
!1

Functional Mock-up Interface

Michael Wetter

Simulation Research Group

February 15, 2019

Overview

The purpose is to

1. get a basic understanding of the Functional Mock-up Interface (FMI) standard,

2. understand the different Functional Mock-up Units (FMU), and

3. learn how to create and simulate a Functional Mock-up Unit.

 2

Use cases

 3

Use cases

 4

Link an
electrical grid

simulator
Interface

model with
hardware for HIL

Share a model with a
controls engineer

Export model for use
in a control system

Share models in
manufacturer catalog

Partition large
models for
computing
efficiency

Let us develop building simulation programs, but each with a
mutually incompatible model format, different semantics and
incompatible software architecture…

 5

EnergyPlus

NMF

SPARK

ESP-r
TRNSYS

IDA-ICEBLAST

IES-VE
DeST

HAP

eQuest

Tas

TRACE

CHAMPS

CONTAM
HVACSIM+

In absence of being able to share models, let’s co-simulate, but
each with a different API and different — if any — semantics….

 6

EnergyPlus

NMF

SPARK

ESP-r
TRNSYS

IDA-ICEBLAST

IES-VE
DeST

HAP

eQuest

Tas

TRACE

CHAMPS

CONTAM
HVACSIM+BCVTB

Looks like a nice idea, but very difficult to realize.  
And lacks any standard and rigor until some tools started using FMI.

!7

55, rue Navier - F 75017 Paris

Tél : +33 (0)1 42 23 04 90

Customer : Modelica Association Project

Dossier : horizontal FMU logotype

Date : 26 - 03 - 2015

Colors :

C84 - M19 - Y0 - K0
R0 - G153 - B217
HTML 0099D9

C100 - M100 - Y5 - K38
R34 - G24 - B92
HTML 22185C

CMYK FMU logotype

CMYK FMI logotype

CMYK FMU logotype without shading CMYK FMU logotype for very small size : icon and favicon

C0 - M9 - Y47 - K0
R255 - G231 - B157
HTML FFE79D

C0 - M68 - Y100 - K0
R237 - G106 - B0
HTML ED6A00

C15 - M100 - Y95 - K38
R145 - G16 - B14
HTML 91100E

C0 - M83 - Y100 - K0
R232 - G69 - B11
HTML E845OB

C100 - M70 - Y5 - K38
R0 - G55 - B111
HTML 00376F

CMYK FMU logotype black and white

The Functional Mockup Interface has been developed to
exchange dynamic models and simulators.

Developed within MODELISAR, an ITEA2 project to improve significantly the design of systems
and of embedded software in vehicles.

ITEA project, 28 partners, 178 person years, 26 Mill. € budget, July 2008 - June 2011.

First version published in 2010. Now supported by >100 tools.

Functional Mockup Interface Standard
• defines an open interface, to be implemented by a Functional Mock-up Unit (FMU)
• FMI functions are called by a simulator that imports an FMU
• Coupling may be done locally or across the internet.
• FMU may be

- self-integrating (co-simulation) or
- require the master tool to perform the integration (model-exchange)

 8

The Functional Mockup Interface has been developed to
exchange dynamic models and simulators.

 
 
FMI separates
• description of interface (xml) from
• functionality (C API).

FMI standardizes

a) a set of C-functions, to be implemented by a model/simulator,

b) an XML-model description file to be provided by a model/simulator, and

c) the distribution file format to be used by a model/simulator.

A model/simulator which implements FMI is called a Functional Mock-up Unit (FMU).

 9

FMUs for co-simulation and model exchange.

Model Exchange

For

returns

The master needs to provide a differential
equation solver, and synchronize variables.  

Co-Simulation

For

returns

that satisfies the differential equation.

The master only needs to synchronize
variables.

 10

f
�
x(t), t

�(x(t), t) (x(tk), tk)

(x(tk+1), tk+1)

Model to be simulated

Notes: For simplification, discrete variables and algebraic constraints were omitted in slide.

ẋ(t) = f
�
x(t), t

�

x(0) = x0

FMI for Co-Simulation and for Model Exchange

 11

dx
dt

= u − x, x(0) = 1.0

y = −x

FMI for Co-Simulation

Δt

x(t + Δt)

y

u dx
dt

yx

FMI for Model Exchange

u

FMI architecture

 12

Model

ODE Solver Model

Master algorithm

Master algorithm

FMI API

FMI API

Model exchange

Co-Simulation

ODE Solver ModelMaster algorithm FMI API
Co-Simulation with tool coupling

ẋ(t) = f
�
x(t), t

�

x(0) = x0

ẋ(t) = f
�
x(t), t

�

x(0) = x0

ẋ(t) = f
�
x(t), t

�

x(0) = x0

x(tk+1)

= F (xtk , tk, hk)

x(tk+1)

= F (xtk , tk, hk)

How do you evaluate compositions of FMUs?

