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Disclaimer 

 

This document was prepared as an account of work sponsored by the United States 

Government. While this document is believed to contain correct information, neither the 

United States Government nor any agency thereof, nor the Regents of the University of 

California, nor any of their employees, makes any warranty, express or implied, or 

assumes any legal responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents that its use would not 

infringe privately owned rights. Reference herein to any specific commercial product, 

process, or service by its trade name, trademark, manufacturer, or otherwise, does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by the 

United States Government or any agency thereof, or the Regents of the University of 

California. The views and opinions of authors expressed herein do not necessarily state or 

reflect those of the United States Government or any agency thereof or the Regents of the 

University of California. 
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Abstract 

 

Deviations between predicted and actual building energy consumption can be attributed 

to uncertainties introduced by four components of such projections: (1) the accuracy of 

the underlying models in simulation tools, (2) the accuracy of input parameters 

describing the design conditions of building envelope and HVAC systems, (3) actual 

weather, (4) variations in building operation practices.  This study investigates 

uncertainties in energy consumption due to actual weather and building operational 

practices, using a simulation-based analysis of a medium-size office building. The 

combined effect of poor practice in building operations across multiple parameters results 

in an increase in energy use of 49-79% across four selected cities, while good practice 

reduces energy use by 15-29% across the cities. The impact of year-to-year weather 

fluctuation on energy use ranges from -4% to 6%. To determine the uncertainty 

distribution profile for annual energy use, a Monte Carlo method is applied to sample the 

possible combinations. This study finds that the uncertainty distribution in annual energy 

consumption approximately follows a log-normal distribution, and shows that the 

uncertainty range due to operational factors even at an 80% confidence level can dwarf 

the impact of design features. 

 

Keywords: Building operations, Uncertainties, EnergyPlus, Monte Carlo Analysis 

 

1. Introduction  

The prediction of building energy consumption is a complicated task. In addition to first 

principle models required to characterize building systems and components, detailed 

information about the building envelope, HVAC systems, and weather must be taken into 

consideration. The dynamic behavior of weather conditions and building operations, and 

the impact of multiple building characteristics, call for the use of simulations to facilitate 

design and operation for better building performance. However, significant deviations in 

terms of building energy consumption between measured performance and model-

predicted results at design stage are reported for low-energy buildings[1]. Deviations 

between predicted and actual building energy consumption can be attributed to 

uncertainties introduced by four components of such projections: (1) the accuracy of the 
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underlying models in simulation tools, (2) the accuracy of input parameters describing 

the design conditions of building envelopes and HVAC systems, (3) actual weather, (4) 

actual building operations. An estimate of the degree of uncertainties contributed from 

each factor is of importance to improve the robustness of simulation models and help the 

modeler and customer have a better understanding of building simulation results.  

 

In the last decade, there have been several important research efforts focused on the 

investigation of uncertainties in input parameters for building design support. However, a 

review of the literature shows there are limited data available describing uncertainties for 

design parameters in building simulation. Macdonald and Strachan [2] applied a Monte 

Carlo uncertainty analysis for thermal properties of construction materials, weather, 

internal heat gains, and infiltration rate to evaluate the variation of energy consumption 

using assumed uncertainty distribution patterns. Holm and Kuenzel [3] evaluated the 

impacts of materials properties and surface coefficients on hygrothermal building 

simulation using a Monte Carlo analysis. De Wit and Augenbroe [4] addressed the effects 

of uncertainty in two important factors —wind-pressure coefficients and room air-

temperature distribution— on simulation results for design evaluation. Macdonald and 

Clarke [5] integrated uncertainty algorithms within the engine of ESP-r simulation tool. 

The predicted uncertainty in conductivity, heat capacity, and thickness using an 

integrated approach within the simulation code was compared with Monte Carlo and 

differential analysis. Their study also discussed the issue of non-convergence of building 

simulations. This non-convergence was caused by the introduction of new terms for 

uncertainty analyses that were uncorrelated to previously existing terms.  Cóstola et al. [6] 

investigated the effect of uncertainties in wind-pressure coefficients (Cp) on air 

infiltration and ventilation simulations. Breesch and Janssens [7] conducted uncertainty 

and sensitivity analyses in climate and design-related parameters for thermal comfort 

evaluations of passive cooling in office buildings. Domínguez-Muñoz et al. [8] studied 

the impacts of uncertainties in 20 design-related parameters on the simulated peak-

cooling loads using a Monte Carlo analysis. Hopfe and Hensen [9] described a case study 

of uncertainty analysis in building simulation introduced by design parameters. Tian and 

de Wilde [10] explored the uncertainties in climate, construction material properties, 
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infiltration rate, internal loads, and equipment efficiency for building simulations of an 

office building in the UK. 

