
1

Introduction to Modelica

Michael Wetter and Thierry S. Nouidui  
Simulation Research Group

June 23, 2015

Purpose and approach

The purpose is to have basic understanding of Modelica and be able to develop simple
models.

The slides follow largely, and use many examples from, the online book from Michael Tiller:  
http://book.xogeny.com

Other references (and Buildings library user guide): 
http://simulationresearch.lbl.gov/modelica/userGuide/gettingStarted.html

Modelica reference: http://modref.xogeny.com/

Interactive tour: http://tour.xogeny.com

2

http://book.xogeny.com
http://simulationresearch.lbl.gov/modelica/userGuide/gettingStarted.html
http://modref.xogeny.com/
http://tour.xogeny.com

Basic syntax

3

Basic equations

4

model FirstOrderSteady
 "First order equation with steady state initial condition"
 Real x "State variable";
initial equation
 der(x) = 0 "Initialize the system in steady state";
equation
 der(x) = 1-x "Drives value of x toward 1.0";
end FirstOrderSteady;

model FirstOrderInitial "First order equation with initial value"
 Real x "State variable";
initial equation
 x = 2 "Used before simulation to compute initial values";
equation
 der(x) = 1-x "Drives value of x toward 1.0";
end FirstOrderInitial;

ẋ = 1� x

Consider

Initial conditions

x0 = 2

ẋ0 = 0

Adding units

5

model NewtonCoolingWithUnits "Cooling example with physical units"
 parameter Real T_inf(unit="K")=298.15 "Ambient temperature";
 parameter Real T0(unit="K")=363.15 "Initial temperature";
 parameter Real h(unit="W/(m2.K)")=0.7 "Convective cooling coefficient";
 parameter Real A(unit="m2")=1.0 "Surface area";
 parameter Real m(unit="kg")=0.1 "Mass of thermal capacitance";
 parameter Real c_p(unit="J/(K.kg)")=1.2 "Specific heat";
 Real T(unit="K") "Temperature";
initial equation
 T = T0 "Specify initial value for T";
equation
 m*c_p*der(T) = h*A*(T_inf-T) "Newton's law of cooling";
end NewtonCoolingWithUnits;

mcp
dT

dt
= hA (Tinf � T)

type Temperature=Real(unit="K", min=0);

parameter Modelica.SIunits.Temperature T_inf=298.15 "Ambient temperature";

To avoid this verbosity, Modelica.SIunits declares types such as

Now, we can write

records are convenient to collect data that belong together

6

record Vector "A vector in 3D space"
 Real x;
 Real y;
 Real z;
end Vector;

parameter Vector v(x=1.0, y=2.0, z=0.0);

equation
volume = v.x*v.y*v.z;

Declare the class Vector

Declare an instance

Use it in the code

See for example Buildings.Fluid.Chillers.Data and the various other Data
packages in the Buildings library.

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_Chillers_Data_ElectricEIR.html#Buildings.Fluid.Chillers.Data.ElectricEIR

Discrete behavior

7

If-then to model time events

8

model NewtonCoolingDynamic
 "Cooling example with fluctuating ambient conditions"
…
initial equation
 T = T0 "Specify initial value for T";
equation
 if time<=0.5 then
 T_inf = 298.15 "Constant temperature when time<=0.5";
 else
 T_inf = 298.15-20*(time-0.5) "Otherwise, increasing";
 end if;
 m*c_p*der(T) = h*A*(T_inf-T) "Newton's law of cooling";
end NewtonCoolingDynamic;

T_inf = 298.15 - (if time<0.5 then 0 else 20*(time-0.5));

An alternative formulation is

Note: time is a built-in variable.

when construct

9

model BouncingBall "The 'classic' bouncing ball model"
 type Height=Real(unit="m");
 type Velocity=Real(unit="m/s");
 parameter Real e=0.8 "Coefficient of restitution";
 parameter Height h0=1.0 "Initial height";
 Height h;
 Velocity v;
initial equation
 h = h0;
equation
 v = der(h);
 der(v) = -9.81;
 when h<0 then
 reinit(v, -e*pre(v));
 end when;
end BouncingBall;

Becomes active when the
condition becomes trueReinitializes the

state variable
Use the value that v had
prior to this section

State event handling

10

model Decay
 Real x;
initial equation
 x = 1;
equation
 // wrong: der(x) = -sqrt(x);
 // wrong: der(x) = if x>=0 then -sqrt(x) else 0;
 der(x) = if noEvent(x>=0) then -sqrt(x) else 0;
end Decay;

Why are the other two formulations wrong?

Avoid chattering by using hysteresis

11

model ChatteringControl "A control strategy that will ‘chatter'"

 type HeatCapacitance=Real(unit="J/K");
 type Temperature=Real(unit="K");
 type Heat=Real(unit="W");
 type Mass=Real(unit="kg");
 type HeatTransferCoefficient=Real(unit="W/K");

 parameter HeatCapacitance C=1.0;
 parameter HeatTransferCoefficient h=2.0;
 parameter Heat Qcapacity=25.0;
 parameter Temperature Tamb=285;
 parameter Temperature Tbar=295;

 Boolean heat "Indicates whether heater is on";
 Temperature T;
 Heat Q;
initial equation
 T = Tbar+5;
equation
 heat = T<Tbar;
 Q = if heat then Qcapacity else 0;
 C*der(T) = Q-h*(T-Tamb);
end ChatteringControl;

What will go wrong with this code?

Such a problem was indeed reported by a user

12

This can work in fixed time step simulators,
but it won’t in variable time step simulators
that handle events.