 13

u1

u2

y1

y2

y1 = u1

y2 = (u2 + 1)3 y2 = (u2 + 1)3

y1 =

Z t

0
u1(s) ds

Need to know the model structure, which is optionally declared in the
modelDescription.xml file.

Note: This is why in EnergyPlus, the ExternalInterface imposes a one time step delay.

Case 1 Case 2
All FMUs have direct feedthrough

Input-output dependency allows detecting cyclic and acyclic
graphs.

 14

Figure 3: FMU of Figure 2 connected in feedback

(left) and in an algebraic loop (right).

are two possible solutions, u = 0 and u = 1. The solution
that a brute-force MA converges to will depend on the initial
guess.

Since we are interested in non-diverging and determinis-
tic composition of FMUs, we need to distinguish these two
cases and we need to reject the case with the algebraic loop.
That model is not deterministic. A MA that ensures de-
terminacy needs to know that y1 does not directly depend
on u, and that y2 does. Once it knows this, it can also
execute the correct case (without the algebraic loop) more
e�ciently, so we get an additional benefit. In particular, the
direct dependency information can be used by a MA to call
the fmiGetReal and fmiSetReal functions for outputs and
inputs in a well-defined order. For the leftmost model of
Figure 3, the MA can execute the following sequence:

1. Use fmiGetReal to read the current value of y1. This
value is available without knowing the current input u.

2. Evaluate f (which may itself be an FMU or it may be
a native component), and use fmiSetReal to set the
current value of u.

3. Use fmiGetReal to read the current value of y2. No-
tice that since the value of y2 depends directly on the
current value of u, fmiGetReal needs to perform a cal-
culation in the case of y2.2 Concretely, it needs to
return y2 = �5u.

Notice that in the sequence, fmiGetReal and fmiSetReal

are called exactly once, the minimum possible number of
times for any MA.

For the rightmost example of Figure 3, if the MA has
direct dependency information, then it can identify the al-
gebraic loop and either reject the model or alert the user to
the potential nondeterminacy.

3.1.1 Static Analysis for Dependency Cycles

For the leftmost example of Figure 3, we were able to use
I/O dependency information to identify the order in which
the fmiSetReal and fmiGetReal procedures should be called
at a communication point. Moreover, in this ordering, as
long as there is no algebraic loop, these procedures are called
exactly once, leading to e�cient execution.

We can generalize this idea to models with arbitrarily
complicated structure, constructing a topological sort of the
ports in a model. Consider the model shown in Figure 1. It
consists of four blocks, A,B,C,D.

Suppose that the following is known about the I/O de-
pendencies of the blocks of Figure 1:

b1 ! b4 b3 ! b2 c3 ! c2 d1 ! d2
2With some care to not do so prematurely, the calculation
could alternatively be performed in the call to fmiSetReal.

where x ! y means that output port y depends directly on
input port x. In addition, assume that these are the only
I/O dependencies. This means, in particular, that output
b2 of block B does not depend on input b1, that the output
of C does not depend on its input c1, and so on.
In addition to the input-output dependencies induced by

each block, output-input dependencies are induced by the
connections in the diagram. Together all these dependencies
define a directed graph whose nodes represent ports. Each
edge x ! y in the graph represents the fact that y depends
on x. The port dependency graph for this example is shown
in Figure 4.

Figure 4: The port dependency graph generated

from the model of Figure 1. The graph is acyclic.

As can be observed, the port dependency graph of Fig-
ure 4 is acyclic. If the port dependency graph of a given
model does not contain cycles, then this graph can be used
to derive a correct evaluation order of all ports in the model.
From the port dependency graph shown in that figure, and
the knowledge about which ports are inputs and which are
outputs, a sequence of calls to fmiSetXXX and fmiGetXXX can
be easily constructed. In general, the dependency graph re-
sulting from such analysis gives a partial order on the calls
to fmiGetXXX and fmiSetXXX, although for the example in
Figure 4 the order is total.

3.1.2 If I/O Dependency Information is Missing

The FMI standard makes provision of I/O dependency in-
formation optional, presumably under the assumption that
execution is still possible without this information, albeit
less e�ciently. Indeed, this is true if all fmiSetXXX and
fmiGetXXX procedures are free of side e↵ects (they make no
changes to the state of the FMU), and that the correspond-
ing mechanisms for setting inputs and retrieving outputs for
native simulation components are also free of side e↵ects. A
MA can just execute the model in the same manner that it
would solve algebraic loops, repeatedly invoking fmiSetXXX

and fmiGetXXX until it gets convergence or gives up and de-
clares a failure to converge.
However, these are rather strong assumptions. Even if a

designer of simulation components intends to follow these
guidelines, it is easy to make mistakes. Such mistakes lead
to very subtle bugs that are di�cult to track down. They
could also result in nondeterministic models, and the non-
determinism might go unnoticed because it fails to manifest
as variable behavior during testing.