 

Few studies have been done to investigate the effects of uncertainties in building 

operations-related parameters on building energy consumption for HVAC systems. In 

fact, building operations-related parameters that are based on the interpretation and 

assumptions of ideal operation from energy modeling at the design stage can lead to a 

wide range of uncertainties in building energy simulation. Combining building operations 

scenarios can yield significantly different building energy consumption results should any 

of these scenarios change. Ardehali and Smith [11] evaluated HVAC system operation 

strategies for energy conservation of constant-volume systems including night purge, 

system optimum start-and-stop, chilled water reset, and condenser water reset. Huang et 

al. [12] reported 17% energy savings by adjusting five energy management control 

functions for HVAC system. Using the eQUEST building simulation tool, NBI [13] 

studied the impact on building energy consumption of 28 building features, which 

include three operations-related parameters.   

 

This study investigates the uncertainties in building energy consumption introduced by 

building operations and weather using a simulation approach for a commercial reference 

office building [14]. The study was conducted as part of a Department of Energy (DOE) 

project to examine the impact of incorporating energy efficiency metrics into the 

commercial building mortgage valuation process [15]. Uncertainty in energy use causes 

volatility of net operating income, which in turn affects the value of commercial building 

mortgages. In this study, the design-related parameters such as window- to-wall ratio, U-

value, nominal equipment efficiency, etc., are considered as fixed values. Its primary 

purpose is to understand the degree of uncertainty in energy consumption due to 

identified individual operation parameter and interactive effects among operations 

parameters.  

 

2. Building model description  
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The commercial building reference model for a medium-size office building is modified 

in compliance with ASHRAE 90.1-2007 and is used as a baseline for the study to 

investigate the impacts of operation parameters and weather on building energy 

consumption. There are three stories and 15 thermal zones (four perimeter zones and one 

core zone for each floor) in the medium-size office reference model. The window to wall 

ratio (WWR) is 0.48 for four orientations. Both lighting-power density and electric plug-

load density is 10.76W/m
2
. A multi-zone VAV system, with a two-speed DX cooling coil 

and a gas burner, is used to provide the conditioned environment for each floor. An 

electric reheating coil is available for each thermal zone.  

 

3. Uncertainties in annual energy use due to weather variation  

Most building energy models are simulated using TMY (typical meteorological year). 

There are three major reasons why TMY data rather than actual weather data are widely 

used by building designers: (1) TMY represents hourly meteorological values that typify 

conditions at a specific location over a long period of time, such as 30 years. (2) Most 

public weather stations are located outside of cities, so that the measured weather 

conditions may not be applicable to the designed site [16], and local weather data for 

solar radiation are often not available. (3) It is costly to acquire a weather station with 

accurate sensors and to ensure the quality of measured data.  

 

However, for the purpose of investigating the uncertainties in energy consumption due to 

weather fluctuations, historical data are needed. Weather files for a period of 10-15 years 

were created according to the required format of EnergyPlus, using actual weather data 

obtained from a commercial vendor. Key parameters including dry-bulb temperature, 

dew-point temperature, relative humidity, wind speed, wind direction, and sky cover are 

obtained directly based on data recorded hourly by weather stations in each city, while 

hourly direct solar radiation and diffuse solar radiation data estimates are provided by 

meteorologists.  

 

The annual site energy consumption using TMY3 weather files is used as a baseline for 

comparison with the simulated annual site energy consumption using historical weather 
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files. Four cities —Washington DC, Chicago, Atlanta, and San Francisco— are chosen to 

represent four climates in the United States. The box-and-whisker chart (Figure 1) 

illustrates the statistical spread of the uncertainties of total site energy consumption 

introduced by weather.  The tips of the whiskers represent the maximum and minimum 

variations of total energy consumption. The bottom and top of a box represent 25
th

 and 

75
th

 percentiles of the energy variations, respectively. A negative or positive percentage 

of a variation indicates that, in a particular year, the predicted annual site energy 

consumption using an actual weather file for that year is, respectively, less than or greater 

than that using TMY weather file.  The ranges of uncertainties in annual energy 

consumption vary according to climate. For example, there is less variation of annual 

energy consumption for San Francisco, located in warm-marine climate, than the ranges 

in uncertainties for other cities. The uncertainty range due to weather of San Francisco is 

from -0.5% to 3.0%.   This could be attributed to the fact that the climate in San 