We need to add a hysteresis when switching the value of heat

13

model HysteresisControl "A control strategy that doesn't chatter"
 ...
 Boolean heat(start=false) "Indicates whether heater is on";
 parameter Temperature Tbar=295;
 Temperature T;
 Heat Q;
initial equation
 T = Tbar+5;
 heat = false;
equation
 Q = if heat then Qcapacity else 0;
 C*der(T) = Q-h*(T-Tamb);
 when {T>Tbar+1, T<Tbar-1} then
 heat = T<Tbar;
 end when;
end HysteresisControl;

Active when any element
is true

Events

14

Boolean late;
equation
late = time>=5.0 "This will generate an event";

x = if (x<0) then 0 else x^3;

x = smooth(if (x<0) then 0 else x^3, 2);

This can trigger events

It is hard for a code translator to understand that this expression is differentiable

Use the smooth() operator

Expression is 2 times
continuously differentiable

Events can also be generated by certain functions,  
see http://book.xogeny.com/behavior/discrete/events/

http://book.xogeny.com/behavior/discrete/events/

if expressions

15

if cond1 then
 // Statements used if cond1==true
elseif cond2 then
 // Statements used if cond1==false and cond2==true
// ...
elseif condn then
 // Statements used if all previous conditions are false
 // and condn==true
else
 // Statements used otherwise
end if;

Each branch must have the same number of equations because of the single assignment rule.

In Modelica, there must be exactly one equation used to determine the value of each variable.

if versus when

if branches are always evaluated if the condition is true.

when statements become active only for an instant when the condition becomes true.

Use when for example to reinitialize states.

16

Arrays

17

parameter Integer n = 3;
Real x[n];
Real y[size(x,1), 2];
Real z[:] = {2.0*i for i in 1:n}; // {2, 4, 6}
Real fives[:] = fill(5.0, n); // {5, 5, 5}

s = sum(z);

Arrays are fixed at compile time. They can be declared as

Many functions take arrays as arguments, see http://book.xogeny.com/behavior/arrays/
functions/.

s =
3X

i=1

ziFor example,

http://book.xogeny.com/behavior/arrays/functions/

Looping

18

parameter Integer n = 3;
Real x[n];
equation
 for i in 1:n loop
 x[i] = i;
 end for;

Functions

19

Functions have imperative programming assignments

20

within Buildings.Fluid.HeatExchangers.BaseClasses;

function lmtd "Log-mean temperature difference"
 input Modelica.SIunits.Temperature T_a1 "Temperature at port a1";
 input Modelica.SIunits.Temperature T_b1 "Temperature at port b1";
 input Modelica.SIunits.Temperature T_a2 "Temperature at port a2";
 input Modelica.SIunits.Temperature T_b2 "Temperature at port b2";
 output Modelica.SIunits.TemperatureDifference lmtd
 "Log-mean temperature difference";

protected
 Modelica.SIunits.TemperatureDifference dT1  
 "Temperature difference side 1";
 Modelica.SIunits.TemperatureDifference dT2  
 "Temperature difference side 2";

algorithm
 dT1 := T_a1 - T_b2;
 dT2 := T_b1 - T_a2;
 lmtd := (dT2 - dT1)/Modelica.Math.log(dT2/dT1);

annotation (…);
end lmtd;

algorithm sections can also be used in a model or block if needed,
but functions must use an algorithm section.

Annotations are used to tell a tool properties of the function,
such as how often it can be differentiated

21

function enthalpyOfLiquid "Return the specific enthalpy of liquid"
 extends Modelica.Icons.Function;
 input Modelica.SIunits.Temperature T "Temperature";
 output Modelica.SIunits.SpecificEnthalpy h "Specific enthalpy";
algorithm
 h := cp_const*(T-reference_T);
annotation (
 smoothOrder=5,
 Inline=true,
Documentation(info=“…”, revisions=“…”));
end enthalpyOfLiquid;

Annotations are used to tell a tool properties of the function,
such as how often it can be differentiated

By default, functions are pure, i.e., they have no side effect.

Functions can call C, Fortran 77, and dynamic and static linked libraries.

Functions can have memory.
• See http://book.xogeny.com/behavior/functions/interpolation/
• Used for example by borehole

(Buildings.Fluid.HeatExchangers.Boreholes.BaseClasses.ExtendableArray)
and by Buildings.Rooms.BaseClasses.CFDExchange

See http://book.xogeny.com/behavior/functions/func_annos/ for other function annotations

22

http://book.xogeny.com/behavior/functions/interpolation/
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Rooms_BaseClasses.html#Buildings.Rooms.BaseClasses.CFDExchange
http://book.xogeny.com/behavior/functions/func_annos/

inverse allows inverting functions without iteration

23

function InverseQuadratic
 "The positive root of a quadratic function"
 input Real a;
 input Real b;
 input Real c;
 input Real y;
 output Real x;
algorithm
 x := sqrt(b*b - 4*a*(c - y))/(2*a);
end InverseQuadratic;

function Quadratic "A quadratic function"
 input Real a "2nd order coefficient";
 input Real b "1st order coefficient";
 input Real c "constant term";
 input Real x "independent variable";
 output Real y "dependent variable";
algorithm
 y := a*x*x + b*x + c;
 annotation(inverse(x = InverseQuadratic(a,b,c,y)));
end Quadratic;

5=Quadratic(a=2, b=3, c=1, x=x);Can compute without iteration:

An example of an impure function implemented in C

24

#ifndef _COMPUTE_HEAT_C_
#define _COMPUTE_HEAT_C_

#define UNINITIALIZED -1
#define ON 1
#define OFF 0

double
computeHeat(double T, double Tbar, double Q) {
 static int state = UNINITIALIZED;
 if (state==UNINITIALIZED) {
 if (T>Tbar) state = OFF;
 else state = ON;
 }
 if (state==OFF && T<Tbar-2) state = ON;
 if (state==ON && T>Tbar+2) state = OFF;

 if (state==ON) return Q;
 else return 0;
}

#endif

impure function computeHeat "Modelica wrapper for an embedded C controller"
 input Real T;
 input Real Tbar;
 input Real Q;
 output Real heat;
 external "C" annotation (Include="#include \"ComputeHeat.c\"",
 IncludeDirectory="modelica://ModelicaByExample.Functions.ImpureFunctions/source");
end computeHeat;

static variable

This function can return a
different result if called with
the same arguments. A
translator must know this.

impure functions can only be
called from other impure
functions, from a when-
equation or a when-
statement.

