-unctional Mock-up Interface

Michael Wetter

Simulation Research Group

February 15, 2019

~

- A
(rrreee mI

HGEINAN M Lawrence Berkeley National Laboratory

Overview

The purpose is to
1. get a basic understanding of the Functional Mock-up Interface (FMI) standard,
2. understand the different Functional Mock-up Units (FMU), and

3. learn how to create and simulate a Functional Mock-up Unit.

Use cases

&y
T o
production | | -]y ;@

N

N

distribution

[©)

Use cases Share models in
manufacturer catalog

Link an
electrical grid M Interface
simulator dire model with

hardware for HIL

Partition large
models for

distribution ‘ ~ - Computing
feedback control C
efficiency

Share a model with a
controls engineer

Export model for use
IN a control system

| um, ' <l
= YR
S72%l N
8 T _F :
e B0

mutually incompatio
iIncompatible softwa

TRACE SLAST eQuest IDA-ICE
@ . .
¢
.]
' '

CONTAM

et us develop buildi

ng simulation programs, but each with a
e model format, different semantics and

re architecture...

EnergyPlus HVACSIM+

= &

Tas CHAMPS

TRNSYS
ESP-r
IES-VE @
o

In absence of being able to share models, let’'s co-simulate, but
each with a different APl and different — if any — semantics....

TRACE BLAST@ eQuest IDA-ICE NMF
' o
J
o

CONTAM

EnergyPlus goyTR HVACSIM+

Tas

Looks like a nice idea, but very difficult to realize.
And lacks any standard and rigor until some tools started using FMI. 6

FUNCTIONAL

MOCK-.UP
INTERFACE

fm;

The Functional Mockup Interface has been developed to
exchange dynamic models and simulators.

Developed within MODELISAR, an ITEA2 project to improve significantly the design of systems
and of embedded software in vehicles.

ITEA project, 28 partners, 178 person years, 26 Mill. € budget, July 2008 - June 2011.
First version published in 2010. Now supported by >100 tools.

Functional Mockup Interface Standard
e defines an open interface, to be implemented by a Functional Mock-up Unit (FMU)
e FMI functions are called by a simulator that imports an FMU
e Coupling may be done locally or across the internet.
e FMU may be
- self-integrating (co-simulation) or

- require the master tool to perform the integration (model-exchange)

Engine Engine Control Transmission Transmission Vehicle, Cabin

5 8 8 8 _ 8

Cosimulation of the behavioral models and the embedded controller software

The Functional Mockup Interface has been developed to
exchange dynamic models and simulators.

FMI separates
e description of interface (xml) from
e functionality (C API).

FMI standardizes
a) a set of C-functions, to be implemented by a model/simulator,
b) an XML-model description file to be provided by a model/simulator, and

c) the distribution file format to be used by a model/simulator.

A model/simulator which implements FMI is called a Functional Mock-up Unit (FMU).

FMUs for co-simulation and model exchange.

Model to be simulated

i(t) = f(xz(t),t)

x(0) = xg
Model Exchange Co-Simulation
For (x(t), t) For (ZIZ(tk), tk)
returns f (ZU(t)] t) returns (Cﬁ(tk—H)7 tk+1)
that satisfies the differential equation.
The master needs to provide a differential The master only needs to synchronize
equation solver, and synchronize variables. variables.

Notes: For simplification, discrete variables and algebraic constraints were omitted in slide.

FMI for Co-Simulation and for Model Exchange

dx
—=u—x,x(0)=1.0
dt
y=—X
FMI for Model Exchange FMI for Co-Simulation
— U dx L — U x(t+ At)
dt

— X y — — At y

FMI architecture

Model exchange

Master algorithm

FMI AP

Co-Simulation

Master algorithm

fmi

FUNCTIONAL
MOCK-UP
INTERFACE

FMI AP

fmi

FUNCTIONAL
MOCK-UP
INTERFACE

Co-Simulation with tool coupling

Master algorithm

FMI AP

z(0) = zo
ODE Solver Model
:B(tk+1) a:(t) - f(x(t)7t)
— F(xtk,tk,hk) .CB(O) = T
ODE Solver Model

fmi !

FUNCTIONAL
MOCK-UP
INTERFACE

T(th+1)
— F(Z‘tk,tk, hk:)

How do you evaluate compositions of FMUSs"

Case 1 Case 2
All FMUs have direct feedthrough

t
U Yip oy = / u1(s) ds Y1 = U1
0

Need to know the model structure, which is optionally declared in the
modelDescription.xml file.

Note: This is why in EnergyPlus, the Externallnterface imposes a one time step delay.

Input-output dependency allows detecting cyclic and acyclic
graphs.

FMU’“‘iﬁBFMUtEijCFMUW

D
——4FMUe—

D (b1) A high quality master algorithm should
S e able to solve this system without
/ requiring the use of an iterative solver if the
(b3) FMUs provide their I/O dependencies.
(d2) (4D

Figures from:

David Broman, Christopher Brooks, Lev Greenberg, Edward A. Lee, Michael Masin, Stavros Tripakis, and Michael Wetter.
Determinate Composition of FMUs for Co-Simulation.

Proc. of the International Conference on Embedded Software (EMSOFT 2013), p. 1--12, Montreal, Canada, 2013.

http://dx.doi.org/10.1109/EMSOFT.2013.6658580

From a model to an FMU

XML™*- file contains

dx

P u—x, x(0)=1.0 a) name of variables

y=—% b) value reference of variables
c) causality of variables

)
d) variable dependencies

C API* contains functions to

\4

FMI for Model Exchange
or MbEEr RNy a) initialize the model

— dx b) set continuous states
., CAP dt c) set inputs

XML declaration d) get derivatives
— X y — e) get outputs

f) terminate the model

XML and C API contain additional information which are not listed for simplicity.

