

VISUALSPARK 2.0

USERS GUIDE

Simulation Problem Analysis and Research Kernel

Copyright 1997-2003
Lawrence Berkeley National Laboratory

Ayres Sowell Associates, Inc.
Pending approval of the U.S. Department of Energy. All rights reserved.

This work was supported by the Assistant Secretary for Energy Efficiency and
Renewable Energy, Office of Building Technologies Program of the

U.S. Dept. of Energy. Contract No. DE-AC03-76SF00098.

VisualSPARK 2.0 Users Guide

TABLE OF CONTENTS

TABLE OF CONTENTS ... I

FOREWORD ... III

TEXT CONVENTIONS ... IV

1 INTRODUCTION ...5
1.1 AVAILABILITY AND LICENSING..5
1.2 DOCUMENTATION ..5
1.3 HELP ..5
1.4 NAMING CONVENTION...6

2 UNIX VERSIONS: DOWNLOADING AND INSTALLATION INSTRUCTIONS FOR RED HAT LINUX
8.0 (INTEL PROCESSORS) ...7

2.1 REGISTRATION...7
2.2 OTHER SOFTWARE REQUIRED..7
2.3 INSTALL VISUALSPARK ...7
2.4 UNINSTALL VISUALSPARK ..8

3 WINDOWS VERSIONS: DOWNLOADING AND INSTALLATION INSTRUCTIONS FOR WINDOWS
95/98/ME/NT/2000..9

3.1 REGISTRATION...9
3.2 OTHER SOFTWARE REQUIRED..9
3.3 INSTALL VISUALSPARK ...9
3.4 UNINSTALL VISUALSPARK ..9
3.5 SPECIFY TARGET C++ COMPILER ...9

4 VISUALSPARK ENVIRONMENT SETTINGS ..11
4.1 ENVIRONMENT VARIABLES..11
4.1.1 SPARK_DIR ..11
4.1.2 PATH ..11
4.1.3 SPARK_PDFVIEWER ..11
4.1.4 SPARK_HTMVIEWER ..12
4.1.5 SPARK_CHMVIEWER...12

4.2 ENVIRONMENT FILES ...12
4.2.1 classpath.env...12
4.2.2 projects.env...12
4.2.3 sparkenv.sh or sparkenv.csh ...13
4.2.4 sparkenv.bat ...13

5 COMMAND LINE EXECUTION OF SPARK ...14
5.1 THE SPARK DIRECTORY STRUCTURE..14
5.2 COMMANDS ...15
5.3 PREPARATIONS ..15
5.4 BUILD AND RUN...16

5.4.1 Run-Control Information..17
5.4.2 Results...17

 i

5.4.3 The runspark Command ...18

VisualSPARK 2.0 Users Guide

5.4.4 The runspark Flags...18
5.4.5 Re-running a Problem Executable..18

5.5 EXAMPLES ...19
5.6 USING SPARK OUTPUT..20

6 USING THE GRAPHICAL USER INTERFACE (GUI)...21
6.1 THE MAIN VISUALSPARK WINDOW...21
6.2 THE PROJECT MENU ..26

6.2.1 Creating and Copying Projects ..26
6.2.2 Make Package, Make Clean, Make CleanALL ...27

6.3 NEW INPUT SET OR EDIT INPUT SET...27
6.3.1 Input Editor...28
6.3.2 Run-Time Parameters...29

6.4 RUNNING ...30
6.4.1 The Run Command ...30
6.4.2 Log Files and Error Reports...31

6.5 COMPONENT PREFERENCES ...31
6.5.1 “Defaults/Global/Structure” Tab...31
6.5.2 The Components Tabs ..32

6.6 VIEWING AND PLOTTING RESULTS...33
6.6.1 View results file (as text)...33
6.6.2 Dynamic, 1 Variable per Plot...33
6.6.3 Dynamic, multiple variables per plot ...34
6.6.4 Real-Time Dynamic Plot...35
6.6.5 Phase Plot...36
6.6.6 Zooming In and Out..36
6.6.7 Plotting Results from Several Different Problems..36

6.7 EDITING PROJECTS AND CLASSES ..40
6.8 CREATING SPARK CLASSES ...41

7 TUTORIAL..43
7.1 ROOM_FC EXAMPLE ...43

7.1.1 Getting Started..43
7.1.2 Running the Model..44
7.1.3 Viewing the Results...45
7.1.4 Modifying the Values for the Input Variables...51

7.2 SUM5 EXAMPLE..54
7.2.1 Create a New Project..54
7.2.2 Create the Supporting Classes..56
7.2.3 Create the Input Data ...59

7.3 ROOM_PI EXAMPLE ..60
7.3.1 Create the Project...61
7.3.2 Create the Macro Class ac_pi and the Atomic Class pi_formula ..63
7.3.3 Create the Macro Class Room..66
7.3.4 Create a New Input Set and Run the Problem..68
7.3.5 Run Simulation and Plot the Results ..72
7.3.6 Use Temperatures from EnergyPlus Weather Data File..72

8 SUPPORT...75

GLOSSARY OF TERMS ..76

INDEX ...81

 ii

VisualSPARK 2.0 Users Guide

FOREWORD

This guide is an introduction to using the VisualSPARK version of the SPARK program. It addresses platform-
specific issues; provides installation instructions for Windows®, UNIX® and Linux® platforms; and presents a
set of tutorials.

Before going through the tutorials you should read the sections of the SPARK Reference Manual about the
basic methodology in order to familiarize yourself with the basic concepts that underlie the SPARK approach
to setting up and solving simulation problems.

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of
Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of
Energy, under contract DE-AC03-76SF00098.

NOTICE: The Government is granted for itself and others acting on its behalf a paid-up, nonexclusive,
irrevocable, worldwide license in this data to reproduce, prepare derivative works, and perform publicly and
display publicly. Beginning five (5) years after (date permission to assert copyright was obtained) and subject
to any subsequent five (5) year renewals, the Government is granted for itself and others acting on its behalf a
paid-up, nonexclusive, irrevocable, worldwide license in this data to reproduce, prepare derivative works,
distribute copies to the public, perform publicly and display publicly, and to permit others to do so.
NEITHER THE UNITED STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY, NOR
ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES
ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR PROCESS DISCLOSED, OR
REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

The SPARK simulation program is not sponsored by or affiliated with SPARC International, Inc. and is not
based on SPARC architecture.

 iii

VisualSPARK 2.0 Users Guide

TEXT CONVENTIONS

Throughout this manual, we use different typefaces as follows:

Program Name

File Name

KEYWORD
Screen Display, Code, Key

User Entry <enter>

Button, Menu
“Window”, “Dialog box”, “Panel”, “Tab”, “Label”

In addition, when discussing SPARK terminology italic and bold typefaces identify the different entities, as
follows:
problem name macro class

object name atomic class

probe, link name port name

problem variable port variable

 iv

VisualSPARK 2.0 Users Guide

1 INTRODUCTION
SPARK is a general software program for solving simulation problems. It can be run on a variety of
platforms. User interfaces for SPARK are considered to be separate software programs which, except for the
built-in command-line interface, tend to be platform specific. SPARK targets two platforms, namely UNIX
workstations and Intel-based platforms running Linux or Microsoft Windows 95, 98, NT or 2000. This
document deals with a graphical user interface called VisualSPARK.

The SPARK Reference Manual provides overview, examples, and language reference that are, to the extent
possible, platform independent. This document supplements the Reference Manual, giving installation and
usage information for Windows and UNIX platforms, and describing how to use the VisualSPARK interface
to set up and run simulation problems..

1.1 AVAILABILITY AND LICENSING
Windows and UNIX versions of VisualSPARK are available after the execution of the Licensing Agreement.
You can execute the Licensing Agreement by visiting the Simulation Research Group Web site at
http://SimulationResearch.lbl.gov as discussed under Installation below.

Binary files that are part of the SPARK distribution are hardware dependent and system-software dependent.

Initially, UNIX installation packages are available for Sun workstations using Solaris, Sun workstations using
SunOS, and PCs using Red Hat Linux.

1.2 DOCUMENTATION
SPARK documentation is in the doc subdirectory after installation is complete. The Reference Manual is
provided in PDF format in SPARKreferenceManual.pdf. Additionally, this Users Guide is provided as
VisualSPARKusersGuide.pdf in the doc subdirectory. These documents can be viewed from within
VisualSPARK by using the Help menu. Externally, you can open the PDF files with Acrobat Reader,
available from various Internet sites. If you prefer paper copies, you can print these documents with Acrobat
Reader. For improved navigation of the PDF documents, the option that shows the TOC should be set in PDF
viewer. For Acroread, set the option "Bookmarks and Page" in the View menu to turn on the TOC. For
Acrobat, set “Bookmarks” in the Window menu to turn on the TOC.

The doc subdirectory also has several text files with useful information. These files often contain information
that became available after other documentation was complete and lists currently-known bugs and
idiosyncracies.

1.3 HELP
Please direct questions on downloading, installing and using VisualSPARK to SPARK Support .

 5 UNIX Versions: Install and
Download

http://simulationresearch.lbl.gov/
mailto:sparksupport@simulationresearch.lbl.gov

VisualSPARK 2.0 Users Guide

1.4 NAMING CONVENTION
The naming convention for the download file is:

VisualSPARK<ver>_<OS>_<CPU>.exe
where

<ver> is the VisualSPARK distribution version,

<OS> is your operating system, and

<CPU> is your CPU designation.

UNIX
The current distribution for Linux Kernel 8.0 on PCs is

VisualSPARK200_Linux_REDHAT8.0_x86.exe.

Windows
The current distribution for Windows on PCs is:

 VisualSPARK200_Win_x86.exe

 6 UNIX Versions: Install and
Download

VisualSPARK 2.0 Users Guide

2 UNIX VERSIONS: DOWNLOADING AND INSTALLATION
INSTRUCTIONS FOR RED HAT LINUX 8.0 (INTEL
PROCESSORS)

2.1 REGISTRATION
VisualSPARK installation requires a password. The password was sent to you by email after you completed
the registration form.

2.2 OTHER SOFTWARE REQUIRED
• GNU make

• GNU g++ compiler and libraries

• Adobe Acrobat Reader program for viewing .pdf files (acroread). Download from
http://www.adobe.com/products/acrobat/readstep2.html .

For Linux the download URL is ftp.adobe.com/pub/adobe/acrobatreader/unix/5.x/linux-506.tar.gz.
Download this file into a temporary directory. Unpack the file using the command
% tar xzf linux-506.tar.gz <Enter>

then follow the installation instructions in the readme file.

• The Netscape program for viewing the html files.
Linux operating systems may already have the above software; however, if they are not installed on your
computer, ask your system administrator to install them.

The executables of these programs (make, g++, acroread) must be accessible by your PATH environment
variable. The installation setup program checks the above requirements and gives appropriate error messages.

2.3 INSTALL VISUALSPARK
• To download, right click the following link and select Save Link As from the menu:

VisualSPARK200_Linux_REDHAT8.0_x86.exe.
In the “Save As...” panel: Make sure the Selection field contains your home directory followed by the file
name VisualSPARK200_Linux_REDHAT8.0_x86.exe then click OK

• After the file save is complete, make the downloaded file executable by running the command
(where % is the command prompt and user-entered text is in bold):
% chmod +x VisualSPARK200_Linux_REDHAT8.0_x86.exe <Enter>

• Run the downloaded program (supply the installation password when it is asked for):
% ./VisualSPARK200_Linux_REDHAT8.0_x86.exe <Enter>

This will extract the VisualSPARK distribution files starting at directory $HOME/vspark200.

• Run the following two commands to start the install program:
% cd $HOME/vspark200/install <Enter>
% ./install <Enter>

 7 UNIX Versions: Install and
Download

http://www.adobe.com/products/acrobat/readstep2.html
ftp://ftp.adobe.com/pub/adobe/acrobatreader/unix/5.x/linux-506.tar.gz
http://gundog.lbl.gov/VS/VisualSPARK200_Linux_REDHAT8.0_x86.exe

VisualSPARK 2.0 Users Guide

This will modify your .cshrc , .profile , .bash_profile files, and add the SPARK environment settings. It will
also create the following files in the $HOME/vspark200 directory: classpath.env , projects.env , sparkenv.csh ,
sparkenv.sh

• Logout and then login to make the new environment variable changes become effective.

• To start VisualSPARK (first make sure that the X-windowing system is running) type the command:
% vspark & <Enter>

2.4 UNINSTALL VISUALSPARK
To uninstall VisualSPARK, run the following commands to start the uninstall program:

% cd $HOME/vspark200/install <Enter>

% ./uninstall ; cd $HOME <Enter>

Uninstallation will remove the VisualSPARK installed files in the directory $HOME/vspark200. It will also
remove the SPARK-related environment settings from the .cshrc, .profile, .bash_profile files.

If there are user-created files in the $HOME/vspark200 directory tree, they will not be removed, and a message
will be given to the user to check them and remove the $HOME/vspark200 directory manually.

 8 UNIX Versions: Install and
Download

VisualSPARK 2.0 Users Guide

3 WINDOWS VERSIONS: DOWNLOADING AND INSTALLATION
INSTRUCTIONS FOR WINDOWS 95/98/ME/NT/2000

3.1 REGISTRATION
VisualSPARK installation requires a password. The password was sent to you by email after you completed
the registration form.

3.2 OTHER SOFTWARE REQUIRED
The Acrobat Reader program version 5.0 or later from Adobe is needed for viewing the VisualSPARK help
files. If this program is not already installed on your computer you can download it from

http://www.adobe.com/products/acrobat/readstep2.html.