Object-oriented modeling

25

connector HeatPort_a "Thermal port for 1-dim. heat
transfer"
 Modelica.SIunits.Temperature T "Port temperature";
 flow Modelica.SIunits.HeatFlowRate Q_flow
 "Heat flow rate (positive if flowing from
 outside into the component)";
end HeatPort_a;

Object-oriented modeling

26

a.port.T = b.port.T;
0 = a.port.Q_flow + b.port.Q_flow;

a b

connect(a.port, b.port);

model HeatCapacitor "Lumped thermal element storing heat"

 parameter Modelica.SIunits.HeatCapacity C "Heat
capacity";
 Modelica.SIunits.Temperature T "Temperature of element";
 Interfaces.HeatPort_a port;

equation
 T = port.T;
 C*der(T) = port.Q_flow;
end HeatCapacitor;

Packages

27

within Buildings.Fluid.HeatExchangers.BaseClasses;
function lmtd "Log-mean temperature difference"
 input Modelica.SIunits.Temperature T_a1 "Temperature at port a1";
 …

models are organized in
hierarchical packagesIn Modelica, everything is part of a package

Type definitions are part
of packages

Packages can contain

• other packages,

• constants,

• functions,

• models,

• blocks,

• types

They cannot contain

• parameters,

• variable declaration,

• equation or algorithm sections

Packages

28

package OuterPackage "A package that wraps a nested package"
 // Anything contained in OuterPackage
 package NestedPackage "A nested package"
 // Things defined inside NestedPackage
 end NestedPackage;
end OuterPackage;

/RootPackage # Top-level package stored as a directory
 package.mo # Indicates this directory is a package
 package.order # Specifies an ordering for this package
 NestedPackageAsFile.mo # Definitions stored in one file
 /NestedPackageAsDir # Nested package stored as a directory
 package.mo # Indicates this directory is a package
 package.order # Specifies an ordering for this package

modelica://RootPackage/Resources/logo.jpg

Basic syntax

Storing in the file system

Referencing resources with a URL A convention of the Annex60
and Buildings library is that
each package must be in a
separate directory, and each
class in a separate file.  
Reason: easier merging and
version control.

Acausal connectors are used to enable assembling models
schematically

29

Block Diagram Modeling Acausal Modeling

What does it
mean to
connect three
ports?

Automatically summed
up at connections to
satisfy conservation
equation.

Physical connectors and balanced models

Acausal connectors
• input/output determined 

at compilation time
• can connect none or 

multiple components 
to a port

• A connector should contain all
information required to
uniquely define the boundary
condition

Requirement of locally balanced
models
• # of equations = # of variables, 

at each level of model
hierarchy.

30

Domain Potential Flow Stream

Heat flow T Q_flow

Fluid flow p
h_outflow
X_outflow
C_outflow

m_flow

Electrical V I

Translational x F

connector Pin "Pin of an electrical component"
 SIunits.Voltage v "Potential at the pin";
 flow SIunits.Current i "Current flowing into the pin";
end Pin;

model Ground "Ground node"
 Modelica.Electrical.Analog.Interfaces.Pin p;
equation
 p.v = 0;
end Ground;

Connectors declare the interfaces, or ports, of models.

31

No equations are allowed.

Connectors for most physical ports exists in the MSL.

 connector Thermal
 Modelica.SIunits.Temperature T;
 flow Modelica.SIunits.HeatFlowRate Q_flow;
 end Thermal;

connector FluidPort
 replaceable package Medium =
Modelica.Media.Interfaces.PartialMedium;

 flow Medium.MassFlowRate m_flow;
 Medium.AbsolutePressure p;
 stream Medium.SpecificEnthalpy h_outflow;
 stream Medium.MassFraction Xi_outflow[Medium.nXi];
 stream Medium.ExtraProperty C_outflow[Medium.nC];
end FluidPort;

Components

32

A simple heat storage element

33

within Modelica.Thermal.HeatTransfer;

package Interfaces "Connectors and partial models"

 partial connector HeatPort "Thermal port for 1-dim. heat transfer"
 Modelica.SIunits.Temperature T "Port temperature";
 flow Modelica.SIunits.HeatFlowRate Q_flow
 "Heat flow rate (positive if flowing from outside into the
component)";
 end HeatPort;

 connector HeatPort_a  
 "Thermal port for 1-dim. heat transfer (filled rectangular icon)"
 extends HeatPort;

 annotation(...,
 Icon(coordinateSystem(preserveAspectRatio=true,
 extent={{-100,-100},{100,100}}),
 graphics={Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={191,0,0},
 fillColor={191,0,0},
 fillPattern=FillPattern.Solid)}));
 end HeatPort_a;

end Interfaces;

