

of occupancy and the operation schedule is inconsistent with the occupied time. 

3) The model including the occupancy variable shows faster convergence and narrower 

range of fluctuation in short training periods. When training periods are getting 

longer, the results of the models with and without the occupancy variable are getting 

closer. 

4) The piecewise number of occupants in regression does not impact results significantly. 

But the piecewise number of the outdoor air temperature should be more than 2. 

There are several limitations of this study. First is the reliability of the source data. Due to the 

sensor failure and other reasons, there is some missing data. And there is a small door used 

occasionally, shown in Figure 5, which causes the entering number and exiting number to 

sometimes not be equal. Although the deviation is lower than 5%, it still impacts the accuracy 

of results. In addition, due to data availability, the case study only uses data from a single 

building and the time span is one year, so the results should be used with caution. Building 

101 is a typical office building, the occupancy is regular over time. It cannot represent other 
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building types with highly random occupancy (e.g., hotels). Third, there are various methods 

for energy prediction (e.g., change-point regression, ANN, SVR, etc.). The LBNL model is 

only an example method as function of energy prediction in this study to calculate the 

occupancy influence on energy prediction quantitatively. But based on the results of this 

study, occupancy data can be included in more methods to investigate the occupancy 

influence in further study.  

Further research of occupancy in baseline prediction can focus on: (1) using larger data sets 

for potentially better results; (2) applying more methods and improving algorithm of the 

baseline model. It needs to consider the tradeoffs among result accuracy, algorithm 

complexity and length of training period; (3) comparing occupancy influences among 

different types of buildings and developing benchmarks of M&V for energy efficiency 

retrofit. 
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