3.3 INSTALL VISUALSPARK
• To download, click VisualSPARK200_Win_x86.exe.

• In the “File Download” panel, select Save this program to disk and save to a temporary directory
(e.g., C:\temp). The file name is VisualSPARK200_Win_x86.exe.

After the downloaded file is saved, make sure its size is the same as the number mentioned above. To find
out the size (in bytes) of the downloaded file, right click the file inside the Windows Explorer and select
Properties from the menu.

• After the file save is complete, run the program VisualSPARK200_Win_x86.exe.
(e.g., click Start, click Run..., type C:\temp\VisualSPARK200_Win_x86.exe, click OK.)

Alternatively, with the Windows Explorer, go to the directory where VisualSPARK200_Win_x86.exe was
saved (e.g., C:\temp) and double click on VisualSPARK200_Win_x86.exe.

• Follow the instructions that appear on your screen for installing VisualSPARK.

3.4 UNINSTALL VISUALSPARK
To uninstall VisualSPARK, go to the Windows Start › Settings › Control Panel › Add/Remove Programs
menu. Select the VisualSPARK entry and click the Add/Remove button.

3.5 SPECIFY TARGET C++ COMPILER
By default the VisualSPARK package for Windows installs the mingw C++ compiler program g++. After
VisualSPARK has been successfully installed, it is possible to change the target C++ compiler that will be
used by SPARK to build the libraries of atomic classes.

To switch to the Microsoft Visual C++ compiler1, go to the install directory of the VisualSPARK installation
and type the command:
sh config.sh compiler=vc <Enter>

1 This release supports the VC++ compiler version 6 and more recent versions.

 9 Windows Versions: Install and
Download

http://www.adobe.com/products/acrobat/readstep2.html
http://gundog.lbl.gov/VS/VisualSPARK200_Win_x86.exe

VisualSPARK 2.0 Users Guide

Make sure that the file vcvars32.bat is copied from the Microsoft Visual Studio bin directory to the bin
directory of the VisualSPARK installation.

To switch back to the mingw compiler, type the command:

sh config.sh compiler=gcc <Enter>

 10 Windows Versions: Install and
Download

VisualSPARK 2.0 Users Guide

4 VISUALSPARK ENVIRONMENT SETTINGS
In the following text, <spark_dir> refers to the full path where VisualSPARK is installed. E.g.,

UNIX
$HOME/vspark200

Windows
C:\vspark200

4.1 ENVIRONMENT VARIABLES

4.1.1 SPARK_DIR

This environment variable contains the path where SPARK is installed, same as <spark_dir> mentioned
above.

UNIX
It is set at the end of $HOME/.cshrc , or $HOME/.profile , or $HOME/.bash_profile

Windows
It is set in the file <spark_dir>\sparkenv.bat

4.1.2 PATH

Your PATH environment variable must contain <spark_dir>/bin and the directory containing the GNU g++
compiler (preferably at the front of the list); e.g., PATH might look like:

UNIX

.:$SPARK_DIR/bin:/usr/local/bin:/usr/gnu/binetc

It is set at end of $HOME/.cshrc, or $HOME/.profile, or $HOME/.bash_profile

Windows

 <spark_dir>\bin;<spark_dir>\gccmingw\bin;<spark_dir>\unixutil

It is set in the file <spark_dir>\sparkenv.bat

4.1.3 SPARK_PDFVIEWER

Contains the path of the Adobe Acrobat Reader program Acroread that is used for viewing .pdf files.

 11 Environment Settings

VisualSPARK 2.0 Users Guide

4.1.4 SPARK_HTMVIEWER

Contains the path of the browser program (Internet Explorer or Netscape) that is used for viewing .htm and
.html files.

4.1.5 SPARK_CHMVIEWER

Windows
Contains the path of the .chm file viewer program (named hh.exe). Required only for Windows installation.

4.2 ENVIRONMENT FILES

4.2.1 classpath.env

This file stores the path lookup list for finding SPARK classes.

UNIX
<spark_dir>/classpath.env

Windows
<spark_dir>\classpath.env

It contains one line of text in the form:

SPARK_CLASSPATH=.,../class,<spark_dir>/globalclass,<spark_dir>/hvactk/class

This means the SPARK class search order is:

1. the current project directory,

2. ../class directory relative to the current project directory,

3. globalclass directory of VisualSPARK distribution,
4. hvactk classes directory of VisualSPARK distribution.

UNIX and Windows use the same syntax, with the forward slash as the path separator. There must be no
spaces in the paths. This file is created by the install program. You can modify it to include users own class
directories. It is used by the VisualSPARK interface as default value. VisualSPARK keeps track of the
SPARK_CLASSPATH on a per-project basis. It is always used by the command line interface.

4.2.2 projects.env

This file stores the path where the current VisualSPARK projects reside.

UNIX
<spark_dir>/projects.env

Windows
<spark_dir>\projects.env

It contains one line of text in the form:

SPARK_PROJECTS=<spark_dir>/examples

 12 Environment Settings

VisualSPARK 2.0 Users Guide

This file is created by the install program, and managed by the VisualSPARK interface. Windows can use
either forward or backward slash as path separator.

4.2.3 sparkenv.sh or sparkenv.csh

These contain the same SPARK_DIR and PATH environment variable settings that are added to your .cshrc,
.profile , or .bash_profile by the installation process.

UNIX
<spark_dir>/sparkenv.csh , <spark_dir>/sparkenv.sh

They are created by the installation program.

Example sparkenv.sh:

SPARK_DIR=$HOME/vspark200 ; export SPARK_DIR

PATH=$SPARK_DIR/bin:$PATH

SPARK_PDFVIEWER=/usr/local/bin/acroread ; export SPARK_PDFVIEWER

SPARK_HTMVIEWER=/usr/local/bin/netscape ; export SPARK_HTMVIEWER

Example sparkenv.csh:

setenv SPARK_DIR $HOME/vspark200

set path=($SPARK_DIR/bin $path)

setenv SPARK_PDFVIEWER /usr/local/bin/acroread

setenv SPARK_HTMVIEWER /usr/local/bin/netscape

4.2.4 sparkenv.bat

This file sets the PATH, SPARK_DIR, and other needed environment variables.

Windows
<spark_dir>\sparkenv.bat

It is created by the installation program and used by the “VisualSPARK” and “SPARK console” shortcuts.

 13 Environment Settings

VisualSPARK 2.0 Users Guide

5 COMMAND LINE EXECUTION OF SPARK

5.1 THE SPARK DIRECTORY STRUCTURE

Figure 1: SPARK Directory
Structure

SPARK is composed of many files kept in several directories (see Figure
1). The root directory where SPARK is installed is named after the
version number, i.e., vspark200/.

The bin, lib and visspark subdirectories contain the fixed executable code
and binary libraries2 used by SPARK and the graphical user interface.
The install subdirectory contains information related to the installation of
VisualSPARK. This information is required for removal of VisualSPARK
with the uninstall process and should not be disturbed. Necessary source
code header files are in the inc subdirectory. The doc subdirectory in the
VisualSPARK directory contains user reference documents for both
SPARK and VisualSPARK.

SPARK comes with two class libraries, the global classes and the HVAC
ToolKit classes. The global classes are in the globalclass subdirectory and
include the basic mathematical functions likely to be needed in many
SPARK problems, regardless of application area. The subdirectory
integrators contains source files used to implement the advanced
integration methods in globalclass.

The HVAC ToolKit classes in the hvactk subdirectory define a modest
library for modeling heating, ventilation, and air-conditioning systems.
The examples directory contains examples of SPARK problems using the
global classes. Also, there is a compressed file in the hvactk subdirectory
that contains sample problems for all classes in the HVAC library. A
utility, testhvac, is provided to extract, build, and execute these sample
problems.

In SPARK, each new problem must be in its own directory, called a project directory. This directory is used to
store the problem file (problem.pr) and related files such as input (problem.inp), output (problem.out), log files,
and various intermediate files produced in a SPARK run.

Problems that are related are often grouped under a common parent directory, called the projects directory
(plural). The projects directory, which can have any name, should also have a class subdirectory to hold any
new classes you may create for the various problems under projects. The above mentioned examples
subdirectory is an example of a projects directory. As can be seen in Figure 1, there are seven project
subdirectories under examples: 2sum, 4sum, example, frst_ord, room_fc, room_fc_commandLineOnly and spring.

When using the VisualSPARK interface the directory structure is extended by the addition of one or more input
set subdirectories under each project directory. This is to allow you to have more than one set of inputs for
each problem. VisualSPARK places input, output, and other files that are specific to a particular input set in
the input set directory.

2 Source is not provided for modules that are provided in binary form in the bin and lib subdirectories.

 14 Command-Line Execution

VisualSPARK 2.0 Users Guide

5.2 COMMANDS
UNIX

You may execute SPARK under UNIX or Linux with the VisualSPARK graphical user interface (Section 6),
or with commands issued in an xterm command window. In this section we focus on the xterm command
window (although any X-system terminal can be used

As noted previously, each SPARK problem should be in its own project directory. The SPARK problem file
created by the user resides there, as well as various related files created as SPARK runs. The current working
directory should be set to the project directory before running SPARK. We assume this is so in the following
examples.

Windows
You may execute SPARK either with the VisualSPARK graphical user interface (Section 6), or with
commands issued in an MSDOS command window. In this section we focus on the MSDOS command
method.

It is important to note that the following commands, e.g., gmake and runspark, do not have an argument
indicating a particular problem to be run. This is because it is assumed that there is only one file in the project
directory with the .pr extension. Consequently, if you want to have different versions of your problem you
must place them in different project directories.

5.3 PREPARATIONS
UNIX

Running a SPARK problem from the command line requires that the bin subdirectory of the directory where
VisualSPARK is installed be in your PATH. The VisualSPARK installation process modifies your profile file
so as to make this change to your PATH.

Another requirement for running a SPARK problem is that the classpath.env file in the $(SPARK_DIR) directory
contains a path to the SPARK class files used in the problem to be solved. As created by the VisualSPARK
installation (See Section 4.2.1), the class path includes the current project directory (i.e., the current working
directory), the ../class directory, and all directories containing classes that came with the VisualSPARK
distribution. If you have classes elsewhere, you must to edit the classpath.env file accordingly.

One final requirement is that a makefile be defined in the project directory, i.e., $(SPARK_DIR)/examples/2sum
in this example. Assuming the Linux bash or UNIX Bourne shell, you can do this with the commands:

% cd example/2sum <Enter>

% ln -s $SPARK_DIR/lib/makefile.prj makefile <Enter>

This creates makefile as a symbolic link in the current directory to the master SPARK make file, makefile.prj,
which resides in the $(SPARK_DIR)/lib directory.

 15 Command-Line Execution

VisualSPARK 2.0 Users Guide

Windows
Running a SPARK problem from the command line requires that the $(SPARK_DIR)\bin and certain other
directories be in your PATH. For the sake of clarity let’s assume that VisualSPARK is installed in the
d:\vspark200 directory.

Under Windows, you can accomplish this by opening an MSDOS window and executing the sparkenv
command from your $(SPARK_DIR) directory, i.e., the d:\vspark200 directory:

d:\>cd vspark200 <Enter>

d:\vspark200> sparkenv <Enter>

Alternatively, you can just select “SPARK Console” from the Windows Start › Programs › VisualSPARK
menu choices. This launches an MSDOS window, changes to the d:\vspark200 root directory, and
automatically runs the sparkenv.bat command file.

There are two additional tasks preliminary to running a SPARK problem at the command line. One is to be
sure that the classpath.env file contains the correct path for the classes used in the problem. If you are using
only the provided classes, the default values shown in Section 4.2.1 will be sufficient. Otherwise, use your
text editor to modify classpath.env to include paths to your classes.

The other task is to provide a makefile in the project directory. One way to do this is to simply copy the
master make file, makefile.prj, from the d:\vspark200\lib directory to the project directory, i.e.,
d:\vspark200\examples\2sum in this example:

d:\vspark200> cd examples\2sum <Enter>

d:\vspark200\examples\2sum> copy d:\vspark200\lib\makefile.prj makefile
<Enter>

5.4 BUILD AND RUN
UNIX

Once you have thus set the environment, you are ready to run SPARK to solve the problem. This can be done
with the gmake command issued from the project directory. The command to run the problem is then:

% gmake run <Enter>

Since no make file is given in the command line, gmake uses the symbolic link makefile that was created
previously. This make file orchestrates the various steps needed to create the executable program3 and run
that program to solve the problem (see SPARK Reference Manual).

Windows
Once you have carried out these tasks, you are ready to run SPARK to solve your problem. This can be done
with the gmake command issued from the project directory. The command to run the problem in project is
then:

d:\vspark200\examples\2sum> gmake run <Enter>

This gmake command will use either the local makefile, or the link to the master makefile.prj, to orchestrate the
various steps needed to build the executable solver program, and run that program to solve the problem.

3 The executable solver program is also referred to as the simulator program.

 16 Command-Line Execution

VisualSPARK 2.0 Users Guide

Herein we shall assume that GNU make is called gmake, although some installations name it make. Special
features needed in a SPARK build preclude use of most other make programs.