A simple heat storage element

34

within ModelicaByExample.Components.HeatTransfer;
model ThermalCapacitance "A model of thermal capacitance"
 parameter Modelica.SIunits.HeatCapacity C "Thermal capacitance";
 parameter Modelica.SIunits.Temperature T0 "Initial temperature";
 Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a port
 annotation (Placement(transformation(extent={{-10,-10},{10,10}})));
initial equation
 port.T = T0;
equation
 C*der(port.T) = port.Q_flow;
end ThermalCapacitance;

within ModelicaByExample.Components.HeatTransfer.Examples;
model Adiabatic "A model without any heat transfer"
 ThermalCapacitance cap(C=0.12, T0(displayUnit="K") = 363.15)
 "Thermal capacitance component"
 annotation (Placement(transformation(extent={{-30,-10},{-10,10}})));
end Adiabatic;

C
dT

dt
= Q̇

Add convection to ambient

35

within ModelicaByExample.Components.HeatTransfer;
model ConvectionToAmbient "An overly specialized model of convection"
 parameter Modelica.SIunits.CoefficientOfHeatTransfer h;
 parameter Modelica.SIunits.Area A;
 parameter Modelica.SIunits.Temperature T_amb "Ambient temperature";
 Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a port_a
 annotation (Placement(transformation(extent={{-110,-10},{-90,10}})));
equation
 port_a.Q_flow = h*A*(port_a.T-T_amb) "Heat transfer equation";
end ConvectionToAmbient;

Add convection to ambient

36

within ModelicaByExample.Components.HeatTransfer.Examples;
model CoolingToAmbient "A model using convection to an ambient condition"

 ThermalCapacitance cap(C=0.12, T0(displayUnit="K") = 363.15)
 "Thermal capacitance component"
 annotation (Placement(transformation(extent={{-30,-10},{-10,10}})));

 ConvectionToAmbient conv(h=0.7, A=1.0, T_amb=298.15)
 "Convection to an ambient temprature"
 annotation (Placement(transformation(extent={{20,-10},{40,10}})));

equation
 connect(cap.port, conv.port_a)
 annotation ( 
 Line(points={{-20,0},{20,0}},
 color={191,0,0},
 smooth=Smooth.None));
end CoolingToAmbient;

cap.port.T = conv.port_a.T;
cap.port.Q_flow + conv.port_a.Q_flow = 0;

Composability

Connectors
• Designed for physical compatibility, not causal

compatibility
• No a-priori knowledge is needed to connect

components

Multi-physics
• Components can have a heat port and a fluid port

(and a control input signal, …)

Multi-domain
• Can combine schematic diagrams, block diagrams

(and state machines, …)

Reusability
• Change the system architecture by deleting and

dragging components from a library (in block
diagrams, profound changes would be required)

37

Acausal components leads to much higher readability and
reusability

38

Arrays of components

39

 HTC.HeatCapacitor capacitance[n]( 
 each final C=C/n,
 each T(start=T0, fixed=true));
 HTC.ThermalConductor wall[n](each final G=G_wall/n);
 HTC.ThermalConductor rod_conduction[n-1](each final G=G_rod);

Array length must be known at translation time.

See Buildings.HeatTransfer.Conduction which extensively uses arrays.

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_HeatTransfer_Conduction.html#Buildings.HeatTransfer.Conduction

Propagation of parameters and the medium package

40

within Buildings.Fluid.HeatExchangers;
model HeaterCooler_T
 "Ideal heater or cooler with a prescribed outlet temperature"
 extends Interfaces.PartialTwoPortInterface;
 extends Interfaces.TwoPortFlowResistanceParameters(
 final computeFlowResistance=  
 (abs(dp_nominal) > Modelica.Constants.eps));

 parameter Modelica.SIunits.Pressure dp_nominal
 "Pressure difference at nominal mass flow rate";
…

 Buildings.Fluid.FixedResistances.FixedResistanceDpM preDro(
 redeclare final package Medium = Medium,
 final m_flow_nominal=m_flow_nominal,
 …) "Pressure drop model";

Users should only have to assign parameters and the medium at the top-level model.

The final keyword prevents users from changing the assignment.

Default values for parameters should only be used when those defaults are reasonable for
the vast majority of cases.

Architecture

41

Object-oriented component development

42

within Buildings.Fluid.Actuators.BaseClasses;
partial model PartialTwoWayValveKv
 "Partial model for a two way valve using a Kv characteristic"
 extends Buildings.Fluid.Actuators.BaseClasses.PartialTwoWayValve;

equation
 k = phi*Kv_SI;
 m_flow=BaseClasses.FlowModels.basicFlowFunction_dp(dp=dp, k=k,
 m_flow_turbulent=m_flow_turbulent);
…

TwoWayQuickOpening

TwoWayLinear

TwoWayExponential

PartialTwoWayValveKv

TwoWayTable

These valves differ only in the opening function

�(y) =
k(y)

Kv

where y is the control input and k is the flow rate
divided by the square root of the pressure drop.

Store all commonality in a common base class:

Object-oriented component development

43

within Buildings.Fluid.Actuators.Valves;
model TwoWayLinear 
 "Two way valve with linear flow characteristics"
 extends BaseClasses.PartialTwoWayValveKv(
 phi=l + y_actual*(1 - l));
…
end TwoWayLinear;

model TwoWayEqualPercentage 
 "Two way valve with equal-percentage flow characteristics"
 extends BaseClasses.PartialTwoWayValveKv(
 phi=BaseClasses.equalPercentage(y_actual, R, l, delta0));

 parameter Real R=50 "Rangeability, R=50...100 typically";
…
end TwoWayEqualPercentage;

Provide implementations that assign

�(y) =
k(y)

Kv

and that introduce the valve-specific parameters.