An FMU is a zip file with model description, documentation,
and binaries or C source code

// Structure of zip-file of an FMU
modelDescription.xml // Description of model (required file)

model . png // Optional image file of model 1icon
documentation // Optional directory containing the model documentation
_main.html // Entry point of the documentation
<other documentation files>
sources

// Optional directory containing all C-sources
// all needed C-sources and C-header files to compile and 1ink the model
// with exception of: fmiPlatformTypes.h and fmiFunctions.h
binaries // Optional directory containing the binaries
win32 // Optional binaries for 32-bit Windows
<modelldentifier>.dll // DLL of the model 1interface implementation
// Optional object Libraries for a particular compiler
VisualStudio8 // Binaries for 32-bit Windows generated with
// Microsoft Visual Studio 8 (2005)
<modelIdentifier>.1l1b // Binary libraries

gcc3.1 // Binaries for gcc 3.1

W{6é4 // Optional binaries for 64-bit Windows

1iﬁd£32 // Optional binaries for 32-bit Linux

1i6&£64 // Optional binaries for 64-bit Linux
reso&éées // Optional resources needed by the model

< data in model specific files which will be read during initialization >

Integrating a simulator is independent of the tool that

generated the simulator

//Instantiate models

fmi2Component sl = sl_miZ2Instantiate(“Tooll", "", "Modell", "", ...);
fmi2Component s2 = sZ_fmiZ2Instantiate("Tool2", "", "Model2", "", ...);
tStart = 0; +tStop = 10; h = 0.01;

//Initialize models
sl_fmi2SetupExperiment(sl, .., startTime, .., stopTime);
sl_fmiZ2EnterInitializationMode(sl); .. sZ2_fmiZ2ExitInitializationMode(s2);

//Simulation sub-phase

tc = tStart;

while((tc < tStop) && (status == fmi20K))
sl_fmi2GetReal(sl, ..., 1, &yl); //retrieve outputs
sZ2_fmi2GetReal(s2, ..., 1, &y2);
sl_fmiZ2SetReal(sl, ..., 1, &y2); //set 1inputs
sZ2_fmi2SetReal(s2, ..., 1, &yl);

statusl = s1_fmiZ2DoStep(sl, tc, h, fmi2True); //call slaves
status2 = sZ2_fmi2DoStep(s2, tc, h, fmi2True);

tc+=communicationStepSize; //increment master time

}

//Shutdown sub-phase
1f (status == fmi20K)
{ sl1_fmi2Terminate(sl); sl_fmi2Freelnstance(sl); ..}

FMI Specification, 2014

51

52

—xporting control sequences from Dymola

TwoRoomsWithStorage - Buildings.Examples.HydronicHeating.TwoRoomsWithStorage - [Diagram]

File Edit Simulation Plot Animation Commands Window Help Linear analysis =)&) x
FeEASN /DO ARZ-2Y IS O ¢+ =DHB L 200% -~

Package Browser &/ I LA_—»a
(-]

Packages
-([C]Buildings
- @ UsersGuide
~&JAirflow
- @ BoundaryCondit...
- @ Controls
- [#]Electrical
- o Fluid
+ =] HeatTransfer
«@Media
- Rooms
- [AUtilities
- ([Types
-[»]Examples
« @ Tutorial
- [*]ChillerPlant maxYV:
+[»]DualFanDualD...
-[»]HydronicHeating
H0 TwoRoomsWi.. B
'MediumA-:... :‘{ p mRa...
RIZ]]]®
Component Browser (&%

|Components C

Jval2
4 conRoo2
2 TRool

svall h

2 conRool | /

7 radl j L
“rad2

7 thrwayVval
s conVal
Jtan

s tanTemBot
7 tanTemTop
sgreThr

7 booToReaPum L
2 lesThr
“temSup

7 temRet

2 heaCha
70ccSchl

¥
1) %

max

J}) *

pumRad temSup

@ Modeling ¥ Simulation

Exporting control model from JModelica

(setpoint)

Export controller as an FMU
from pymodelica import compile_ fmu

fmu_name

compile_fmu(“Buildings.Controls.Continuous.LimPID")

Load and simulate an FMU

from pyfmi import load_fmu

m = load_fmu(fmu_name)
res = m.simulate()

Exercise

Creating an FMU

a) Implement following first-order model

gzu—x, x(0)=1.0
dt
y=—X

The Modelica code for the model is

model MyFirstFMU
"This model simulates the exponential decay curve."
Real x(start = 1.0) "state variable";
Modelica.Blocks.Interfaces.Reallnput u "input variable';
Modelica.Blocks.Interfaces.RealOutput y "output variable'";
equation
der(x) = u-x;
y = =Xj
end MyFirstFMU;

c) Export the model as an FMU for Model Exchange 2.0.
Hint: See https://github.com/Ibl-srg/docker-ubuntu-jmodelica/blob/master/jmodelica.py

d) Unzip the FMU and look at the model description file

e) Import it and simulate it in Dymola, Ptolemy II, OpenModelica, JModelica or another tool

2

https://github.com/lbl-srg/docker-ubuntu-jmodelica/blob/master/jmodelica.py

Questions