5.4.1 Run-Control Information

When a SPARK problem runs it needs run-control information, such as simulation start time, time step, finish
time, and locations of the needed input files and of the output file. In both the Windows and UNIX and
implementations of SPARK, this information is taken from a file called problem.run. (Here, "problem" stands
for the name of the project directory, e.g., 2sum, spring.) gmake automatically creates a default problem.run file
for the problem in the project directory. If you want to change the run-control information, you can edit the
problem.run file.

5.4.2 Results

Results of the run may be found in the project directory. The produced files include:

problem.prf Preference file used by the executable solver.

problem.run File with runtime control parameters used by the executable solver.

problem.eqs The equations file produced by the SPARK setupcpp program.

problem.stp The setup file. An intermediate file produced by the SPARK parser and needed in the setup
step.

problem.cpp An intermediate file produced by the SPARK setupcpp program and needed in compilation
of the executable.

problem.xml The problem description file produced by the SPARK setupcpp program and needed to load
the problem at runtime in solver.

parser.log Log file for the parsing step.

setup.log Log file for the setup step.

run.log Log file for the execution step.

debug.log Log file with debug information for the execution step.

error.log Log file with error and warning messages generated during the execution step. If no error
or warning occurred, this file is not produced.

makefile.inc An intermediate file used by gmake to identify SPARK objects used in the build process.

In addition to these files, an executable solver file is also generated with the static build process. Consult the
SPARK Reference Manual for more information on the build process.

UNIX
problem The executable solver file.

Windows
problem.exe The executable solver file.

 17 Command-Line Execution

You should always check the log files to be sure no errors were encountered. The parser.log file will show any
problems in syntax as well as certain other errors in problem formulation. The setup.log file records errors in
problem formulation not caught by parsing. The run.log file reveals errors during the execution phase, such as
numerical problems. It also shows intermediate output of the solution process and diagnostic information.

VisualSPARK 2.0 Users Guide

The equations file shows the a user-readable calculation sequence followed by SPARK to solve the problem.
It is explained in detail in the Reference Manual.

5.4.3 The runspark Command

UNIX
To simplify the UNIX SPARK solution procedure described above, there is a script file called runspark in the
directory $(SPARK_DIR)/bin. This script file is used by typing (in the current project directory):

% runspark <Enter>

It will make the symbolic link to the SPARK make file, employ the current classpath.env file, and run the
problem in the current directory. To get the usage information about runspark type:

% runspark -help <Enter>

To clean current project directory type:

% runspark clean <Enter>

Windows
To simplify the command line SPARK solution procedure described above, there is a command file called
runspark.bat in the directory $(SPARK_DIR)\bin, i.e., d:\vspark200\bin. This command file is run by typing (in
the current project directory):

d:\vspark200\examples\2sum> runspark <Enter>

It will make the symbolic link to the SPARK master make file, supply the default classpath.env file, and run
the problem in the current directory. To get the usage information about runspark type:

d:\vspark200\examples\2sum> runspark –help <Enter>

To clean current project directory type:

d:\vspark200\examples\2sum> runspark clean <Enter>

This removes all files created during a previous run.

5.4.4 The runspark Flags

The following flags are not set by default unless you specify them at the command-line followed by “=yes”
to activate them.

Flags Description

SPARK_DEBUG Builds a SPARK simulator that uses the DEBUG
solver library.

SPARK_STATIC_BUILD Builds a self-contained SPARK simulator that does
not need to load the problem description at runtime.

5.4.5 Re-running a Problem Executable

As noted above, once you have run the problem by either of the above methods, the problem description file
named problem.xml will be in the project directory, along with a problem preference file, problem.prf and a
runtime control file, problem.run. The problem.prf file contains the numerical solution settings for each
component of the problem.
 18 Command-Line Execution

VisualSPARK 2.0 Users Guide

If it is desired to run the numerical solution stage again, it can be initiated by executing the SPARK solver
program sparksolver4 with problem.prf, problem.run , and problem.xml as arguments.

UNIX

% sparksolver problem.prf problem.run problem.xml <Enter>

Some UNIX installations, notably Linux, may not automatically include the current working directory “.” in
your PATH. If “.” is not in your PATH, you must prefix the problem executable with “./”.

Windows

d:\vspark200\examples\2sum> sparksolver 2sum.prf 2sum.run 2sum.xml
<Enter>

Alternatively, you can again enter the command
gmake run <Enter>

with little loss of efficiency, since gmake will not rebuild the problem if nothing has changed. On the other
hand, if you do make changes to any of the classes or the problem file, you must use gmake to rebuild.

It is important to note that the above gmake and runspark commands do not have an argument indicating a
problem file to be run. This is because it is assumed that there is only one problem file in the project directory
with the .pr extension. Consequently, if you want to have different versions of your problem you must place
them in different project directories.

5.5 EXAMPLES
As can be seen in Figure 1, there are several project subdirectories under the examples subdirectory. These
contain problem specification files (.pr) and input files (.inp) from the examples in the SPARK Reference
Manual. A good one to start with is 4sum.p. This problem simply adds four inputs, x1, x2, x3, and x4, with
values taken from a provided input file 4sum.inp, producing their sum, x7.

UNIX
To run the 4sum example using the detailed steps indicated in the previous section, go to the 4sum directory
and set the class path and symbolic to the SPARK make file:

% cd $SPARK_DIR/examples/4sum <Enter>

% ln -s $SPARK_DIR/lib/makefile.prj makefile <Enter>

The next step is to build the solver for the problem and run the problem:

% gmake run <Enter>

This results in creation of an executable program called 4sum. Several other files are created, including
4sum.prf which is needed to execute 4sum, and 4sum.run which provides run-control information. The
command also runs the executable. When the command completes, the results can be found in 4sum.out
which can be examined with vi, Emacs, or other UNIX editors. You should also examine the various log
files noted in the previous section.

We see that the inputs for x1 through x4, read from 4sum.inp, were all 1, so their sum is 4. As before, these

4 This approach of running a problem executable assumes that the problem is dynamically built at runtime from its description contained in the
problem.xml file. Consult the SPARK Reference Manual for more information on the build process.

 19 Command-Line Execution

VisualSPARK 2.0 Users Guide

results are also placed in 4sum.out.

Windows

To run the 4sum example using the detailed steps indicated in the previous section, go to the 4sum directory
and set the class path and symbolic link to the SPARK make file:

d:\> cd d:\vspark200\examples\4sum <Enter>

d:\vspark200\examples\4sum> ln -s d:\vspark200\lib\makefile.prj makefile
<Enter>

The next step is to build the solver for the problem and run the problem:

d:\vspark200\examples\4sum> gmake run <Enter>

This results in creation of an executable program called 4sum.exe. Several other files are created including
4sum.prf, which is needed to execute 4sum, and 4sum.run, which provides run-control information. The
command also runs the executable. When the command completes, the results can be found in 4sum.out,
which can be examined with Notepad or another Windows or MSDOS editor. You should also examine the
various log files noted in the previous section.

We see that the inputs for x1 through x4, read from 4sum.inp, were all 1, so their sum is 4. As before, these
results are also placed in 4sum.out.

5.6 USING SPARK OUTPUT
SPARK output files, i.e., problem.out, can be viewed with any text editor or viewer available on your computer.
However, if the output is voluminous, such as for a dynamic simulation over a long time period, output is
better viewed graphically, perhaps using a spreadsheet or plotting program that you may have installed. One
option for UNIX command line users is the gnuplot program, available free at several Internet sites.

The VisualSPARK Graphical User Interface contains a plotting program that allows you to view the SPARK
output file graphically. See Section 6.6 for more details. The tutorial in this document also shows usage of the
plotting package.

 20 Command-Line Execution

VisualSPARK 2.0 Users Guide

6 USING THE GRAPHICAL USER INTERFACE (GUI)

6.1 THE MAIN VISUALSPARK WINDOW
The VisualSPARK graphical user interface for the Microsoft Windows and UNIX environments is available as
a more user-friendly environment than the command line.

UNIX
To use it, the X Window System must be running. If you have not yet started X, do so with the command
appropriate for your system. Under Linux, for example, this would be:

% startx <Enter>

Then you must open a terminal command window, often available from your X desktop or menus. In this
window enter:

% vspark & <Enter>

This will open the VisualSPARK main window on your X desktop as shown in Figure 2 (p. 22). The screen
shots in this document were obtained on a Windows platform. In the UNIX environment, the visual elements
will look a bit different.

Windows
You can start VisualSPARK in either of two ways:

You can go to the VisualSPARK root directory, e.g., d:\vspark200, and type:

d:\vspark200> visspark <Enter>

You can select VisualSPARK from the Windows Start › Programs › VisualSPARK menu.

Either method will open the VisualSPARK main window on your Windows desktop as shown in Figure 2.

This screen has three principal panels, labeled “Projects”, “Class Directories”, and “Classes”, as well as
command menu bars across the top and down the left side. The commands available in the menu bars will
change depending upon which panel is active. A panel becomes active when you click your left mouse button
while the cursor is in it. When the cursor is on a menu bar button, a brief description of what it does is
presented in a pop-up window.

 21 Using the GUI

VisualSPARK 2.0 Users Guide

Figure 2: VisualSPARK main window

Figure 3: Projects directory tree

 The “Projects” panel shows currently available projects upon which
you can work. At the top of this panel there is an open folder icon,
symbolizing a currently active Project Directory. Holding the cursor
over the word “Projects” in front of the folder icon causes the
complete, current project path to be displayed in a pop-up window.
Clicking on the folder opens a directory tree showing where this project
folder is placed in your file system, Figure 3.

If you wish, you can change to a different Projects directory by clicking
on the desired folder in the tree.

Typically, a Projects folder will have several Project subdirectories
with individual projects, i.e., SPARK problems. In turn, each project
can have one or more subdirectories, e.g., 2sum_inp below 2sum. These
subdirectories represent particular input sets for the project, so you can
run the problem with different input data and run-control information.

In order to execute SPARK, one of these input set directories must
be selected.

 22 Using the GUI

VisualSPARK 2.0 Users Guide

Figure 4: Help menu

 The “Classes” panel shows the classes in the directory currently
selected in the “Class Directories” panel. Double clicking one of these
classes, or selecting a class and pressing the Edit Class button, opens
the class file for editing.

To view the structure of a
project or class/object, in the
main panel, right-click on either
a project name or class file and
choose Show class tree from
the menu. This will pop up a
new window showing the tree
structure of the object. There
are two main views: classes
only and full structure with
object names. These views are
selected by radio buttons at the
top of the panel:

Figure 5: Class tree

 23 Using the GUI

VisualSPARK 2.0 Users Guide

If the Show full structure
button is selected, the variable
name associated with the object
is shown with the class of the
object in parentheses. If the
Show classes only button is
pressed, only one occurrence of
each class is shown at each
level. The lower radio buttons
show more or fewer levels of
the tree structure.

Figure 6: Class tree showing full structure

Figure 7: Class path for the room_fc project (but not for individual
objects)

If the mouse is positioned over
an entry in the tree, the class
path of that object is shown in
a popup window. The tree
may be printed on a PostScript
compatible printer with or
without the class paths by
checking the button below the
printer icon. Multiple class
tree windows may be
displayed, and by right-
clicking on an object lower in
the tree and choosing Show
class tree from the menu that
object and its subtree will
appear in a new window. Here
are two examples of the
PostScript output of a tree.
Figure 7 shows the class path
for the project room_fc but not
for the individual objects.
Figure 8 shows the class path
for each object.

Figure 8: Class path for each object

Note the Rescan buttons below the “Projects” and “Classes” panels. While VisualSPARK can often
automatically update the panel displays for changes made, it may not be aware of certain changes, e.g., adding
a new project. The Rescan button forces panel update to deal with these situations.

 24 Using the GUI

VisualSPARK 2.0 Users Guide

Figure 9: “Save class path” dialog
box

 The “Class Directories” panel shows class directories currently
available for use in the project selected in the “Projects” panel. These
are initially set to the classes defined in the classpath.env file (see
Sections 2.3 and 3.3), but these paths may be rearranged or new paths
added with the Modify button at the bottom of the panel. Once
changed, the new class path may be saved with the project or for the
current set of projects or for all of your VisualSPARK Projects (See
Figure 9).

The command menu across the top of the VisualSPARK main screen offers functions related to controlling
VisualSPARK, such as Quit and Help, or editing classes and projects.

 25 Using the GUI

VisualSPARK 2.0 Users Guide

Button Name Function
Text Editor This button applies to either Projects or Classes. It executes a text editor and loads the

selected file for editing. The label on this button changes depending on cursor location.
When in the “Projects” panel the label is “Edit Project”, and it changes to “Edit Class”
when you move to the “Class” panel. When the cursor is not in either of these panels, the
button is inactive and labeled “Text Editor”.

Delete Selected This button will delete the selected file, whether it is a project, an input set, or a class.

Help This button offers a menu with selections for various on-line SPARK documents as seen
in Figure 4 (p. 23).

Quit Exits the VisualSPARK interface.

The menu to the left of the “Projects” panel offers functions related to singular operations with SPARK
projects. The buttons available at any time are determined by what is selected in the three panels. For
example, if a project is selected in the “Projects” panel, only the Project and New Input Set buttons are
available. Clicking on the Project button opens the Project menu (Figure 10); this allows creating or copying
a project, as well as other options. The New Input Set button allows you to create input data for the selected
project. On the other hand, if an Input Set is selected in the “Project” panel, the buttons for editing the input
set, running the project and plotting results or changing preferences become available. These menu commands
are explained in more detail in subsequent sections.