Architecture-driven modeling

44

replaceable TwoWayLinear valve  
 constrainedby BaseClasses.PartialTwoWayValveKv(
 redeclare package Medium = Medium,
 from_dp=true,
 CvData=Buildings.Fluid.Types.CvTypes.Kv,
 Kv=0.65,
 m_flow_nominal=0.04)
 "Replaceable valve model”;

within Buildings.Fluid.HeatExchangers.Examples;
model EqualPercentageValve
 "Model with equal percentage valve"
 extends DryCoilCounterFlowPControl(
 redeclare Actuators.Valves.TwoWayEqualPercentage
 valve);
end EqualPercentageValve;

Make valve replaceable, and constrain it as desired:

Make a new model that uses a different valve

See DataCenterDiscreteTimeControl for a model that uses this construct to change the controls,
or http://book.xogeny.com/components/architectures/thermal_control/ for simple application.

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Examples_ChillerPlant.html#Buildings.Examples.ChillerPlant.DataCenterDiscreteTimeControl
http://book.xogeny.com/components/architectures/thermal_control/

Thermofluid flow modeling

45

Stream of fluids

46

For electrical systems, we have a potential (voltage) that drives a flow (current).

For fluids, we have a potential (pressure) that drives a flow (mass flow rate) which carries
properties (temperatures, mass concentration).

0 =
nX

i=1

ṁi

0 =

nX

i=1

ṁ
i

(
h
mix

, if ṁ
i

> 0

h
outflow,i

, otherwise.

h
mix

h
outflow,a

h
outflow,b

Conservation of mass

Conservation of energy

If mass flow rates are computed based on (nonlinear) pressure drops, this cannot be solved
reliably as the residual equation depends on a boolean variable.

For reliable solution of fluid flow network, stream variables have
been introduced

47

connector FluidPort
 replaceable package Medium =
Modelica.Media.Interfaces.PartialMedium;

 flow Medium.MassFlowRate m_flow;
 Medium.AbsolutePressure p;
 stream Medium.SpecificEnthalpy h_outflow;
 stream Medium.MassFraction Xi_outflow[Medium.nXi];
 stream Medium.ExtraProperty C_outflow[Medium.nC];
end FluidPort;

R. Franke, F. Casella, M. Otter, M. Sielemann, H. Elmqvist, S. E. Mattsson, and H. Olsson.  
Stream connectors – an extension of modelica for device-oriented modeling of convective transport
phenomena. 
In F. Casella, editor, Proc. of the 7-th International Modelica Conference, Como, Italy, Sept. 2009.

port_a.m_flow * (inStream(port_a.h_outflow) - port_b.h_outflow) = -Q_flow;
port_a.m_flow * (inStream(port_b.h_outflow) - port_a.h_outflow) = +Q_flow;

Thermofluid components have one balance equation for each outflowing stream:

Connector variables have the flow and stream attribute:

https://www.modelica.org/events/modelica2009/Proceedings/memorystick/pages/papers/0078/0078.pdf

Figure 7: Simplified approximation for a three-way
connection

4.2 Iteration Variables for Nonlinear Algebraic
Equation Systems

For the robustness of the simulation, the choice and

number of iteration variables in non-linear equation

systems are crucial. We will discuss this issue at the

example of a three-way mixing point with flow mod-

els (“detailed wall friction with laminar and turbulent

region”), see Figure 8, and in the general case.

Figure 8: Three way mixing point.

As medium, the fluid “Modelica.Media.IdealGases.-

MixtureGases.FlueGasSixComponents” is used

which is a mixture of six ideal gas substances. The

independent medium variables are pressure p, tem-

perature T and 5 independent mass fractions Xi. This

system is basically described by the following set of

equations:

()
()
()

()

1 2 3

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 2 2

1 1 _ 1

1 _ 1 1

0

, , , ,

, , , ,

, , , ,

(, , ())

, (), ()

mix ab ba ab ba

mix ab ba ab ba

mix ab ba ab ba

ab mix a inflow a

a inflow mix a a

m m m
m f p p

m f p p

m f p p
p T Xi

T T p h Xi

ρ ρ η η

ρ ρ η η

ρ ρ η η

ρ ρ

= + +

= −

= −

= −

=

=

inStream

inStream inStream

inStr

& & &

&

&

&

2 2 3 3

1

2 3

(,) (,)
()

(,) (,)

...

a a
a

h max m h max mh
max m max m

ε ε
ε ε

⋅ − + ⋅ −
=

− + −
eam

& &

& &

This set of nonlinear algebraic equations can be basi-

cally solved with three iteration variables, namely

two mass flow rates and the pressure pmix in the mix-

ing point: If two mass flow rates are given, the third

mass flow rate can be computed via the mass balance

(the first equation in the set of equations above). Fur-

thermore, the inStream operators each depend on

h_outflow’s of the components attached to the mix-

ing points and can therefore be computed, once the

mass flow rates are known (e.g. h2a = inStream(h2b)

which can be, e.g., computed from the states of the

volume connected to pipe2; similarly h3a, Xi2a, Xi3a
can be computed etc., and then inStream(h1a), in-
Stream(Xi1a) etc. can be computed).

In order to compute all needed intensive quanti-

ties for the ideal gas mixture, the (unknown) tem-

perature T must be computed from pressure, specific

enthalpy and mass fractions. This requires in general

to solve one non-linear algebraic equation in one

unknown. In the Modelica.Media package, this is

performed with the algorithm of Brent [1] which is

completely reliable and very efficient
1
. Once the

temperature is known, densities ρ and dynamics vis-

cosities η may be computed for the wall friction cor-

relations. Also, with the pressure in the mixing point,

all pressure differences can be computed and finally

all mass flow rates via functions f1(..), f2(..), f3(..).
The 3 residual equations are then the differences be-

tween the mass flow rates given by the solver and the

ones computed from the wall friction correlations.