Determinate Composition of FMUs for Co-Simulation⇤

David Broman1,2 Christopher Brooks1 Lev Greenberg3 Edward A. Lee1

Michael Masin3 Stavros Tripakis1 Michael Wetter4

{broman,cxh,eal,stavros}@eecs.berkeley.edu, {levg,michaelm}@il.ibm.com, mwetter@lbl.gov

1University of California, Berkeley, USA 2Linköping University, Sweden
3IBM 4LBNL, Berkeley, CA, USA

ABSTRACT

In this paper, we explain how to achieve deterministic exe-
cution of FMUs (Functional Mockup Units) under the FMI
(Functional Mockup Interface) standard. In particular, we
focus on co-simulation, where an FMU either contains its
own internal simulation algorithm or serves as a gateway
to a simulation tool. We give conditions on the design of
FMUs and master algorithms (which orchestrate the execu-
tion of FMUs) to achieve deterministic co-simulation. We
show that with the current version of the standard, these
conditions demand capabilities from FMUs that are optional
in the standard and rarely provided by an FMU in prac-
tice. When FMUs lacking these required capabilities are
used to compose a model, many basic modeling capabil-
ities become unachievable, including simple discrete-event
simulation and variable-step-size numerical integration al-
gorithms. We propose a small extension to the standard
and a policy for designing FMUs that enables deterministic
execution for a much broader class of models. The extension
enables a master algorithm to query an FMU for the time
of events that are expected in the future. We show that a
model can be executed deterministically if all FMUs in the

⇤This work was supported in part by the iCyPhy Research
Center (Industrial Cyber-Physical Systems, supported by
IBM and United Technologies), and the Center for Hybrid
and Embedded Software Systems (CHESS) at UC Berkeley
(supported by the National Science Foundation, NSF awards
#0720882 (CSR-EHS: PRET), #1035672 (CPS: Medium:
Ptides), and #0931843 (ActionWebs), the Naval Research
Laboratory (NRL #N0013-12-1-G015), and the following
companies: Bosch, National Instruments, and Toyota). This
work was also supported in part by the NSF Expeditions in
Computing project ExCAPE: Expeditions in Computer Aug-

mented Program Engineering and COSMOI: Compositional

System Modeling with Interfaces. This research was sup-
ported by the Assistant Secretary for Energy E�ciency and
Renewable Energy, O�ce of Building Technologies of the
U.S. Department of Energy, under Contract No. DE-AC02-
05CH11231. The first author was funded by the Swedish
Research Council #623-2011-955.

EMSOFT 2013, Montreal, Canada

model are either memoryless or implement one of rollback or
step-size prediction. We show further that such a model can
contain at most one “legacy” FMU that is not memoryless
and provides neither rollback nor step-size prediction.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—real-time and embedded sys-

tems

1. INTRODUCTION

FMI (Functional Mockup Interface) is an evolving standard
for composing model components designed using distinct
modeling tools [3, 4, 16, 17]. Initially developed within
the MODELISAR project, and currently supported by a
number of industrial partners and tools (see https://www.

fmi-standard.org/), FMI shows enormous promise for en-
abling the exchange and interoperation of model compo-
nents. FMI is particularly suitable for cyber-physical sys-
tems (CPSs), where model components may represent dis-
tinct subsystems that are best designed with distinct mod-
eling tools. The FMI standard supports both co-simulation
(where a component, called an FMU (Functional Mock-up
Unit), implements its own simulation algorithm) and model
exchange (where an FMU describes the model su�ciently
for an external simulation algorithm to execute simulation).
In this paper we focus the discussion on co-simulation in the
current version of the standard (version 2.0, Beta 4 [16]).
A model is a collection of interconnected FMUs, as shown

in Figure 1. These FMU slaves are to be executed by some
master algorithm (MA), which orchestrates the execution of
the FMUs, according to its own semantics. The MA orches-
trates the communication of the FMUs through their inputs

Figure 1: A model consisting of FMUs connected in

a block diagram.

978-1-4799-1443-2/13/$31.00 ©2013 IEEE

Figures from: 
David Broman, Christopher Brooks, Lev Greenberg, Edward A. Lee, Michael Masin, Stavros Tripakis, and Michael Wetter.
Determinate Composition of FMUs for Co-Simulation.
Proc. of the International Conference on Embedded Software (EMSOFT 2013), p. 1--12, Montreal, Canada, 2013.