6.2 THE PROJECT MENU

6.2.1 Creating and Copying Projects

Figure 10: Project menu

 Clicking on the Project button opens the Project menu as seen in
Figure 10. From this menu you can create a new project either by
starting fresh, or by copying an existing project. Note that any new
project created will be placed under the Projects directory currently
appearing in the “Projects” panel. Therefore you should be sure you are
in the correct Projects directory before clicking the Project button (See
Section 6.2).

If you select New Project, you will be asked for a new project name in a
dialog, and then a text editor (Figure 12) will be opened with an empty
file. After typing the SPARK problem definition into this file, saving
will create a new subdirectory for it in the Projects directory and the
new project will then appear in the “Projects” panel.

The Copy from selected menu entry is available if there is at least one project in the Projects directory.
Clicking on it will pop up a dialog in which you can enter the name for the new project, as seen in Figure 11.
As before, the new (copied) project will be placed in the current Projects folder and displayed in the
“Projects” panel.

 26 Using the GUI

VisualSPARK 2.0 Users Guide

Thereafter, you can open it with
the Text Editor button on the
main window, (which will now
be labeled “Edit Project”) or
simply click on it.

Figure 11: Copy project dialog

Figure 12: “Edit New Project” text editor window.

6.2.2 Make Package, Make Clean, Make CleanALL

As can be seen in Figure 10, the Project menu has three Make options. These are provided for project file
maintenance tasks that may need to be done occasionally. The Make Clean option removes various
intermediate and results files from a project. This needs to be done sometimes because problem errors can
result in incomplete builds, leaving the project in an improper state. Make Clean will allow a fresh start on
the problem after you have fixed the errors. No user-created files will be deleted. Make CleanALL is
similar, but does a more thorough cleanup and deletes all run subdirectories created by VisualSPARK. The
Make Package option allows export of a project. It copies all files related to the project, including its class
files, into a new directory called projName_pkg, where projName is the name of the project being packaged. By
sending this directory to a colleague, you can be sure he/she will have all necessary files to run the project.

6.3 NEW INPUT SET OR EDIT INPUT SET
After creating a new project you would typically then want to create an input set for it. The New Input Set
button in the main VisualSPARK window, Figure 2, allows you to do this. Since input sets are always
associated with a particular project, a project must be selected in the “Projects” panel before this button is
available. Clicking on this button brings up the “Input Editor” window shown in Figure 13.

 27 Using the GUI

VisualSPARK 2.0 Users Guide

If an existing input set is
selected in the “Projects” panel
instead of just a project, the
Edit Input Set button will be
available. Clicking it will
launch the same editor as used
for creating new input sets. In
this case, however, the fields
will contain existing values.

At the top of the “Input Editor”
window is a Set File menu
choice, under which you will
find the familiar Open, Save,
Save As, and Close choices.

Figure 13: “VisualSPARK Inputs” window.

To the right are several buttons which will bring the labeled windows to the top of the stacking of
VisualSPARK windows. For example, if you are working in the input editor, and you cannot see the main
VisualSPARK window, press the Main Window button and it will bring it to the top of all other windows on
your computer. If the window doesn’t yet exist (e.g., the graph window) the button has no effect.

Below there is a tool bar with the normal icons for Open, Save, and Close. To the right of the tool bar is a
field showing the name of the current input set file.

6.3.1 Input Editor

The input editor has three panels below the tool bar. At the upper left is an area to put useful comments about
the data set. Below that is a panel with three tabs labeled “Values for Input Variables”, “Initial Predictor
Values (Breaks)” and “Initial Values for Dynamic Variables”. These tabbed areas show all variables in those
categories.

The tab “Values for Input Variables” contains the values for the variables that act as inputs to the model. The
tab “Initial Predictor Values (Breaks)” contains the predicted values for the break variables that are used as
predictors in the Newton-Raphson iteration. Finally, the tab “Initial Values for Dynamic Variables” contains
the initial values of the dynamic variables in the model. The dynamic variables are the variables that are
connected to the x port of an atomic class defined with class type INTEGRATOR (Consult the SPARK
Reference Manual for more information on the integrator classes). Note that if a dynamic variable happens to
be a break variable too, it will only be listed in the tab “Initial Values for Dynamic Variables” and not in the
tab “Initial Predictor Values (Breaks)”.

For each tab a variable may be classified into one of two categories.

 28 Using the GUI

VisualSPARK 2.0 Users Guide

Time-Varying
These are input variables for which you will want to give time-varying values
in the lower left panel (which is labeled “Variables → Time”).

Constant
These are input variables for which you want to give constant values in the
adjacent field.

You indicate the category for each variable by clicking on the radio buttons, which activates the string area
where to specify the constant value or a URL.

At the top of the tab panel is a check button labeled Hide NONAMEs . This button allows you to omit
SPARK NONAME variables, i.e., those that appear only inside macro objects and that have no user-assigned
names. These are often quite numerous in large projects, and checking this button will avoid needless clutter
in the table of variables in the “Input Editor” window.

In addition to its role in categorizing inputs, the tab panel displays other information about the variables.
Shown to the right of each variable name is its units as determined from the problem definition file in the
manner discussed in the Reference Manual. Additionally, note that if the window size is reduced this
information may not be fully visible.

If a variable name is not fully visible (e.g. because it is too long), placing the mouse over the name will pop
up a temporary window showing the full name.

The lower left panel is a table in which you can give values for each input variable categorized as time-
varying in the upper left panel. The first column in the table represents time, and the others represent the input
variables identified as time-varying. The first row of the table lists the names of these variables. In subsequent
rows, a time value is entered in column one, followed by numerical values for the variables at that time. As
explained in the Reference Manual, SPARK interpolates between the given time points to get intermediate
values. The table behaves in a spreadsheet-like manner, so you can scroll up and down or left and right as
needed. The buttons at the bottom allow you to Insert a row above a selected row, Add a row after a selected
row, or Delete a selected row. The number of columns is determined automatically by the number of time-
varying input variables. If an input variable is selected as constant, its column in the table is made
“invisible”, because the value for a constant input variable is taken from the entry in the top panel.

6.3.2 Run-Time Parameters

To access the run-time parameters panel press the Run Windows button at the top of the input panel. You
must enter appropriate values for each item.

For problems to be solved only once, enter 0 for both Initial Time and Final Time, any nonzero value for the
Constant Time Step and Report Cycle, and 0 for First Report.

For dynamic problems, you enter appropriate values determined from the mathematical model and numerical
considerations.

The Restore Initial Values button at the bottom of the panel can be used to restore the fields to values that
existed when the editor was started. The two buttons above the Run-Time Parameters fields are duplicates
of buttons of the same name in the main VisualSPARK window.

Diagnostic levels

At the bottom of the panel are check buttons to tell the solver to report one or more type of diagnostic
information to the run log file.

The choices are:

 29 Using the GUI

VisualSPARK 2.0 Users Guide

• Silent (no diagnostic output)
• Convergence
• Inputs
• Reports
• Preferences
• Statistics
• Requests

The diagnostic level Convergence applies only to iterative components and shows the following information
at each iteration:

• the iteration count (0 corresponds to the prediction step),

• the value of the weighted Euclidean norm of all residuals comprising this component,

• the value of the weighted Euclidean norm of the increments for all unknown variables in the
component, and

• for the worst-offender variable, the convergence error, tolerance, value and name.
The convergence error corresponds to the increment between successive iterations for the variable in question.
Consult the SPARK Reference Manual for more details on the convergence diagnostic output.

The diagnostic level Inputs shows in which input files values for the listed variables will be read from. This
diagnostic is generated before the first step of the simulation.

At the end of each time step, the diagnostic level Reports shows the values of the problem variables for
which the REPORT keyword was specified in the problem description.

The diagnostic level Preferences shows the list of all global and component preference settings before the
first step of simulation. This allows you to verify the settings that will be used for the solution process.

The diagnostic level Statistics shows simulation statistics at the end of the simulation. This can be helpful to
compare numerical performance with different set of settings for example.

Finally, the diagnostic level Requests shows when and where from a simulation request was made over the
course of the simulation. This allows to track the requests generated from the atomic classes.

After making any changes to the run-time parameters you must save the values by pressing the Save button,
which looks like a floppy disk. At the top of the panel is a Run button which you may use to run the model, a
pull-down menu to choose graph to show results, and a Close button to close and dismiss the panel.

6.4 RUNNING

6.4.1 The Run Command

When you have properly defined a project and an input set, select the input set in the “Projects” panel and
click on the Run button either in the main VisualSPARK window, Figure 2, or in the “Input Editor” window,
Figure 13. This builds the solver and executes the problem solution file, much as described in Section 0. The
run status box, shown in Figure 14, is displayed.

 30 Using the GUI

VisualSPARK 2.0 Users Guide

Figure 14: “Run status”
windows.

 The check marks are displayed as the build process progresses.
Provided no errors are encountered during the build, the last stage,
Running Solver, will be reached. This is the numerical solution phase.
When it completes, the status report box closes. Note that while the
run is in progress the Run button in the main window is highlighted in
bright red. No other action can be taken with the project until the first
three steps are complete and the solver is started, as indicated by the
status report box text. However, the Stop button may be pressed at any
time to abort the process.

6.4.2 Log Files and Error Reports

Errors can arise in any of the
several steps that take place as
a result of the Run command.
These errors are reported in
various log files as discussed in
Section 5.4.2. When using the
VisualSPARK interface. All of
the log files will automatically
be opened if an error occurs.
You should examine these files
carefully, beginning with run.log
to determine where the error
occurred. For example, if we
deliberately introduce spurious
text in the 2sum.pr file and run
it we get the parser.log file as
shown in Figure 15. For run-
time errors, the error.log file will
be opened in addition to any
others.

Figure 15: Project parser log

6.5 COMPONENT PREFERENCES
The Preferences button at the bottom left of the main window, Figure 2, brings up the “Component
Preference Editor” window (Figure 16) that allows you to specify advanced solution controls such as choice
of solution methods5 and solution accuracy. In many instances, the default solution method and accuracy
controls will suffice, so you usually do not have to change anything. However, if the solution fails, you may
want to visit this dialog.

6.5.1 “Defaults/Global/Structure” Tab

The first tab labeled “Defaults/Global/Structure” in the “Component Preference Editor” window contains
three sections. The left half shows the problem structure in a tree view. The inverses are first followed by
input and unknown variables. By clicking on the plus “+” symbol you may expand each level of the tree. The
top part of the right half contains a set of default values which will be used for the different components
unless they are overridden by the user in those tabs. The bottom part contains two global values, Tolerance
and MaxTolerance.

5 Some of the solution methods shown here may not be available.

 31 Using the GUI

VisualSPARK 2.0 Users Guide

The Tolerance value in Figure 16 may be thought of as the maximum acceptable relative error tolerance.
Iterative solution stops when the absolute difference between two successive values of each iteration variable
falls below the tolerance value. Epsilon is the perturbation on the iteration variables used to calculate
numerical partial derivatives. The SPARK Reference Manual should be consulted for more details on the
choices available in the component preferences.

6.5.2 The Components Tabs

It is important to note that SPARK automatically decomposes your problem into separately solvable pieces
called “components”. The term “component” is used here to mean a strongly connected component of the
problem graph, not models of physical components. Each component can have its own solution method and
accuracy specifications. Thus the “Component Preference Editor” dialog is tabbed across the top. By clicking
on a particular tab you get a form for setting the controls for that component.

Since the problem considered here has a single component, Figure 16 has a single component tab for the one
component plus the “Defaults/Global/Structure” tab.

The left side of the
components tab shows the
structure of the component,
with any unknowns (i.e.,
break or normal unknowns)
solved by the objects
assigned to each of them. It
is a tree structure and the
levels may be viewed by
clicking on the plus “+”
symbols to open or close a
level.

SPARK can capture
diagnostic output on a
component-by-component
basis. There are four fields in
the lower right corner of the
“Component Preference
Editor” window for
requesting this tracing
mechanism.

Figure 16: “Component Preference Editor” window.

For each tracing mechanism, the diagnostics will be written to the file designated in the file name field. The
SPARK Reference Manual has more details on each tracing mechanism.

Finally, the button bar at the bottom of the “Component Preference Editor” window presents buttons to allow
you to accept or reject changes made in the editor, or to seek Help. The OK button accepts all changes and
leaves the “Component Preference Editor” window, while Apply accepts all changes but stays in the editor so
you can make changes for other components. Cancel discards any changes you may have made to any of the
components and leaves the editor.

 32 Using the GUI

VisualSPARK 2.0 Users Guide

6.6 VIEWING AND PLOTTING RESULTS
There are two methods that may be used to view the calculation
results The first method is used to plot results from one problem in a
variety of ways; the second is to plot results from several problems to
make comparisons. For the first method, click Results/Plot in the
main window, Figure 2, or in the “Input Editor” window, Figure 13.
This brings up the menu shown in Figure 17. All choices present a
popup dialog to allow you to choose the file to plot. This may either
be the normal output file or the output from the trace file.

Figure 17: Results/Plot menu.

6.6.1 View results file (as text)

The top-most choice will display the results as a text file in an edit window. Results for simple algebraic
problems are best viewed in this manner. The SPARK Reference Manual provides an explanation of the
contents and format of this data.

6.6.2 Dynamic, 1 Variable per Plot

The next three menu choices offer different ways of plotting the results for dynamic problems. The Dynamic,
1 variable per plot choice presents the results as a sequence of plots, each with a single reported variable
plotted versus time. When this button is clicked the window shown in Figure 18 appears. All problem
variables with a REPORT designation in the problem file (see SPARK Reference Manual) appear in the upper
panel with adjacent square selection symbols. You can select variables to be plotted by clicking on the
squares, causing them to become highlighted. Automatic scaling is done for the X and/or Y axes6 if so
indicated by a checked box under Auto. If an axis is not checked, you must give minimum and maximum
values for scaling the axis.