In the general case of a N-way mixing point, a

similar analysis shows that N-1 mass flow rates and

1
 An interval is given in the medium definition, in which

the root must be present. If possible, a smaller interval is

computed by inverse quadratic interpolation (interpolating

with a quadratic polynomial through the last 3 points and

computing the zero). If this fails, bisection is used, which

always reduces the interval by a factor of 2. The inverse

quadratic interpolation method has superlinear conver-

gence. This is roughly the same convergence rate as a

globally convergent Newton method, but without the need

to compute derivatives of the non-linear function.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 115

Fluid junction

48

Require inStream operator to be
continuously differentiable

Figure 7: Simplified approximation for a three-way
connection

4.2 Iteration Variables for Nonlinear Algebraic
Equation Systems

For the robustness of the simulation, the choice and

number of iteration variables in non-linear equation

systems are crucial. We will discuss this issue at the

example of a three-way mixing point with flow mod-

els (“detailed wall friction with laminar and turbulent

region”), see Figure 8, and in the general case.

Figure 8: Three way mixing point.

As medium, the fluid “Modelica.Media.IdealGases.-

MixtureGases.FlueGasSixComponents” is used

which is a mixture of six ideal gas substances. The

independent medium variables are pressure p, tem-

perature T and 5 independent mass fractions Xi. This

system is basically described by the following set of

equations:

()
()
()

()

1 2 3

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 2 2

1 1 _ 1

1 _ 1 1

0

, , , ,

, , , ,

, , , ,

(, , ())

, (), ()

mix ab ba ab ba

mix ab ba ab ba

mix ab ba ab ba

ab mix a inflow a

a inflow mix a a

m m m
m f p p

m f p p

m f p p
p T Xi

T T p h Xi

ρ ρ η η

ρ ρ η η

ρ ρ η η

ρ ρ

= + +

= −

= −

= −

=

=

inStream

inStream inStream

inStr

& & &

&

&

&

2 2 3 3

1

2 3

(,) (,)
()

(,) (,)

...

a a
a

h max m h max mh
max m max m

ε ε
ε ε

⋅ − + ⋅ −
=

− + −
eam

& &

& &

This set of nonlinear algebraic equations can be basi-

cally solved with three iteration variables, namely

two mass flow rates and the pressure pmix in the mix-

ing point: If two mass flow rates are given, the third

mass flow rate can be computed via the mass balance

(the first equation in the set of equations above). Fur-

thermore, the inStream operators each depend on

h_outflow’s of the components attached to the mix-

ing points and can therefore be computed, once the

mass flow rates are known (e.g. h2a = inStream(h2b)

which can be, e.g., computed from the states of the

volume connected to pipe2; similarly h3a, Xi2a, Xi3a
can be computed etc., and then inStream(h1a), in-
Stream(Xi1a) etc. can be computed).

In order to compute all needed intensive quanti-

ties for the ideal gas mixture, the (unknown) tem-

perature T must be computed from pressure, specific

enthalpy and mass fractions. This requires in general

to solve one non-linear algebraic equation in one

unknown. In the Modelica.Media package, this is

performed with the algorithm of Brent [1] which is

completely reliable and very efficient
1
. Once the

temperature is known, densities ρ and dynamics vis-

cosities η may be computed for the wall friction cor-

relations. Also, with the pressure in the mixing point,

all pressure differences can be computed and finally

all mass flow rates via functions f1(..), f2(..), f3(..).
The 3 residual equations are then the differences be-

tween the mass flow rates given by the solver and the

ones computed from the wall friction correlations.

In the general case of a N-way mixing point, a

similar analysis shows that N-1 mass flow rates and

1
 An interval is given in the medium definition, in which

the root must be present. If possible, a smaller interval is

computed by inverse quadratic interpolation (interpolating

with a quadratic polynomial through the last 3 points and

computing the zero). If this fails, bisection is used, which

always reduces the interval by a factor of 2. The inverse

quadratic interpolation method has superlinear conver-

gence. This is roughly the same convergence rate as a

globally convergent Newton method, but without the need

to compute derivatives of the non-linear function.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 115

Figure 5: Exact solution for a three-way connection

In the Modelica Language Specification [6], a rec-

ommended regularization of the inStream() operator

is given. First, let iσ be the sum of the mass flow

rates considered for applying the operator to port i.
∑

≠=

−=
ijnj

ji m
,...1

)0,max(&σ

Then, the expressions using the conventional opera-

tor max(x, 0) in equation (8) are substituted by a cus-

tom operator positiveMax(x, iσ), which is defined

such that it always returns a positive, non-zero value.

,

,

1... ,

1... ,

inStream()

positiveMax(,)

positiveMax(,)

outflow i

outflow j j i
j n j i

j i
j n j i

h

h m

m

σ

σ
= ≠

= ≠

=

⋅ −

−

∑
∑

&

&

 (13)

A suitable definition of the operator is a linear com-

bination of max(x, 0) and
+ℜ∈ε along a suitably

chosen variable α .

() () () εαασ ⋅−+⋅= 10,max,xpositiveMa xx i .

The variable α is a C1 smooth step function of iσ .

()

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤

≤<⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

>

=

0if0

0if23

if1
2

i

i

i
ii

i

σ

εσ
ε
σ

ε
σ

εσ

σα

As a result, the value of the inStream() operator is

always well-defined and is a continuous function of

the variables entering (8). If all mass flow rates are

zero, positiveMax(…) = ε, and

,

1... ,

,

1... ,

,

1... ,

,

1... ,

inStream()

(1)

1

outflow j
j n j i

outflow i

j n j i

outflow j
j n j i

outflow j
j n j i

h
h

h

n
h

n

ε

ε

ε

ε

= ≠

= ≠

= ≠

= ≠

⋅

=

⋅

=
⋅ −

=
−

∑
∑

∑

∑

that is, the operator returns the arithmetic mean of

the stream variables (but without houtflow,i). Figure 6

shows an illustration of this regularization for the

case of a three-way mixing point. Herein, the arith-

metic mean value is shown in blue. Note that outside

of the regularization domain points remain, which

are not continuously differentiable. This is necessary

due to the second requirement to the regularization,

which states that the approximation must be exact

whenever the absolute values of all flow variables

are greater than a given small value.