Francisco is relatively mild and requires less heating and cooling than other climates. The 

variation of annual energy consumption for Atlanta is from -2.2% to 5.1%. Based on the 

annual energy prediction using TMY data, the uncertainties in annual energy 

consumption introduced by actual weather variations during the period of 10-15 years, 

depending on the availability of weather data, ranged from -4.0% to 6.1% for the four 

typical climatic zones. The uncertainties due to weather for the 25
th

 and 75
th

 percentiles 

are in the range of -2.5% and 1.8%.  

 

These results show that the impacts of year-to-year weather variations may be significant 

for the purpose of evaluating energy saving retrofits, but they are relatively minor 

compared to the uncertainty due to operational parameters, as explained in the next 

section.  



8 

 

 

Figure 1. Uncertainties in annual site energy consumption due to actual weather, relative to TMY weather 

data  

 

4. Uncertainties in annual energy use due to building operations  

The way in which a building is operated plays an important role in its energy 

consumption. While still maintaining the same level of indoor thermal environment, 

various operation practices for buildings may result in significantly different energy use. 

Based on inputs from commissioning providers, we categorized common operation 

practices into three different levels of practice —good, average, poor —and identified 

key parameters to describe the characteristics of building operations. The uncertainties in 

annual energy consumption introduced by each parameter and combination of multiple 

parameters are investigated using building energy simulation.  For each simulation, 

thermal comfort parameters were checked to ensure that indoor thermal comfort 

requirements were met for all scenarios.   

 

4.1 Development of baseline model and range of practices 

A range of practice for key building operations, listed in Table 1, is defined in the study 

to evaluate the impact of each parameter on building performance.  

Table 1. Range of practice in building operations for a medium-size office building 
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4.1.1 Lighting control  

Lighting load represents about 30% of overall building energy consumption. Advanced 

lighting control is one of most effective measures for building retrofits [17]. The 

uncertainties in energy consumption that result from different lighting controls for a 

facility with the capability of automatic daylight and occupancy sensors were explored in 

the study. In good practice, electric lights continuously dim in perimeter zones when 

daylight illuminance increases, at reference points located 2 m from the facade inside 

thermal zones, up to the illuminance setpoint (500 lx). In good practice, interior shades 

may also be implemented to prevent discomfort glare. Interior shades will be pulled down 

when the glare index is above 20. In average practice, occupancy sensors automatically 

switch the lighting on or off, as demonstrated in the operations schedule shown in Figure 

2. In poor practice, occupants keep lights turned on throughout occupancy hours as 

shown in Figure 3.  

Operation parameters Good practice Average practice Poor practice

Lighting control 
Dimming control based on 

illuminance setpoint and 

Light on/off based on 

occupancy sensor
Manual switch on/off 

Plug-in equipment control 
Turn off when occupants 

leave
Sleep mode by itself No energy saving measures

HVAC equipment operation schedule 
6am to 8pm and one hour 

warm-up period 

6am to 10pm and one hour 

warm-up period 

5am to midnight and two hours 

warm-up period 

Room temperature setpoints  for 

occupied hours 

20 ºC for heating; 25 ºC for 

cooling 

21 ºC for heating; 24 ºC for 

cooling

22 ºC for heating; 23 ºC for 

cooling

VAV box minimum-flow setting 15% of design flow rate. 30% of design flow rate. 50% of design flow rate. 

Economizer cycle 
Integrated economizer with 

dry bulb temperature control

Non-integrated economizer 

with dry-bulb temperature 

control

No economizer 

Night setback 
12.7 ºC for heating set point 

and 30 ºC for cooling set 

15.6 ºC for heating set point 

and 28.4 ºC for cooling 

18.3 ºC for heating setpoint and 

26.7 ºC for cooling setpoint for 

SAT control 
SAT reset based on 

warmest zones 

SAT reset based on stepwise 

function with outdoor air 
Constant SAT

Vacant spaces 

Range of room setpoints: 

12.8 ºC -32.2 ºC; no 

lighting/plug loads 

N/A

Rooms setpoints are the same as 

occupied space, no plug loads, 

30% of design lighting loads 
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Figure 2. Lighting schedule with occupant sensor control 

 

 
Figure 3. Lighting schedule with manual controls 

4.1.2 Plug loads 

Plug loads can account for a significant percentage of energy consumption in commercial 

buildings. The levels of practice correspond to the degree to which plug loads are turned 

off at night. The plug-load schedules for the range of practice are shown in Figure 4. 