When Make Graphs is clicked, a plot for each selected variable will be generated as shown in Figure 15.
The Close All button will close all generated plots. Otherwise, you can close them one at a time with the
Close button on each plot. Clicking on the printer icon at the bottom of the plot pops up a dialog to print the
plot.

Below the scaling area there are radio buttons to add grid lines to either or both X and Y directions on the
graph.

6 Note that the X and Y axes in the dialog refer to the plot horizontal and vertical axes respectively, not to the problem variable names.

 33 Using the GUI

VisualSPARK 2.0 Users Guide

Figure 18: Single variable plot

dialog

Figure 19: Dynamic plot of single variable

6.6.3 Dynamic, multiple variables per plot

The Dynamic, multiple variables per plot option in Figure 17 produces a somewhat different dialog (See
Figure 20). As before, variables to be plotted are selected by clicking on the adjacent squares in the top panel.
However, you can designate each variable to be plotted on either a left (Y1) or right (Y2) axis. Automatic
scaling is done for X and/or Y axes if so indicated by a checked box under Auto. If an axis is not checked,
you must give minimum and maximum values for scaling the axis.

The “Symbols” section near the bottom contains radio buttons to specify whether the graph should show lines
only without symbols, with symbols only or with lines with symbols. The entry below the buttons will limit
the number of symbols shown on each curve, which will be spaced evenly along the curve. If the entry is 0, a
symbol will be displayed at every data point. If it is blank, at most 20 symbols will be displayed.

In the “Scaling” area there is a pull-down menu labeled Upper X axis. After the graph is created, you may
add a second time scale to the top of the graph. For example, if your graph time units are seconds you may
add a scale at the top in minutes or hours, etc.

In the “Grid lines” area, you may choose grid lines for either X axis (top X1 and bottom X2) and/or Y axis
(left Y1 and right Y2).

When Make is clicked, a graph with all selected variables will be displayed to the right of the dialog, as
shown in Figure 21 for the room_fc problem.
 34 Using the GUI

VisualSPARK 2.0 Users Guide

Clicking on the printer icon at the bottom of the plot will display a dialog for printing the graph to an installed
printer.

Figure 20: Multiple plots per graph
dialog

Figure 21: Multi-variable plot

6.6.4 Real-Time Dynamic Plot

Note that there is a Make Real-Time button in addition to the Make button. If the simulation runs for a long
time, the Make Real-Time option allows you to see the graph developing on the screen as the solution
proceeds. There are two options for the real-time plot display. When Strip Chart Window is selected, a
fixed-scale, moving time axis is used, so the results appear as they would on a strip chart recorder. Otherwise,
the time axis is rescaled dynamically as time advances. To use the Make Real-Time feature meaningfully
you have to execute the Results / Plots › Dynamic, multiple variables per plot › Make Real-Time menu
sequence while the run is in progress, i.e., before the “Run Status” window, Figure 14, has closed.
Otherwise, the Make Real-Time button will produce the same plot as with Make. The Hold button just
below Make Real-Time allows you to temporarily freeze the graph to examine it more closely. The label

 35 Using the GUI

VisualSPARK 2.0 Users Guide

then changes to Resume, and pressing it again will allow the graph to resume updating as the solver produces
more output.

6.6.5 Phase Plot

The last of the choices for plots
of a single problem, Phase
Plot, on the Results/Plot menu,
Figure 17, is for plotting
selected variables against each
other, rather than against time.
This option provides dialog
allowing you to select the plot
variables, and when Make
Graph is selected the phase
plot is displayed to the right of
the dialog. Figure 22 shows a
plot of Q_flow vs. Q_floor for
the room_fc example.

Figure 22: Phase plot

6.6.6 Zooming In and Out

For all of the graph types, clicking the left mouse button in the graph area and dragging out a rectangle will
zoom that area to fill the space. You may zoom in multiple times. Clicking the right mouse button will zoom
out one level at a time.

Note that the plot windows shown above have been reduced in size to fit in this Guide. On the screen, they are
scaled more generously, making them more readable. As with most windows on your desktop, they can be
scaled dynamically to make them larger or smaller.

6.6.7 Plotting Results from Several Different Problems

For this type of plot, click Comparative Plots in the main window. A dialog will pop up in which you may
choose projects and their output files for plotting.

 36 Using the GUI

VisualSPARK 2.0 Users Guide

Figure 23: Select files for plotting

Figure 23 shows one output file that has been selected from several runs of a spring problem. After selecting
all the desired output files, press OK and the following panel will appear.

 37 Using the GUI

VisualSPARK 2.0 Users Guide

Figure 24: Multi Projects, Sets Up
on One Graph

 This is similar to the other plot panels except that you have the
additional selection area at the top to enable/disable files from the
different projects in the plot. After choosing the variables as in the
other plot types, press Make Graph and the graph will appear (See
Figure 25).

 38 Using the GUI

VisualSPARK 2.0 Users Guide

Figure 25 Multi-Project Comparison Plot

In the legend you will see the curves grouped by variable for each problem output file. If you are not viewing
this document in color, then the curves rendered in black and white can make it difficult to differentiate the
curves. In addition to the different line types (dashed, solid, etc.) and different colors, different symbols can
be used to distinguish the curves.

 39 Using the GUI

VisualSPARK 2.0 Users Guide

6.7 EDITING PROJECTS AND CLASSES
Projects (i.e., problem files) and
classes can be edited within the
VisualSPARK interface. There
are two ways of opening
existing projects or classes. The
easiest way is to double click
on the desired project or class
in the appropriate panel in the
main VisualSPARK window,
Figure 2. Alternatively, you can
select it in the panel and then
click on the Edit button in the
upper menu bar in the main
window. Either method will
open the associated source file
in an edit window, Figure 26.

Once opened with the editor,
you can make changes as
needed. The SPARK Reference
Manual should be consulted for
information on SPARK syntax.

Figure 26: Editing projects or classes

The editor offers the basic functionality most users will be familiar with, so its operation will not be discussed
at length. As can be seen, there are icons for opening, saving, printing, and closing of the file. These functions
are also available under the File menu. The Edit menu offers Undo, Search, and Replace options. The Font
menu allows selection of a range of font sizes. You can maneuver the insertion point with the mouse, using
side and bottom scroll bars if needed. Also, there are two Go to buttons for going to specific lines in the file.
The Go to line button will go to the line whose number is entered in the adjacent field. The Go to selection
button also goes to a line number, but in this case the target line number is identified through selection.
Typically, the selected number will be in a different window. For example, an error.log file such as shown in
Figure 15 has line numbers indicating the offending line in the source file. If you select one of these line
numbers in error.log by double clicking, then open the source file for editing and click on Go to selection, you
will be taken to the line that needs attention.

Note that you must save the file before you run the problem or your changes will not take effect.

Always save any SPARK file after changing it!

 40 Using the GUI

VisualSPARK 2.0 Users Guide

6.8 CREATING SPARK CLASSES
At the bottom of the “Classes”
panel in the main window,
Figure 2, there is a button
labeled New Class. Pressing
this button brings up several
options offering assistance in
creation of new SPARK classes,
Figure 27.

Figure 27: New Class menu

The first choice Sparksym
offers symbolic algebra tools
for automatic creation of
atomic classes, macro classes,
and SPARK problem files. This
selection first brings up a
dialog for entry of a name for
the new class, Figure 28. After
entering a name and pressing
OK, a “Create Class Using
Sparksym” window is opened,
Figure 29.

In the field labeled "Enter the
equation here" you may enter
an algebraic equation to be
solved by one of several
symbolic algebra tools, such as
Mathomatic,7 Maple,
Mathematica or MACSYMA.

Figure 28: sparksym dialog

Figure 29: sparksym window

Then when Solve is pressed a complete SPARK atomic class is generated and displayed in the lower panel.
When you press Save Class, the class is saved under the specified class name with a .cc extension in the
active class directory. Pressing Close without first saving will result in a confirmation dialog.

In generating the atomic class, sparksym calls the chosen symbolic algebra solver to attempt to generate
explicit inverse functions for every variable in the expression. If explicit inverses are not found for some
variables, “implicit inverses” are used, as explained in the SPARK Reference Manual. These inverses are
embedded as functions in the generated class, using names generated from the variable names. Also, every
variable is placed in the class interface using a PORT statement with nominal values for INIT, MIN and
MAX, and a unit string of [-], i.e., unspecified units.

7 sparksym includes a licensed derivative of the Mathomatic symbolic algebra tool. The full DOS shareware version of Mathomatic is available from
www.lightlink.com/george2.

 41 Using the GUI

VisualSPARK 2.0 Users Guide

Although the class is directly usable in many cases, you may want to open it with the class editor and
customize it for your purposes. Additionally, you should always examine the functions carefully before use
since symbolic algebra sometimes gives unexpected results.

The symbolic algebra solver that comes bundled with VisualSPARK is Mathomatic. Although not as
complete as larger computer algebra systems, Mathomatic may meet many of your needs for SPARK class
development. Its primary limitation is that only standard binary operations such as + (addition), –
(subtraction), * (multiplication), / (division), and ^ (exponentiation), and unary minus – (e.g., the minus sign
in –5), are recognized. If you find that Mathomatic does not meet your needs, you may want to install
MACSYMA, Maple, or Mathematica, which are more capable symbolic algebra tools. Once you have any of
these installed, you may choose them from the pull-down menu labeled Use Solver. Like Mathomatic, these
options allow you to automatically create SPARK atomic classes. However, because the MACSYMA, Maple
and Mathematica programs are more robust, they can generate many inverses for which Mathomatic fails.
Additionally, macro classes and entire SPARK problems can be generated from given equations. The
complexities of these tools prevent explanation here.

The last three options on the New Class menu, Figure 27, are for creation of new classes without use of
symbolic tools. The Copy from Selected option prompts for a new class name and then creates a copy of the
class currently selected in the “Class” panel, placing it in the active class directory. You should then edit the
new class as needed, as discussed in Section 6.7. The two choices Create atomic class and Create macro
class prompt for a new class name and then open an edit window with skeleton classes of the indicated type.
These can be edited to finish creating a new class with the desired properties.

 42 Using the GUI

VisualSPARK 2.0 Users Guide

7 TUTORIAL

7.1 ROOM_FC EXAMPLE

7.1.1 Getting Started

Let’s try running the room_fc
(air-conditioned room) example
from the examples subdirectory
in the doc directory that comes
with VisualSPARK. This is
fully described in Section 2.4 of
the SPARK Reference Manual.
From (Figure 30) we see that it
is one of the seven example
projects. After clicking on the
“+” sign to the left of the name,
it opens to show that there is a
data set or set-file called
room_fc_inp. This contains
input data along with the run-
time information needed to run
the model.

Notice that when you click on
the “+” sign to open the project,
the directories that this project
uses appear in the “Class
Directories” panel immediately
to the right. If you click on one
of those directory names, the
class files in that directory will
appear in the ”Classes” panel
(Figure 31). Note that not all
class files are necessarily used
by the project, but they are
available for its use.

Figure 30: Main window showing the room_fc project directory and the input

data set, room_fc_inp

Figure 31: Main window showing the classes for room_fc

Now let’s look at the SPARK code for the model itself. Reselect the project by clicking on the room_fc label
and notice that the second button at the top of the VisualSPARK panel changes from Text Editor to Edit
Project, signifying that if it is pressed, the editor will start with the project’s .pr (problem) file. Now press it
to see the “Edit Project” screen (Figure 32).

 43 Tutorial

VisualSPARK 2.0 Users Guide

Figure 32: The projects.pr (problem) file

Here, we could make changes to the problem, which is written in the SPARK language. For now, close the
“Edit Project” window.

7.1.2 Running the Model

Let’s go ahead and use the room_fc model as is. Click on the input data set called room_fc_inp under the
project label room_fc in the “Projects” panel of the main window (Figure 30). This selects the data set we
would like to use to run the model.

Next, press Run on the main
window and a “Run Status”
window will pop up showing
the progress of building,
compiling and running the
model (Figure 33). Finally, you
will see a message that it is
running the solver (Figure 34).

Figure 33: Building the Model

Figure 34: Running the Model

There are four steps shown in the “Run Status” window:

1. Assembling the relevant files into a C++ program (“Making project files”)
2. Compiling the C++ program and linking with the solver library (“Generating C++ program and

executable”)

 44 Tutorial

VisualSPARK 2.0 Users Guide

3. Reading the data set and creating the input file for the solver (“Reading Data Set File/Writing Input
File”)

4. Running the solver (“Running Solver…”)
A yellow color indicates the current step. A checkmark will appear when the step is complete. You may stop
the process at any time by pressing Stop.

7.1.3 Viewing the Results

Output As Text

After a run (whether successful
or not), you may examine the
results either as a table of
numbers or as a graph. The
former is achieved by choosing
View results file (as text) from
the Results/Plots menu in the
main window. This causes the
“Examine Output File” window
to appear (Figure 35).

Output as Graphs

The text view is not very
exciting and it is difficult to see
any trends in the data. Let’s
look at a graph of the data
instead.

There are two major types of
graphs: the dynamic plot and
the phase plot. The first is a
graph of the output variables
versus time. The second is a
plot of one variable vs. another
that shows the correlation
between the variables as a
function of time.