Figure 6: Recommended approximation for a three-
way connection

Note, the following trivial implementation of the

positiveMax() operator is also allowed according

to [6]:

() ()εσ ,max,xpositiveMa xx i = .

In this case, the approximation is still exact when-

ever the absolute values of all flow variables are

greater than a given small value. However, in the

regularization region the operator is no longer con-

tinuously differentiable. See figure 7 for an illustra-

tion.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 114

Suggested regularization of
inStream(h3)

R. Franke, F. Casella, M. Otter, M. Sielemann, H. Elmqvist, S. E. Mattsson, and H. Olsson. 
Stream connectors – an extension of modelica for device-oriented modeling of convective transport phenomena.  
Proc. of the 7-th International Modelica Conference, Como, Italy, Sept. 2009.

Iterate on pmix and two mass flow rates.

The number of iteration variables for the above mixing problem
was reduced from 22 to 3, and residual functions changed from
discontinuous to continuous.

https://www.modelica.org/events/modelica2009/Proceedings/memorystick/pages/papers/0078/0078.pdf

Numerics

49

Initial value ordinary differential equations

50

Consider initial value problem

A unique solution exists if and are Lipschitz continuous.

If your model does not satisfy these properties, what can you do if a solver does not
converge, or gives unexpected results? Is it a problem of the model or the solver?

dx(t)

dt

= f(x(t)), t 2 [0, 1]

x(0) = x0

f(·) @f(·)/@t

A model that we often see implemented but can cause Newton
to fail

51

Consider the mass flow relation

until a convergence criteria on pk is met.

Suppose this expression is part of an algebraic loop that is solved for the pressure p using a
Newton algorithm.

Let be the residual function.

Newton will iterate using

V̇ = sign(�p) k
p

|�p|

pk+1 = pk � g(pk)

@g(pk)/@p

g(p) = 0 The denominator tends to
infinity, and hence the
Newton step becomes
arbitrarily small.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

1

2

3

Translation process (figure from OpenModelica)

52Figure from Bunus and Fritzson (2004)

Simplifying the equations through block lower triangularization
and tearing: 
(i) Block lower triangularization

53
Bunus and Fritzson (2004)

T1 T2 Q

1

2

3

€

1: Q = T1 −T2
2 : 0 = T1
3 : f (t) = T1 + T2

Application to an
electric circuit model

Incidence matrix
T1 T2 Q

2

3

1

After BLT transformation

(ii) Tearing

54

€

0 = f x(), x ∈ ℜn, n >1,

€

(1) L x1 = ˆ f 1 x 2(),
(2) 0 = ˆ f 2 x1, x 2(),

Suppose we have an equation

that can be written in the form

where L is a lower triangular matrix with constant non-zero diagonals.  
How do you solve this efficiently?

Pick a guess value for x2, solve (1) for x1, and compute a new value for x2 from (2). 
Iterate until x2 converges to a solution.

Symbolic manipulations significantly reduce problem size

55

 8 ADVANCED MODELICA SUPPORT 411

8.8.4 Example
To illustrate how Dymola’s symbolic processing reduces the size and complexity we will
show the structure Jacobian at different stages when translating a mechanical model with a
kinematic loop.

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

nz = 3995

The structure Jacobian
of the original model.

412

The upper figure above shows the structure Jacobian of the original model. There are about
1200 unknown variables and equations. Each row corresponds to an equation and each
column corresponds to a variable. A blue marker indicates that the variable appears in the
equation. There are 3995 markers. The upper half of the matrix has a banded structure.
These equations are the equations appearing in the component models and such equations
refer typically only to the local variables of the component. The equations in the lower part
are equations deduced from the connections, which includes references to variables of two
or more components.

The lower figure above shows the structure of the problem after exploitation of simple
equations to eliminate alias variables and utilizing zero constants. The number of unknowns
is reduced from about 1200 to 330.

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 1017

The structure Jacobian
after elimination of
alias variables.

 8 ADVANCED MODELICA SUPPORT 413

Then equations are differentiated to reduce the DAE index and states are selected. After
some further simplifications the number of unknowns is reduced to 250. A BLT partitioning
reveals that there are 3 algebraic loops as indicated by the upper figure above.

The lower figure above shows the structure after tearing. The first algebraic loop is a
nonlinear loop with 12 unknowns. This loop includes the positional constraints of the
kinematics loop. The tearing procedure reduces the number of iteration variables to 2. This
is illustrated by turning the eliminated part from grey to green. The second loop includes the
velocity constraints due to the kinematic loop. It means that this loop includes the equations

0 50 100 150 200 250

0

50

100

150

200

250

nz = 895

0 50 100 150 200 250

0

50

100

150

200

250

nz = 916

The BLT partitioning.

The structure after
tearing.

 8 ADVANCED MODELICA SUPPORT 413

Then equations are differentiated to reduce the DAE index and states are selected. After
some further simplifications the number of unknowns is reduced to 250. A BLT partitioning
reveals that there are 3 algebraic loops as indicated by the upper figure above.