A high quality master algorithm should
be able to solve this system without
requiring the use of an iterative solver if the
FMUs provide their I/O dependencies.

http://dx.doi.org/10.1109/EMSOFT.2013.6658580

From a model to an FMU

 15

XML*- file contains

a) name of variables
b) value reference of variables
c) causality of variables
d) variable dependencies

C API* contains functions to

a) initialize the model
b) set continuous states
c) set inputs
d) get derivatives
e) get outputs
f) terminate the model

*XML and C API contain additional information which are not listed for simplicity.

dx
dt

= u − x, x(0) = 1.0

y = −x

u

dx
dt

y

C API
XML declaration

x

FMI for Model Exchange

t

An FMU is a zip file with model description, documentation,
and binaries or C source code

 16

// Structure of zip-file of an FMU
modelDescription.xml // Description of model (required file)
model.png // Optional image file of model icon
documentation // Optional directory containing the model documentation
_main.html // Entry point of the documentation
 <other documentation files>
sources
// Optional directory containing all C-sources
// all needed C-sources and C-header files to compile and link the model
// with exception of: fmiPlatformTypes.h and fmiFunctions.h
binaries // Optional directory containing the binaries
 win32 // Optional binaries for 32-bit Windows
 <modelIdentifier>.dll // DLL of the model interface implementation
 // Optional object Libraries for a particular compiler
 VisualStudio8 // Binaries for 32-bit Windows generated with
 // Microsoft Visual Studio 8 (2005)
 <modelIdentifier>.lib // Binary libraries
 gcc3.1 // Binaries for gcc 3.1
 ...
 win64 // Optional binaries for 64-bit Windows
 ...
 linux32 // Optional binaries for 32-bit Linux
 ...
 linux64 // Optional binaries for 64-bit Linux
 ...
resources // Optional resources needed by the model
< data in model specific files which will be read during initialization >

Integrating a simulator is independent of the tool that
generated the simulator
//Instantiate models
fmi2Component s1 = s1_mi2Instantiate(“Tool1", "", "Model1", "", ...);
fmi2Component s2 = s2_fmi2Instantiate("Tool2", "", "Model2", "", ...);
tStart = 0; tStop = 10; h = 0.01;

//Initialize models
s1_fmi2SetupExperiment(s1, …, startTime, …, stopTime); …
s1_fmi2EnterInitializationMode(s1); … s2_fmi2ExitInitializationMode(s2);

//Simulation sub-phase
tc = tStart;
while((tc < tStop) && (status == fmi2OK))
 s1_fmi2GetReal(s1, ..., 1, &y1); //retrieve outputs
 s2_fmi2GetReal(s2, ..., 1, &y2);

 s1_fmi2SetReal(s1, ..., 1, &y2); //set inputs
 s2_fmi2SetReal(s2, ..., 1, &y1);

 status1 = s1_fmi2DoStep(s1, tc, h, fmi2True); //call slaves
 status2 = s2_fmi2DoStep(s2, tc, h, fmi2True);

 tc+=communicationStepSize; //increment master time
}

//Shutdown sub-phase
if (status == fmi2OK)
{ s1_fmi2Terminate(s1); s1_fmi2FreeInstance(s1); …}

 17FMI Specification, 2014

Exporting control sequences from Dymola

 18

Exporting control model from JModelica

 19

from pymodelica import compile_fmu

fmu_name = compile_fmu(“Buildings.Controls.Continuous.LimPID”)

from pyfmi import load_fmu

m = load_fmu(fmu_name)
res = m.simulate()

Export controller as an FMU

Load and simulate an FMU

Exercise

!20

Creating an FMU

 21

a) Implement following first-order model

The Modelica code for the model is

model MyFirstFMU
 "This model simulates the exponential decay curve."
 Real x(start = 1.0) "state variable";
 Modelica.Blocks.Interfaces.RealInput u "input variable";
 Modelica.Blocks.Interfaces.RealOutput y "output variable";
equation
 der(x) = u-x;
 y = -x;
end MyFirstFMU;

c) Export the model as an FMU for Model Exchange 2.0.  
 Hint: See https://github.com/lbl-srg/docker-ubuntu-jmodelica/blob/master/jmodelica.py

d) Unzip the FMU and look at the model description file

e) Import it and simulate it in Dymola, Ptolemy II, OpenModelica, JModelica or another tool

dx
dt

= u − x, x(0) = 1.0

y = −x

https://github.com/lbl-srg/docker-ubuntu-jmodelica/blob/master/jmodelica.py

Questions

!22