Figure 35: Output in text form for the room_fc example

 45 Tutorial

VisualSPARK 2.0 Users Guide

The Basic Dynamic Plot

In Dynamic Plots, you can
either have a different graph for
each variable to be plotted
(called 1 variable per plot in
the menu) or you can plot two
or more variables on the same
graph (called Dynamic,
multiple variables per plot in
the menu). Let's make a graph
of multiple variables. After
choosing the Dynamic
multiple variables per plot
from the Results/Plots menu,
we select the output file, called
room_fc_inp.out, from the
“Choose Output File” dialog
that appears Figure 36.

Figure 36: Select output file

 46 Tutorial

VisualSPARK 2.0 Users Guide

Figure 37: Select variables to be
plotted

After clicking on the output file name and clicking Open you are
presented with a panel allowing you to choose which variables to plot,
and on which of the two possible Y axes you want each variable
plotted. Simply click on a green box beside each variable you want to
plot (See Figure 37).

 47 Tutorial

VisualSPARK 2.0 Users Guide

For now, we will leave the
other settings at their default
values. These settings allow
you to manually scale the axes,
show a “strip chart” of the data
in real time as the solver runs,
and control the appearance of
symbols on the output curves.

Now that you’ve chosen the
variables, press the Make
Graph button (in Figure 37) to
create the graph, (Figure 39).

Figure 38: Zooming in (dotted
lines) on a portion of the graph

Now zoom in on the center of
the graph where the curves
make a “step” (Figure 38).
Click the mouse on one corner
of a rectangle that defines the
area of interest, drag the mouse
to the other corner, and click
again. You will see a “Zoom
#1” message and the rectangle.
After the second button press
you will see only the area you
selected (Figure 40).

Figure 39: Results graph of the room_fc problem

Figure 40: Display of the zoomed portion of the results graph

You may zoom in repeatedly to see finer detail. To zoom out, press the right mouse button once for each
zoom level. There is a printer icon at the bottom of the graph. Under Windows, clicking this icon will pop up
the printer chooser dialog. Under UNIX (Linux, Solaris, etc.) clicking this icon will cause a print to the
default printer defined in the PRINTER environment variable, or to the printer named in the entry next to the
printer icon, if it is not blank.

 48 Tutorial

VisualSPARK 2.0 Users Guide

Real-Time Graph

The real-time graphing feature
allows you to stop the
simulation if you want to check
its progress or if you think it is
running incorrectly. In the
results plotting panel, (Figure
39), press Make Real-Time,
then Run; the curves will then
change as the data is written to
the output file. At any time
during the run you may press
Hold to freeze the screen, see
Figure 41. At this point the
label changes to Resume,
signifying that you may press it
to resume screen updates. Note
that after pressing the Make
Real-Time button, its label
changes to Stop Real-Time;
you may stop the graph by
pressing the button.

Figure 41: Real-time graph in progress

Strip Chart Graph

Just above the symbol control
section is the scaling section
(Figure 42). In it you may
allow automatic scaling of the
axes (the default) or choose
your own minimum and maxi-
mum values for the X, Y1 and
Y2 axes. Note the Strip Chart
Window button. During the
creation of a real-time graph
you may only want the latest
period of data. After pressing
this radio button, enter the
window size in the entry to the
right. This is the amount of
time (along the X axis) to show
in the window. This example
shows the latest 20,000 seconds
of data.

Figure 42: Strip chart in action

Phase Plot

The last graph type is the phase plot. With it you can see the relationship between any two variables as a
function of time. Let’s take a look at the relation between Q_floor and T_floor. Choose the Phase Plot option
from the Results/Plots menu and choose the output file as before. You will see the panel in Figure 43.

 49 Tutorial

VisualSPARK 2.0 Users Guide

Q_floor is already selected for the X axis, so press the radio button under the “Y” for T_floor to select T_floor
for the Y axis (selecting T_floor in this way will un-select Q_floor). Now press Make Graph at the bottom
of the panel to create the graph in Figure 44. Here we see that the selected variables are more or less linearly
related until T_floor reaches 24°C, at which point Q_floor continues to increase while T_floor stays constant.
The green-filled circle indicates the first time point and the blue-filled circle the last time point.

Figure 43: Choosing the T_floor
and Q_floor variables for phase

plotting

Figure 44: Phase portrait plot

 50 Tutorial

VisualSPARK 2.0 Users Guide

7.1.4 Modifying the Values for the Input Variables

Let’s play a little with the input data to see how it affects the results. Click Edit Input Set in the main
window. If it is grayed out (inactive) then you must reselect the room_fc_inp data set in the Projects area.

Figure 45 shows the input data editor. In the upper section is a Set File menu to load and save a data set file,
and icons below that which do the equivalent. Below that is a box in which arbitrary comments may be
inserted, these are saved with the data set file.

Further down there are three tabs, each listing a category of variables that may require input values to be
specified. The tabs are labeled “Value for Input Variables”, “Initial Predictor Values (Breaks)” and “Initial
Values for Dynamic Variables”. In the first tab that lists all the input variables for the problem, there are
check buttons under the subsection labeled “Constant Value or URL” which, if pressed, allow a constant
value or a Read URL from which to get data, for example a weather file. If the button is not pressed (the
default) then the variable is assumed to have time-varying values, which can be entered in the table below.

The bottom section contains a table of the values for all the input variables that are checked as “time-
varying.” The width of the columns may be manually changed to show longer variable names or larger
values, as is the case here with the values for the variable Mcp. To change the width of a column, click the
right mouse button on the vertical line between the variable-name cells and drag the mouse right or left. You
should see a “+” cursor as you hold down the right mouse button.

 51 Tutorial

VisualSPARK 2.0 Users Guide

Here’s where we’ll make some
changes to see how they affect
the results. Simply click on a
cell and replace the value.
Let’s make Mcp a constant
variable and let's change its
value to 80000, and change the
T_set_low variable at time 0.0
from 23.0 to 20.0.

The “Input data editor” window
should now look like the one
shown in Figure 46. Note that
since Mcp has been changed to
a constant variable it has been
removed from the “Time-
varying Input Variables” table
at the bottom of the window.

To change a value of a time-
varying variable (T_set_low in
this case), simply click on the
value in the cell and enter a
new value followed by the
<Enter> key. Notice in Figure
46 that the 20.0 for T_set_low
is red (it looks gray in printed
documents), indicating that it
has been changed.

Figure 45: “VisualSPARK Inputs” window.

Figure 46: “VisualSPARK Inputs” window with new values for Mcp and
T_set_low

 52 Tutorial

VisualSPARK 2.0 Users Guide

Also notice that the floppy disk icon at the top has changed to red (also looks gray in printed documents)
indicating that something has changed in the data, and that the Run button has been disabled, i.e., clicking on
Run won’t do anything. This ensures that you save any changes before making a run.

The results of a run with the new input values are shown in Figure 47. Compare this plot with Figure 39 to see
the effect of changing the input values.

Figure 47: Results graph of the room_fc problem for modified input data

 53 Tutorial

VisualSPARK 2.0 Users Guide

7.2 SUM5 EXAMPLE

7.2.1 Create a New Project

In this section we will create a
new project and its supporting
classes. The project finds the
sum of five numbers. Figure 48
is a graphical representation of
the problem.

After starting VisualSPARK,
click the Project button and
select New Project. When a
dialog pops up asking for a
project name, type

sum5 <Enter>

This will create a new entry in
the Projects list and pop up an
“Edit Project” window into
which the SPARK code for the
project may be typed. To
minimize errors, copy and paste
the following shaded text into
the “Edit Project” window,
Figure 49.

b

ax1

x2

x3
x4
x5

c

sum3

a

b
sum5

sum3

sum

obj3

obj1

obj2

sum

c

sum5

x1
x2
x3

Figure 48: Graphical representation of a problem to find the sum of five

numbers

// Test of sum5.cm
DECLARE sum5 obj ;
LINK X1 obj.x1 REPORT INPUT;
LINK X2 obj.x2 REPORT INPUT;
LINK X3 obj.x3 REPORT INPUT;
LINK X4 obj.x4 REPORT INPUT;
LINK X5 obj.x5 REPORT INPUT;
LINK SUM obj.sum5 REPORT ;

 54 Tutorial

VisualSPARK 2.0 Users Guide

To do this on Microsoft
Windows platforms, select the
text with the mouse, press
Control-C (which does a copy),
click on the VisualSPARK edit
panel and press Control-V
(which does a paste). On
UNIX platforms, select the text
with the mouse, click on the
VisualSPARK edit panel and
press Control-Y (yank). You
may first need to choose the
text selection mode in your
PDF viewer. You should now
have the screen shown in
Figure 49.

Figure 49: The sum5.pr “Edit Project” window

Figure 50: Select sum5 project

Now, in the “Edit Project”
window click the floppy disk
icon to do a Save, then click
Close. In the main window
click the sum5 name in the
“Projects” panel (Figure 50).

 55 Tutorial

VisualSPARK 2.0 Users Guide

7.2.2 Create the Supporting Classes

The Atomic Class

Now, back in the main window, in the panel labeled “Class Directories”, click on the first entry (Figure 51),
the period with the project name in parenthesis, i.e. “. (sum5)” to view the class files in the project
directory.

Next, under the right-most panel in the main window click on the menu button labeled New Class and choose
the Sparksym entry (Figure 52). This will let us define our sum5 class using a simple equation solver called
Mathomatic.

A dialog will pop up (Figure 53) asking for the name of the class. Type sum3 for the class name and click on
OK. A window (Figure 53) with the title “Create class sum3 Using Sparksym” will appear. In the box labeled
“Enter the equation here” type the equation sum3 = x1 + x2 + x3 and click on Solve.

Figure 51: Select class
directory

Figure 52: Select sparksym entry

Figure 53: Dialog box asking for the
class name (sum3)

The equation will be solved in
terms of each of the variables
sum3, x1, x2 and x3, and
produce the SPARK
programming code for the
atomic class. Figure 54 shows
what things should look like at
this point.

Now click on Save Class to
save the new class and close the
window. Note that the name of
the class file just created,
sum3.cc, now appears in the
“Classes” panel of the main
window.

Figure 54: Atomic class as created with sparksym

 56 Tutorial

VisualSPARK 2.0 Users Guide

The Macro Class

Going again to the main
VisualSPARK window, click
New Class again, but this time
choose Create macro class
(Figure 55).

This pops up a window labeled
“Create New Class”. Enter
sum5 as the name of the new
class, and then click OK. A
window will appear that
contains, as comments, a
template macro class (Figure
56).

Figure 55: New Class menu

Figure 56: “Create New Class” window showing (as comments) a template

macro class

Now edit this template by adding the following lines.

1. After the line // e.g. PORT Tin "inlet temp" [deg_C] ; add the lines
PORT x1 ;
PORT x2 ;
PORT x3 ;
PORT x4 ;
PORT x5 ;
PORT sum5 ;

2. After the line
add the lines

// e.g. DECLARE sum Sum1, Sum2 ;

DECLARE sum obj1, obj2 ;
DECLARE sum3 obj3 ;

3. After the line

add the lines
// e.g. LINK Tinlet .Tin , Sum1.x , Sum2.y REPORT;

LINK .x1 , obj1.a ;
LINK .x2 , obj1.b ;
LINK .x3 , obj3.x1 ;
LINK .x4 , obj3.x2 ;
LINK .x5 , obj3.x3 ;
LINK obj1.c , obj2.a ;

 57 Tutorial

VisualSPARK 2.0 Users Guide

LINK obj3.sum3 , obj2.b ;
LINK .sum5 , obj2.c ;

You should now have the window shown in Figure 57 (you will have to scroll down to see the link
statements).

Figure 57: sum5 macro class window with added code and comments

Now click Save (the floppy disk icon) and Close.

 58 Tutorial

VisualSPARK 2.0 Users Guide

7.2.3 Create the Input Data

Next, we will create some input
data for the model so that we
can test it out. Revisit the
project sum5 by clicking on its
name in the “Projects” panel
and click on New Input Set to
the left of the “Projects” panel.
A dialog will pop up asking
you for the name of the data
set. Type in test under the
label “Input Set Name” and
click OK. The window shown
in Figure 58 appears.

In the area labeled “Comments”
you may put any comments that
help you remember what the
data set is for. Below that you
will see a list of all input
variables for the sum5 problem.

Figure 58: “VisualSPARK Inputs” window

You may choose to make them time-varying or constant by clicking on the radio button for each variable.

When the radio button is clicked, the area to the right of the button turns white; this indicates that you may
enter the constant value or the URL string there. In the bottom section is a table where the time-varying data
for the time-varying variables is entered.

The relative size of the top and bottom sections may be changed by grabbing the small square two-thirds of
the way down on the right side with the mouse and dragging it up or down. Here we have moved it up a little
to make more room for the data table in the bottom section.

For this problem we could either make all the inputs constant to show the solution for one set of fixed inputs
or we may make them time-varying in order to have several different sets of inputs. They needn’t actually be
time-varying, but we can use that concept to have multiple sets of inputs. Now enter some values for each
input variable. First, click under the “Time” label in the table and enter a value of 0.0. Then, either press
the right arrow key or click in the cell for variable X1 and enter 1.0. For X2 enter 2.0 and so on to X5. Be
sure to press <Enter> after the last data value.