The lower figure above shows the structure after tearing. The first algebraic loop is a
nonlinear loop with 12 unknowns. This loop includes the positional constraints of the
kinematics loop. The tearing procedure reduces the number of iteration variables to 2. This
is illustrated by turning the eliminated part from grey to green. The second loop includes the
velocity constraints due to the kinematic loop. It means that this loop includes the equations

0 50 100 150 200 250

0

50

100

150

200

250

nz = 895

0 50 100 150 200 250

0

50

100

150

200

250

nz = 916

The BLT partitioning.

The structure after
tearing.

Figures from Dymola 2016 user manual for
mechanical model with kinematic loop.  
For description of method, see Cellier and
Kofman, Continuous System Simulation,
Springer, 2006.

Incidence matrix of the
original problem (1200x1200)

Incidence matrix after elimination
of alias variables (330x330)

After simplifications
and BLT (250x250)

Tearing reduces  
nonlinear 12 to 2,  
linear 11 to 2 and  

linear 57 to 5.

Note: Many numerical
algorithms are O(n3)

http://www.springer.com/us/book/9780387261027

Exercise

56

Exercise: Heat conduction with feedback control loop

57

Homework 3
EE249b - Embedded System Design
Michael Wetter
February 20, 2015

The purpose of this assignment is to learn how to build a model of a
physical effect and connect it to a controller in OpenModelica. You will
also refine the spatial discretization for the heat conduction, using a
parameter that determines how fine the grid is.

System Description

1

Prescribed  
temperature  
Tbc(t) = 20ºC + 5ºC sin(2 3.145 t / 3600)

Thermal capacitor  
C = 150 000 J/K for each  
T(0)=20°C

Thermal
conductor  
UA = 5 W/K for each
layer

PI

Set point 
Ts = 20ºC

Heat source 
P = 100 W maximum

T
Q = y

Controller  
Output limitation between 0 and 1

Convective 
heat transfer  
h = 5 W/K

Figure 1: Schematics of the heat con-
duction problem.

Consider the system shown in Figure 1 that consists of a heat
conductor in which one temperature is controlled by injecting heat.
This model corresponds to a 1m2 area of a brick wall that is 0.2 m
thick and has the same boundary condition on both sides. Heat is
injected in the middle of the construction. Because of symmetry, only
half of the construction needs to be modeled.

Open Loop Response

The first assignment is to create a model of the open loop system and
simulate the open loop response in a Modelica environment.1 1 Hint: This model can be assembled

graphically in OpenModelica using
models from the Modelica Standard
Library.

Turn in the .mo files, and a .pdf file that shows the Modelica
schematic model view and plots of the temperature trajectories.

Homework 3
EE249b - Embedded System Design
Michael Wetter
February 20, 2015

The purpose of this assignment is to learn how to build a model of a
physical effect and connect it to a controller in OpenModelica. You will
also refine the spatial discretization for the heat conduction, using a
parameter that determines how fine the grid is.

System Description

1

Prescribed  
temperature  
Tbc(t) = 20ºC + 5ºC sin(2 3.145 t / 3600)

Thermal capacitor  
C = 150 000 J/K for each  
T(0)=20°C

Thermal
conductor  
UA = 5 W/K for each
layer

PI

Set point 
Ts = 20ºC

Heat source 
P = 100 W maximum

T
Q = y

Controller  
Output limitation between 0 and 1

Convective 
heat transfer  
h = 5 W/K

Figure 1: Schematics of the heat con-
duction problem.

Consider the system shown in Figure 1 that consists of a heat
conductor in which one temperature is controlled by injecting heat.
This model corresponds to a 1m2 area of a brick wall that is 0.2 m
thick and has the same boundary condition on both sides. Heat is
injected in the middle of the construction. Because of symmetry, only
half of the construction needs to be modeled.

Open Loop Response

The first assignment is to create a model of the open loop system and
simulate the open loop response in a Modelica environment.1 1 Hint: This model can be assembled

graphically in OpenModelica using
models from the Modelica Standard
Library.

Turn in the .mo files, and a .pdf file that shows the Modelica
schematic model view and plots of the temperature trajectories.

homework 3 2

Add Feedback Control

The control objective is the keep the temperature in the core of the
heat conductor above 20�C. Use a PI controller with output limita-
tion between 0 and 1 and anti-windup from the Modelica Standard
Library. You will need to simulate the model for more than one day.
Explain why one day is not sufficient even though the disturbance
has a periodicity of one day.

Turn in the .mo files, and .pdf files of the Modelica schematic
model view and plots of the temperature trajectories.

Refine the discretization of the wall heat conduction

In the above models, the heat conduction in the wall was imple-
mented with two conductors and heat storage elements in series.
We arbitrarily selected two elements of each, but have not checked
whether this was a good discretization of the heat conduction prob-
lem. In this step, you will modify the model to allow adjusting the
level of discretization.

Combine the heat conductor and heat storage element into one
model, expose its heat ports, and then instantiate an array of this
combined model. Use a parameter that is an Integer parameter
which controls how fine the spatial discretization for the heat con-
duction is.2 2 Hint: See http://book.xogeny.com/

components/subsystems/comp_arrays/
or http://simulationresearch.lbl.
gov/modelica/releases/latest/help/
Buildings_HeatTransfer_Conduction.
html#Buildings.HeatTransfer.
Conduction.MultiLayer for how to
use arrays of components. You will
have to enter the connect statements for
the ports using a for loop in the textual
editor.

Change the model to use such an implementation and select ten
conductor-storage element in series.

Turn in the .mo files, and .pdf files of the Modelica schematic
model view and plots that show the difference in the temperature
sensor output between 1, 2 and 10 state variables. Comment on
whether 2 state variables for the temperature was a good approxima-
tion. Would 1 state variable for the temperature have been sufficient
to capture the dynamics?

The homework is due on March 10.

Questions

58