 
Figure 4. Hourly plug-load profile for weekdays and weekends 

4.1.3 HVAC equipment operation schedule  

The HVAC operation schedule is set to enable the HVAC equipment to provide comfort 

conditions for a given occupancy schedule. The range of practices for HVAC operation 

schedules used in this analysis are listed in Table 1. Good practice is represented in the 
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table by the case of a building operator who carefully tracks the occupancy schedule and 

sets the HVAC schedule as close to it as possible without sacrificing comfort. Average 

practice is represented by the HVAC operation schedule in the reference model. Poor 

practice is represented by the case of a building operator who sets the HVAC to run for a 

period much longer than the occupancy schedule.  

4.1.4 Night setback 

Setting the heating setpoints a few degrees lower, and the cooling setpoints a few degrees 

higher for unoccupied hours at night and during weekends, can significantly reduce 

heating and cooling energy. The period for night setback is from 10:00 pm- 5:00 am for 

weekdays. The cooling and heating setpoints for the period of night setback for the range 

of practices are summarized in Table 1. There is about a 3.3 °C temperature difference 

for the cooling setpoint and 5.6 °C temperature difference for the heating setpoint across 

the good, average, and poor practice setpoints for night setback.  

4.1.5 VAV box minimum flow setting  

Variable air volume (VAV) terminal boxes modulate VAV damper positions to adjust the 

supply airflow and reheat valve (if equipped) in sequence to maintain the zone 

temperature setpoints. In cooling mode, the supply airflow is modulated between its 

maximum and minimum settings to maintain the zone cooling setpoint. In heating mode, 

the supply airflow is typically set to minimum and the reheat valve is modulated to 

maintain the zone heating setpoint. Setting of the minimum airflow is tricky because 

there is a trade-off between indoor comfort and energy use. A higher minimum airflow 

setting can provide better ventilation in the space, but as a consequence of simultaneous 

heating and cooling, it comes at the expense of high fan power as well as extra heating 

and cooling energy use. Minimum airflow fractions of 15%, 30%, and 50% of the 

maximum airflow are used to represent the range of practice in this parametric study.  

4.1.6 Supply air temperature reset  

In good practice, the supply air temperature is reset based on the cooling demands of the 

warmest zone.  In average practice, the supply air temperature is reset based on outdoor 
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air temperature, to minimize simultaneous heating and cooling. Note that fan energy 

could increase when the supply air temperature is reset to a higher temperature. The 

stepwise function of the supply air temperature reset is shown in Figure 5. The cooling 

loads for the core zones in a commercial office building may not vary with outdoor air 

temperature.  In poor practice, the supply air temperature is kept as a constant 

temperature at 12.8 °C for a single duct VAV system.   

 
Figure 5. Stepwise function for supply air temperature reset based on outdoor air temperature 

4.1.7 Airside economizer  

Economizers are one of the most important components to reduce energy use in buildings 

whenever outdoor air conditions are more favorable for cooling than return air conditions. 

In average and good practice scenarios, the economizer operation is controlled by the 

differential temperature between outdoor air and return air. Both an integrated 

economizer approach and a non-integrated economizer approach are simulated for good 

and average practice respectively. In non-integrated economizer mode, the outdoor air 

damper will be turned down to the minimum position once free cooling cannot meet the 

required cooling capacity. In the integrated economizer mode, mechanical cooling works 

together with free cooling in economizer mode to meet the required cooling capacity, and 

the system stays in integrated economizer mode until outdoor conditions reach the high-

limit shutoff setting. For poor practice, it is assumed that the outdoor air economizer is 

disabled. 

4.1.8 Room temperature setpoints for occupied hours 

Adjustment of room temperature setpoint bands during occupied hours can have an 

impact on building energy consumption. Occupant behavior, e.g., clothing adjustments 
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that adapt to the local environment, can lead to a higher cooling setpoint and lower 

heating setpoint, reducing energy use. For average practice, the room temperature 

setpoint is 21 °C for heating and 24 °C for cooling. For good practice, the room 

temperature setpoint is decreased by 1 °C for heating and is increased by 1°C for cooling. 