 59 Tutorial

VisualSPARK 2.0 Users Guide

Figure 59: Time-varying input
values for project sum5

 You should have something like Figure 59. Click the floppy icon to save
the data. That’s it! You have successfully created a new VisualSPARK
project and two SPARK classes – one atomic class and one macro class.

Now you can click on the Run Window button at the top of the input
panel and click on the RUN button to run the model using your input
data. Then view the data as outlined in Section 7.1.3.

One thing to notice at this point is that after changing the data the floppy disk icon at the top turned red
indicating that something in the data set had changed. If you try to close the window without saving the data
set you will first be prompted to save it or to discard your changes.

Remember, you must always save any changes you make in the input data panel before you may make
a run.

7.3 ROOM_PI EXAMPLE
For the next example we will
create a more complicated
project that uses feedback to
control the temperature in a
room using a proportional
integrating (PI) controller.
Figure 60 shows a schematic of
the physical model of the room.

The system of equations for the
room model are:

()
(

()

wall wall a osa

floor floor a floor

flow in a

floor flow wall

floor floor floor

Q UA T T

Q hA T T

Q mCp T T
Q Q Q

cap T Q

= ⋅ −


= ⋅ −


= ⋅ −
 = −
 ⋅ =

QflowTin

Ta

m

 m

Qfloor

Qwall

Tosa
Ta

Tfloor

T
PI

Figure 60: Schematic of the physical model of the room for the room_pi

example

The equations for air cooler with PI controller are:

()()
0

min maxmin max , ,

t

PI P I
t

PI

response K deviation K deviation dt

response response response response


= ⋅ + ⋅ ⋅


 =

∫

The coupling equations between the air cooler and room model are:

 60 Tutorial

VisualSPARK 2.0 Users Guide

a sedeviation T T
mCp response

= −
 =

t

where:

UAwall is the wall conductance [W/°C]

Tosa is the outside air temperature [°C]

hAfloor is the floor surface convection coefficient [W/°C]

Tfloor is the floor slab temperature [°C]

floorT is the time-derivative of the floor temperature [°C/s]

Ta is the room air temperature [°C]

Tin is the supply air temperature [°C]

Tset is the room air set point temperature [°C]

Qwall is the heat flow from room air to walls and ceiling [W]

Qfloor is the heat flow from room air to floor [W]

Qflow is the heat added (+) or removed (-) from the room air due to supply air flow [W]

mCp is the supply air capacity rate [W/°C]

capfloor is the floor slab heat capacity [J/°C]

responsemin is the minimum supply air capacity rate [W/°C]

responsemax is the maximum supply air capacity rate [W/°C],

KP is the controller’s proportional gain [(W/°C)/°C]

KI is the controller’s integral gain [(J/°C)/ °C]

7.3.1 Create the Project

Figure 61 is a schematic of the SPARK representation of the room_pi project. It shows various inputs and
outputs, and it shows that two macro classes, room and ac_pi are used with some internal connections. The
internal schematics of room and ac_pi will be shown later when we create their macro classes.

 61 Tutorial

VisualSPARK 2.0 Users Guide

Start VisualSPARK, click
Project and select New
Project. Enter the name
room_pi followed by the
<Enter> key. When the editing
panel pops up, copy and paste
the following text into it.

To do this on Microsoft
Windows platforms, select the
text with the mouse, press
Control-C, click on the
VisualSPARK edit panel and
press Control-V. On UNIX
platforms, select the text with
the mouse, click on the
VisualSPARK edit panel and
press Control-Y (yank). You
may first have to turn on text

room dt

R

Tosa

Tin

Q_floor

Q_wall

Q_flow

T_floor_dotT_floor

Tin

Mcp

UA

hA

Tosa

Q_flow Q_wall Q_floorroom_pi

T_floor

dt

C

signal_set T_set

response_low
response_high

max_cap min_capT_floor_dot

KP

KI KI

KP

UA_wall

hA_floor

cap_floor

mcp mcp response
Ta Ta signal

ac_pi

Figure 61: Schematic SPARK representation of the room_pi project

select mode in your PDF reader. Next, click the Save button (the floppy disk icon) followed by the Close
button. In the Projects area in the main VisualSPARK window, click on the line that contains room_pi.

/* room_pi.pr file
 Single zone room model with PI air temperature controller
*/

DECLARE ac_pi C; // Air cooler with PI controller
DECLARE room R; // Single zone room model

// Inputs for AC with PI controller
LINK KP C.KP INPUT;
LINK KI C.KI INPUT;
LINK T_set C.signal_set INIT=20.0 REPORT INPUT;
LINK max_cap C.response_high [W/deg_C] INIT=100.0 REPORT INPUT;
LINK min_cap C.response_low [W/deg_C] INIT=0.0 REPORT INPUT;

// Inputs for single zone room model
LINK UA_wall R.UA_wall [W/deg_c] INPUT;
LINK cap_floor R.cap_floor [J/deg_C] INPUT;
LINK hA_floor R.hA_floor [W/deg_C] INPUT;
LINK Tosa R.Tosa [deg_C] REPORT INPUT;
LINK Tin R.Tin [deg_C] REPORT INPUT;

// Heat transfers
LINK Q_flow R.Q_flow [W] REPORT;
LINK Q_wall R.Q_wall [W] REPORT;
LINK Q_floor R.Q_floor [W] REPORT;

// Floor temperature
LINK T_floor R.T_floor [deg_C] INIT=30.0 REPORT;
LINK T_floor_dot R.T_floor_dot [deg_C/s] REPORT;

// Supply air capacity rate
LINK mcp R.mcp,
 C.response [W/deg_C] REPORT;

// Room air temperature
LINK Ta R.Ta,
 C.signal [deg_C] INIT=20.0 REPORT;

 62 Tutorial

VisualSPARK 2.0 Users Guide

7.3.2 Create the Macro Class ac_pi and the Atomic Class pi_formula

Figure 62 is a schematic
representation of the ac_pi
controller macro class. It shows
four atomic classes: diff,
implicit_euler, pi_formula,
and bound. The diff class
calculates the difference
between two values, signal (a)
and signal_set (b), producing
deviation (c). The atomic class
implicit_euler is an integrator,
which integrates deviation
(xdot) over time producing
deviationInt (x). The atomic
class bound bounds a value by
two extremes, the hi and lo
values, where lo must be
smaller than hi. diff, bound
and implicit_euler are
contained in the globalclass
directory.

signal_set pi_formula

∫
implicit_eulerdt

deviation

pif

integratora
deviation

xxdot

dt

deviationInt

KP

KI

KP

KI

b

ac_pi

c

diff
dev

hi

responsebound
clip

lo
y

x
response

response_highresponse_low

deviationInt

response_pi

signal

Figure 62: Schematic SPARK representation of the ac_pi controller macro
class for the room_pi project

Outgoing arrows indicate that the atomic class provides an inverse only for the port with the arrow, thus
forcing the computational flow to be in the direction of the arrow. We will be creating the pi_formula atomic
class later.

In the “Class Directories” area in the VisualSPARK window click on the entry that contains “.(room_pi)”,
then click New Class and select Create macro class. Enter the name ac_pi for the macro class into the
dialog followed by the <Enter> key. When the editing panel pops up, erase the text already in the window
and cut and paste the following text into it:
/* Air cooler with PI controller
 * Macro
 * ac_pi.cm
 */

PORT response;
PORT response_low;
PORT response_high;

PORT signal;
PORT signal_set;

PORT KP;
PORT KI;

DECLARE diff dev; // To compute deviation = signal - signal_set
DECLARE pi_formula pif; // PI controller's formula tha computes the
 // controller's response
DECLARE implicit_euler integrator; // Note: all integrators used in the problem
 // should be the same.
DECLARE bound clip; // The controller's response must lie between
 // response_low and response_high.

LINK .KP pif.KP;
LINK .KI pif.KI;

// PI formula
LINK .response clip.y;
LINK response_pi pif.response,

 63 Tutorial

VisualSPARK 2.0 Users Guide

 clip.x REPORT;
LINK .response_low clip.lo;
LINK .response_high clip.hi;

// deviation = signal - signal_set
LINK .signal_set dev.b;
LINK .signal dev.a;
LINK deviation dev.c,
 pif.deviation,
 integrator.xdot REPORT;

// Time integral of the deviation
LINK deviationInt integrator.x,
 pif.deviationInt REPORT;

LINK dt integrator.dt GLOBAL_TIME_STEP;

Now click the Save button (the floppy disk icon) followed by the Close button. At this point, the classes area
in the main VisualSPARK window will contain the macro class file ac_pi.cm.

Next we will create the pi_formula atomic class that is used in the ac_pi macro class. This class multiplies
deviation by KP and adds that to the product of deviationInt and KI, producing response.

Make sure the entry “. (room_pi)” is still selected in the main window and again click New Class and select
Create atomic class. Enter the name pi_formula in the dialog followed by the <Enter> key. When the
editing panel pops up, erase the text already in the window and cut and paste the following text into it:
/* PI controller
 * Atomic class : pi_formula.cc
 */

#ifdef SPARK_PARSER

// Force computational flow by providing only one inverse
// (equivalent to MATCH_LEVEL=10)
PORT response "controller's response" MATCH_LEVEL=10;

PORT deviation "deviation from set value";
PORT deviationInt "integrated deviation from set value" INIT=0.0;

PORT KP "parameter for the proportional part";
PORT KI "parameter for the integrating part";

FUNCTIONS {
 response = pi_formula(KP, KI, deviation, deviationInt);
}

#endif /* SPARK_PARSER */

#include "spark.h"

///
// Function name : pi_formula
// Description : Implements PI controller formula with
// special treatment for the initial time solution
//
// Controller is not ON for the initial time solution: inverse returns response=0.0
// when the predicate function ACTIVE_PROBLEM->IsInitialTime() returns true.
// This allows us to compute the correct physical state of the uncontrolled
// system at InitialTime.
// Otherwise the initial solution would depend on the values of the
// KP, KI and deviationInt variables.
//
// Also, we must enforce deviationInt = 0 at InitialTime.
// See corresponding PORT declaration with INIT=0.0
//
EVALUATE(pi_formula)
{

 64 Tutorial

VisualSPARK 2.0 Users Guide

 ARGDEF(0, KP);
 ARGDEF(1, KI);
 ARGDEF(2, deviation);
 ARGDEF(3, deviationInt);
 double result;

 if (ACTIVE_PROBLEM->IsInitialTime()) { // Initial time solution only
 result = 0.0;
 }
 else { // Used after initial time solution: PI controller formula
 result = KP*deviation + KI*deviationInt;
 }

 RETURN(result);
}
///

For the initial time solution, the controller’s response is set to zero so that the controller does not impact the
initial state of the physical system being controlled. Otherwise, the value of the room air temperature Ta at the
initial time would depend on the controller’s gains KP and KI. This special treatment for the initial time
solution is implemented using the predicate function ACTIVE_PROBLEM->IsInitialTime() that
returns true only when the global time of the current problem is equal to the initial time specified in the run-
control file.

Note that the integral deviationInt of the variable deviation is initialized to zero. The idea is that every time
the controller is turned on (i.e., starts operating), the variable deviationInt is reset to zero so that the controller
operates correctly. However, since there is no mechanism in the current model to reset a dynamic variable to
some “initial” value after the initial time, the atomic class can only be used when the controller is switched on
just after the initial time solution.

Note that there is no such initialization problem with a P-controller.

Now click the Save button (the floppy disk icon) followed by the Close button. At this point, the classes area
in the main VisualSPARK window will contain the macro class file ac_pi.cm and the atomic class file
pi_formula.cc.

 65 Tutorial

VisualSPARK 2.0 Users Guide

7.3.3 Create the Macro Class Room

The last class we need to create is the room macro class, which is shown schematically in Figure 63.

This macro class uses four
atomic classes:

• The cond class calculates
heat flow as a function of
conductance (U-value) and
temperature difference:

12 (1 2)Q U T T= × −

where Q is the heat flow,
U12 is UA (conductance x
area) or Cp (mass flow x
heat capacity), and T1 and
T2 are temperatures.

m

• The diff class calculates the
difference of two variables:

. c a b= −

• The implicit_euler class
implements the implicit
Euler integration scheme,
which integrates xdot over
time to produce x.

