%0 Report %D 2017 %T Small and Medium Building Efficiency Toolkit and Community Demonstration Program %A Mary Ann Piette %A Tianzhen Hong %A William J. Fisk %A Norman Bourassa %A Wanyu R. Chan %A Yixing Chen %A H.Y. Iris Cheung %A Toshifumi Hotchi %A Margarita Kloss %A Sang Hoon Lee %A Phillip N. Price %A Oren Schetrit %A Kaiyu Sun %A Sarah C. Taylor-Lange %A Rongpeng Zhang %K CBES %K commercial buildings %K energy efficiency %K energy modeling %K energy savings %K indoor air quality %K indoor environmental quality %K outdoor air measurement technology %K outdoor airflow intake rate %K retrofit %K ventilation rate %X

Small commercial buildings in the United States consume 47 percent of all primary energy consumed in the building sector. Retrofitting small and medium commercial buildings may pose a steep challenge for owners, as many lack the expertise and resources to identify and evaluate cost-effective energy retrofit strategies. To address this problem, this project developed the Commercial Building Energy Saver (CBES), an energy retrofit analysis toolkit that calculates the energy use of a building, identifies and evaluates retrofit measures based on energy savings, energy cost savings, and payback. The CBES Toolkit includes a web app for end users and the CBES Application Programming Interface for integrating CBES with other energy software tools. The toolkit provides a rich feature set, including the following:

  1. Energy Benchmarking providing an Energy Star score
  2. Load Shape Analysis to identify potential building operation improvements
  3. Preliminary Retrofit Analysis which uses a custom developed pre-simulated database
  4. Detailed Retrofit Analysis which utilizes real time EnergyPlus simulations

In a parallel effort the project team developed technologies to measure outdoor airflow rate; commercialization and use would avoid both excess energy use from over ventilation and poor indoor air quality resulting from under ventilation.

If CBES is adopted by California’s statewide small office and retail buildings, by 2030 the state can anticipate 1,587 gigawatt hours of electricity savings, 356 megawatts of non-coincident peak demand savings, 30.2 megatherms of natural gas savings, $227 million of energy-related cost savings, and reduction of emissions by 757,866 metric tons of carbon dioxide equivalent. In addition, consultant costs will be reduced in the retrofit analysis process.

CBES contributes to the energy savings retrofit field by enabling a straightforward and uncomplicated decision-making process for small and medium business owners and leveraging different levels of assessment to match user background, preference, and data availability.

%8 03/2017 %G eng %2 LBNL-2001054 %R 10.7941/S93P70 %0 Journal Article %J Applied Energy %D 2015 %T Commercial Building Energy Saver: An energy retrofit analysis toolkit %A Tianzhen Hong %A Mary Ann Piette %A Yixing Chen %A Sang Hoon Lee %A Sarah C. Taylor-Lange %A Rongpeng Zhang %A Kaiyu Sun %A Phillip N. Price %K Building Technologies Department %K Building Technology and Urban Systems Division %K buildings %K buildings energy efficiency %K Commercial Building Systems %K conservation measures %K energy efficiency %K energy use %K energyplus %K External %K Retrofit Energy %K simulation research %X

Small commercial buildings in the United States consume 47% of the total primary energy of the buildings sector. Retrofitting small and medium commercial buildings poses a huge challenge for owners because they usually lack the expertise and resources to identify and evaluate cost-effective energy retrofit strategies. This paper presents the Commercial Building Energy Saver (CBES), an energy retrofit analysis toolkit, which calculates the energy use of a building, identifies and evaluates retrofit measures in terms of energy savings, energy cost savings and payback. The CBES Toolkit includes a web app (APP) for end users and the CBES Application Programming Interface (API) for integrating CBES with other energy software tools. The toolkit provides a rich set of features including: (1) Energy Benchmarking providing an Energy Star score, (2) Load Shape Analysis to identify potential building operation improvements, (3) Preliminary Retrofit Analysis which uses a custom developed pre-simulated database and, (4) Detailed Retrofit Analysis which utilizes real-time EnergyPlus simulations. CBES includes 100 configurable energy conservation measures (ECMs) that encompass IAQ, technical performance and cost data, for assessing 7 different prototype buildings in 16 climate zones in California and 6 vintages. A case study of a small office building demonstrates the use of the toolkit for retrofit analysis. The development of CBES provides a new contribution to the field by providing a straightforward and uncomplicated decision making process for small and medium business owners, leveraging different levels of assessment dependent upon user background, preference and data availability.

%B Applied Energy %V 159 %8 9/2015 %2 LBNL-1004502 %& 298 %R 10.1016/j.apenergy.2015.09.002