For poor practice, the room temperature setpoint is increased by 1 °C for heating and is 

decreased by 1°C for cooling.  

4.1.9 Operations of vacant spaces 

Office-building vacancy is an unpredictable factor, and management of energy use in 

vacant spaces has an impact on total building energy consumption. In the study, it is 

assumed that the area of vacant space was ~10% of total office area. In good practice, 

there is a wide band for room setpoints ranging from 12.8 °C to 32.2 °C, lights are turned 

off and there are no plug loads in the vacant spaces. For poor practice, the room 

temperature setpoints in the vacant spaces are the same as occupied space, and 30% of 

the lighting is left on.  

 

4.2 Uncertainties in annual energy use due to individual operation parameters 

In this section, the uncertainties in annual energy consumption due to individual building 

operation parameters are investigated using EnergyPlus simulations. The baseline model 

is defined as the building operation using average practice in Table 1. Eighteen scenarios, 

with individual operation parameters defined in good or poor practice listed in Table 1, 

were created using the reference model for each city.  

 

Three end-use categories —lighting controls, plug loads and HVAC operations— play 

important roles in building energy consumption. Annual site energy consumption for 

each scenario, including electricity and gas consumption, is summarized, and the 

variation of annual site energy consumption for Atlanta—based on the energy 

consumption predicted by the baseline model— is shown in Figure 6. A negative value 

represents the percentage of energy savings, while a positive value represents the 

percentage of energy penalty.  Plug loads can introduce a -11.3% to 6.8% variation of 
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annual site energy consumption based on the range of defined hourly profiles. The range 

of lighting control practice accounts for variation of annual energy consumption from -

5.3% to 8.4%. In HVAC end use, VAV damper minimum position, supply air 

temperature reset, air side economizer, and room temperature setpoints are the most 

influential parameters for medium-size office buildings with DX units. In Atlanta, the 

annual energy use for the scenario without supply air temperature reset is 2% higher than 

that of the scenario with the supply air temperature reset based on warmest zone. The 

purpose of using the supply air temperature reset is to avoid reheating at terminal units 

and keep DX units off as long as possible in cold weather, and also to return to a low 

setpoint in warm weather when DX units are likely to be on. The variations of VAV 

damper minimum settings introduce uncertainties of -5.7% - 9.5% in annual site energy 

consumption. Minimum damper positions for VAV terminal units are adjustable. A 

higher minimum damper setting (e.g., 50%) can result in a significant energy penalty due 

to thermal comfort issues and simultaneous heating and cooling. The application of a dual 

maximum strategy [18] and 15% minimum airflow for VAV boxes can lead to a 3.2% 

energy savings for California climates. The uncertainties in annual site energy 

consumption due to airside economizer operation range from -1.4% to 2.4%.  

 
 
Figure 6. Uncertainties in annual site energy use due to individual building operation parameters for a 

reference building in Atlanta. 
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If 10% of an office area is vacant, the annual site energy consumption is always lower 

than baseline due to the reduced lighting and plug loads for those vacant spaces. The 

management of lighting and HVAC operation for vacant spaces directly impacts energy 

consumption. The annual energy use for the reference building with a 10% vacancy and 

poor practice is 3.9 % higher than when good practice is used. Increased vacant spaces in 

buildings would enlarge the impacts of operation practices for vacant spaces on annual 

energy use.  

 

Figure 7 summarizes the uncertainties in annual site energy due to individual operation 

parameters across the four climates. The uncertainties are based on the annual site energy 

consumption of baseline models for each city. For medium-size office building models 

simulated in different climates, the parameters with the largest uncertainties are lighting 

control, plug load controls, VAV min settings, supply air temperature reset and air side 

economizer control. Notably, the uncertainties stemming from economizer control in a 

mild climate (San Francisco) are greater than those in other climates using the same 

control strategies. This is due to the fact that, during more than 90% of the year in San 

Francisco, outdoor air conditions are favorable for economizer mode. Therefore, for the 

airside economizer scenarios considered during normal operation, a wider range of 

uncertainties is reported for San Francisco than that for the other cities. It is worth noting 

that the uncertainties in annual site energy consumption discussed in this paper are for a 

limited set of operational parameters. If there are faults in the existing operation systems 

(such as stuck damper, sensor offset, etc.), uncertainty ranges would be even larger.  
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Figure 7. Uncertainties in annual site energy use due to individual building operation parameters for 

reference buildings in four climates. 

 

 

4.3 Uncertainties in annual energy consumption due to combined effect of multiple 

operation parameters 

The uncertainties in annual site energy consumption contributed by the combined effects 

of multiple operation parameters are investigated in this section. As a first step, extreme 

scenarios with maximum variation of site energy consumption for the given parameters 

are studied for each city. In the second step, a Monte Carlo method is applied to analyze 

the annual energy consumption impacts of all possible combinations for given operation 

parameters. 

 

The extreme scenarios of all the parameters in good or poor practices are simulated using 

EnergyPlus. When all the evaluated parameters are combined, the variations in annual 

site energy consumption ranges from -29% to 79% for San Francisco; -15% to 49% for 

Atlanta; -28% to 57% for Washington, D.C.; and -27% to 58% for Chicago. Notably, the 

combined effect of poor practices across all HVAC parameters is larger than the sum of 

individual effects for each HVAC parameter reported in the previous section. The 

variation of annual energy consumption represents a wide range of uncertainties in annual 

site energy consumption.  
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A Monte Carlo method is applied to compose various simulation scenarios and identify 

the uncertainty distribution within this range. The Monte Carlo method uses prior 

distributions of input uncertainties to sample randomly a range of possible inputs for 

simulating the same problem. In this study, the Monte Carlo method is applied to create 

all possible combinations simulated for the San Francisco climate. The ranges of possible 

inputs are the ranges of practices defined in Table 1. The analysis assumes discrete 

uniform distribution for each operation practice. In this uncertainty analysis, the 

probability of occurrence is equal for each combination scenario, a reasonable 

assumption for the parameters investigated here. For any specific building, it is possible 

that the occurrence of one scenario might be more probable than the occurrence of others. 

The uncertainty distribution can be obtained by analyzing the variations of energy 

consumption according to the baseline and frequency of the variations.  

 

The frequency distribution of uncertainties for various possible combinations is shown in 

Figure 8. Results show that the uncertainty distribution in annual site energy consumption 

nearly follows a log-normal distribution. The geometric mean of the log-normal 

distribution curve approximates 1.0, which indicates the baseline scenario. For the San 

Francisco climate, when the system is operating normally, the range of uncertainties for 

the medium-size office reference building is from -29% to 79%; at a 95% confidence 

interval, the range of uncertainty is from -20% to 42%; and at an 80% confidence level, 

the range of uncertainty is from -15% to 18%.   
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 Figure 8. Uncertainty distribution profile for annual energy use in San Francisco 

 

5. Conclusion and recommendations 

This paper investigates the uncertainties in annual site energy consumption due to 

weather variation and operation parameters for a medium-size reference office prototype. 

The range of uncertainties for each category is summarized in Figure 9. The uncertainties 

in annual site energy consumption for the defined operation parameters range from -28.7% 

to 79.2%, while the uncertainties due to weather variation range from -4.0% to 6.1%. 

Among building end uses, HVAC operation is most influential, introducing -15.3 to 70.3% 

variation in annual site energy consumption.  

 

Figure 9. Uncertainties in annual site energy consumption by category 
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This study contributes to the understanding of the impacts of key operation parameters on 

energy consumption. The energy penalty of the combined scenarios with poor practice is 

larger than the sum of the energy penalties of poor practice in individual parameters. For 

medium-size office building models simulated in different climates, the parameters with 

the largest impacts are lighting control, plug-load controls, VAV minimum settings, 

supply air temperature reset, and air side economizer control. In future research, it would 

be interesting to compare the uncertainties derived from simulation against empirical data 

from commissioning projects [19].   

 

Notably, the uncertainty distribution in annual site energy consumption for all possible 

combinations of operations parameters approximately follows a log-normal distribution. 

As a result, the range of uncertainties in building energy consumption at a given 

confidence level can be reported. The uncertainty range due to operational factors, even 

at an 80% confidence level, can dwarf the impact of design features. 

 

This analytical approach can also be applied to other stages in a building’s life cycle. For 

example, during the design stage, a rational range of predicted energy use based on 

uncertainties can be reported at specific confidence levels. Instead of predicting building 

energy use based only on interpretations and assumptions of ideal operation, it is 

important that building simulation can predict actual building performance within a 

rational range based on uncertainties in actual operations, and thereby improve the 

reliability of energy simulations.  
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