• The safprod class
calculates the product of
two variables, but has a
“safe” inverse that returns a
very large number when
dividing by 0. The
equation is . c a b= ×

c
a

flow

walls

a
b
c

dt
xdot
x

b

T2

cond

dt

safprod

diff
net

rate

cond

cond

room

U12
T1
T2

q

U12
T1

U12

q

mcp Tin

floor

Q_flow

Q_wall

T1
T2

q

Tosa
T_floor_dot

Ta

Ta

Ta

UA_wall

hA_floor

T_floor
Q_floor

cap_floor

integrator
implicit_

euler

Figure 63: Schematic SPARK representation of the room macro class for the
room_pi project

With the entry “.(room_pi)” for the class directory still selected in the main window, click New Class and
select Create macro class. Enter the name room in the dialog followed by the <Enter> key. When the
editing panel pops up, erase the text already in the window and cut and paste the following text into it:

/* Massive Floor Room
 * Macro
 * room.cm
 */

// Temperatures
PORT Ta [deg_C] "Room air temperature";
PORT T_floor [deg_C] "Room floor temperature";
PORT T_floor_dot [deg_C/s] "Room floor temperature rate of change";
PORT Tosa [deg_C] "Outside air temperature";
PORT Tin [deg_C] "Supply air temperature";

// Conductances and heat capacities

 66 Tutorial

VisualSPARK 2.0 Users Guide

PORT UA_wall [W/deg_C] "Wall conductance";
PORT hA_floor [W/deg_C] "Floor to air conductance";
PORT cap_floor [J/deg_C] "Floor mass heat capacity";
PORT mcp [W/deg_C] "Supply air heat capacity rate";

// Heat transfers
PORT Q_flow [W] "Heat added (+) or removed (-) by air stream";
PORT Q_wall [W] "Wall heat transfer";
PORT Q_floor [W] "Heat from air to floor";

DECLARE cond flow; // Air mass flow "conduction"
DECLARE cond walls; // Wall conduction
DECLARE cond floor; // Floor to air conduction
DECLARE diff net; // Diff between Q in and Q out
DECLARE safprod rate; // Multiply T_floor_dot* Mcp
DECLARE implicit_euler integrator;// Implicit Euler integrator

LINK .Tosa, walls.T2;
LINK .Tin, flow.T1;
LINK .UA_wall, walls.U12;
LINK .hA_floor, floor.U12;
LINK .mcp, flow.U12;
LINK .cap_floor, rate.a;
LINK .Q_wall, walls.q,
 net.b;
LINK .T_floor, floor.T2,
 integrator.x;
LINK .T_floor_dot, rate.b,
 integrator.xdot;
LINK .Q_floor, floor.q,
 net.c,
 rate.c;
LINK .Ta, flow.T2,
 walls.T1,
 floor.T1;
LINK .Q_flow, flow.q,
 net.a;

LINK dt, integrator.dt GLOBAL_TIME_STEP;

Now click Save (the floppy disk icon) then Close. At this point, the “Classes” panel in the main
VisualSPARK window should contain the macro class file room.cm along with the previously-created ac_pi.cm
and pi_formula.cc files.

Since the classes implicit_euler, diff and safprod are defined in the globalclass directory and the class cond is
defined in the hvactk class directory, they do not need to be created.

 67 Tutorial

VisualSPARK 2.0 Users Guide

7.3.4 Create a New Input Set and Run the Problem

In the main VisualSPARK window select the line that contains room_pi in the “Projects” panel and then
New Input Set. This will bring up a dialog where you may enter a name for the input data set. Type input1
there and press <Enter>. A panel will pop up where you may enter input data for the problem. This is called
the input panel.

First we specify the values for the input variables in the tab “Values for Input Variables”. Some of these
values are constant and one value is time-varying.

 KI 0.1

 KP 50
 cap_floor 1.0e6
 T_set 24
 Tosa 38
 UA_wall 30
 hA_floor 60
 min_cap 0

Specify Constant Input Values

The tab “Values for Input Variables” shows the input
variables that are used in the problem. For the
constant variables, click on the check button under the
column labeled Constant Value or URL and enter
the value in the box to its right. Here is what you
should enter for each constant input variable (design
parameters).

 max_cap 100

The supply air capacity rate
mcp must be positive, hence
min_cap = 0. We further
constrain the controller’s
response by requiring that the
supply air capacity rate be
smaller than max_cap.

The input variable area is
scrollable so if you don’t see all
the variables just scroll down
using the scrollbar on the right
side. Figure 64 shows what you
should see at this point.

Figure 64: Input panel showing the input variables for the room_pi project

Specify Time-varying Input Values

In the tab “Values for Input Variables”, there is a table (grid) where values may be entered for the time-
varying input variables. You may have noticed that originally all of the input variables were displayed in that
table, but when you checked Constant Value or URL for a variable it disappeared from the table. At this
point only Tin remains as a time-varying variable.

 68 Tutorial

VisualSPARK 2.0 Users Guide

 Time Tin

 0 13
 18000 13
 72000 20
 89820 20
 90000 11

Notice that there isn’t much space showing for this table. You can change
that by clicking on the small square on the far right separating the upper and
lower halves of the input panel and dragging it up, making the lower half
taller and the upper half shorter. You may also resize the whole input panel
in the usual method of resizing windows on your system. At the very bottom
of the input panel you will see three buttons – Insert Row, Add Row and
Delete Row. These control the rows in the time-varying input variable
section. The difference between Insert Row and Add Row is that the
former inserts a row in the table before the selected row and the latter adds a
row after it. If no row is selected,

both Insert Row and Add Row insert a row before row 0 in the table. Now, click Insert Row five times to
make five rows and enter the data for the time and temperatures for the Tin variable.

Figure 65: Time-varying input
values panel of the input1 data set

for the room_pi project

 If the model runs beyond 90000 seconds, the last value of Tin (11) will
be used. shows is what the table should look like at this point.

 69 Tutorial

VisualSPARK 2.0 Users Guide

Specify Run-Time Parameters

Figure 66: Run-time parameters of
the input1 data set for the room_pi

project

 Finally, we will specify the run-time parameters for the model. This
tells the simulation when to start, when to stop, what the time increment
is, and when and how often to report results. It is also here that you
may specify a diagnostic level for debugging information.

Click on the Run Window button at the top of the input panel and enter
the values shown in when the run window pops up.

Specify Initial Values for Dynamic Variables

Other variables besides the input variables require initial values to be specified. Every dynamic variable (a
variable that is connected to the x port of an integrator object) needs an initial value. Initial values for
dynamic variables can be specified using the VisualSPARK input editor in the tab “Initial Values for Dynamic
Variables” if the integrator class used in the model is of class type INTEGRATOR. However, in this example
we are not using an integrator class defined with the required type. Therefore, the dynamic variables will not
appear in the tab “Initial Values for Dynamic Variables”. Instead, the language construct
INIT=initial_value must be used in the description of the SPARK problem, either in a LINK statement
in the problem file or macro class, or in a PORT statement in an atomic class.

In the room_pi problem there are two dynamic variables T_floor in the macro class room and deviationInt in
the class pi_formula. We defined the initial values for these variables as follows:

In the file room_pi.pr:
LINK T_floor ... INIT = 30.0 ...;

In the file pi_formula.cc:

 70 Tutorial

VisualSPARK 2.0 Users Guide

PORT deviationInt ... INIT = 0.0 ...;

Specify Initial Predictor Values for Break Variables

In addition to initial values, predictor values can be specified for those break variables that are not dynamic
variables. To determine what the break variables are in our problem you need to check the preferences for the
components of the room_pi problem. To do this, go back to the main VisualSPARK window and click
Preferences after making sure that the input1 data set is still selected in the “Projects” panel. This will pop up
a window called the “Component Preference Editor”. There will be a tab for each component in the room_pi
problem. In this problem there is only one component, called “Component 0”. Click on that tab.

In the text area under the tab you will see the solution sequence for the component. The break variables are
tagged with the keyword [break]. In addition to the two dynamic variables discussed above, there is
another break variable, namely the room air temperature, Ta. We defined an initial predictor value for this
break variable using the INIT construct in the declaration of the link Ta in the problem file room_pi.pr:

LINK Ta ... INIT = 20.0 ...;

Another way of specifying this initial predictor value would have been to use the tab “Initial Predictor Values
(Breaks)” in the input panel. This tab displays the list of break variables in the model. For each break variable
you can specify either a constant value or a time-varying value.

Note that it is not compulsory
to specify an initial predictor
value for a break variable that
is not a dynamic variable, but it
usually speeds up the
computation of the initial time
solution if the specified initial
predictors are relatively close to
the solution.

Go back to the main
VisualSPARK window and
click Preferences after making
sure that the input1 data set
is still selected in the “Projects”
panel. This will pop up a
window called the “Component
Preference Editor”.

Figure 67: “Component Preference Editor” window of the room_pi project

There will be a tab labeled “Default/Globals/Structure” plus a tab for each component in the room_pi
problem. In this problem there is only one component, called “Component 0”. The
“Default/Globals/Structure” tab contains default values which will propagate through the other tabs if the user
doesn’t enter values explicitly. In the tab labeled “Component 0”, now enter a value of 0.8 for the Relaxation
Coefficient. If the default value of 1.0 is used, the solver will fail to converge after 180 seconds. See the
SPARK Reference Manual for more details on the usage of the Relaxation Coefficient.

An alternative approach to decreasing the relaxation coefficient is to select a step control method (other than
the default “Fixed Relaxation” method) that will adapt the relaxation coefficient when necessary to obtain
global convergence. Consult the SPARK Reference Manual for more details on the step control methods.

Let the other component parameters, such as MaxIterations, remain at their default settings.

Figure 67 is what the “Component Preference Editor” window should look like at this point.

 71 Tutorial

VisualSPARK 2.0 Users Guide

7.3.5 Run Simulation and Plot the Results

In the main VisualSPARK
window click Run. A “Run
Status” window will pop up
showing the progress of
compiling and running the
simulation. When the
simulation is complete, the
“Run Status” window will
close.

Now click Results/Plots and
select Dynamic, multiple
variables per plot, since we
want to plot several variables
on the same graph. A dialog
will pop up asking for the data
file name. Double click on
input1.out to select the output
file that SPARK just created.
From here, you can follow the
description of graphing the data
as discussed in Section 6.6.

Figure 68: Typical graph for the room_pi problem

Figure 68 shows what a typical plot should look like for the room_pi problem. As a further exercise, you
might try entering time-varying values for Tosa and/or T_set and see how they affect the controller’s
operation. Also, you could try different values for max_cap to see the effect on the system’s behavior.

7.3.6 Use Temperatures from EnergyPlus Weather Data File

Now let's try using some real temperature data for the outdoor temperature, Tosa by specifying a URL
(Universal Resource Locator) in the room_pi.pr project file. Using a URL in SPARK, one may specify that
input data for a variable comes from a weather file, a mathematical expression, a DOE2-like schedule, or a
data file in tabular form. Supported weather files are TMY, DOE2 and EnergyPlus. See the SPARK
Reference Manual for more details on the URL mechanism.
We will use weather data from an EnergyPlus weather file for Las Vegas, Nevada because it has extreme
outdoor temperatures. You can get EnergyPlus weather files from:
 http://www.eere.energy.gov/buildings/energy_tools/energyplus/weatherdata.html
There are data files for U.S., Canadian and international locations at that site.
The weather file for Las Vegas is provided with the SPARK distribution in the eplusweather directory. To use
this file, click on the “room_pi” entry in the main VisualSPARK window and press the Edit Project button at
the top. Change the line for the outside temperature variable Tosa to this:
LINK Tosa R.Tosa [deg_C] REPORT INPUT = "file:eplusweather:../../
eplusweather/USA_NV_Las.Vegas_TMY2.epw:dbt:interpolate";

Be sure to put it all on one line.

 72 Tutorial

This tells the solver that when it needs a value for Tosa to look in the file of type eplusweather named
USA_NV_Las.Vegas_TMY2.epw and read the dbt variable, which is the outdoor dry bulb temperature. The last
directive, :interpolate says to linearly interpolate from one value to the next. This is necessary because
the time step for the room_pi problem is 180 seconds, but the weather data is recorded every hour (3600
seconds). It is more realistic to interpolate temperature data than to have it change abruptly on the hour.

http://www.eere.energy.gov/buildings/energy_tools/energyplus/weatherdata.html

VisualSPARK 2.0 Users Guide

Now save the changes to the room_pi.pr project file. Next, click on the plus sign (+) to the left of the
“room_pi” name in the main VisualSPARK window to show the data files and click on the input1 entry. Now
press the Edit Input button to view the input panel. Scroll down to see the Tosa entry and note that it shows
that a URL is specified for the variable. The entry is red text on a light blue background to indicate that the
entry comes from the project file. Let's also change the set point, T_set to 20 degrees and fix the indoor
temperature, T_in at 13 degrees. To do that, press the check buttons for those entries to say that we want to
use a constant value and enter those values to the right.

Figure 69: Input panel showing URL and new set point and room temperature

Now press the Run Window button to get the run-time parameters window and enter the date 06/27/* to
choose June 27 as the starting date. This has the hottest day of Las Vegas for the data recorded. Press the
save (floppy disk) icon to save the information and then press the Run button to run the model with these new
temperatures.
Finally, press the Project Results/Plots pull-down menu button and choose Dynamic, multiple variables
per plot and graph the new data as before. We will only show Q_flow, T_floor, Ta, and Tosa to simplify the
graph.

 73 Tutorial

VisualSPARK 2.0 Users Guide

Figure 70: Graph results with actual outdoor temperatures

We can see the Q_flow reacting to the changes in the outdoor temperature and the air temperature approach
the set point (20 degrees).

 74 Tutorial

VisualSPARK 2.0 Users Guide

8 SUPPORT
Direct questions on downloading, installing and using VisualSPARK to:

 sparksupport@SimulationResearch.lbl.gov

For updates, see http://SimulationResearch.lbl.gov/VisualSPARK

 75 Support

mailto:sparksupport@simulationResearch.lbl.gov
http://simulationresearch.lbl.gov/VisualSPARK/download.htm

VisualSPARK 2.0 Users Guide

GLOSSARY OF TERMS

algorithmic programming
A sequence of operations and assignments leading from prescribed inputs to prescribed outputs.

assignment
In computer languages, assignment is the action whereby a value is associated with an identifier representing
a variable. Although the symbol “=” is often used for assignment, e.g., 2x y= ⋅ , assignment is different from
mathematical equality because the latter implies that the expressions at the left and right of the “=” symbol are
always equal. In particular, a sequence of assignments are order dependent, while a set of mathematical
equations are not. See “algorithmic programming.”

atomic class
A model comprising a single equation with used variables linked to its ports. Acts as a template for
instantiation of atomic objects.

break level
An integer from 0 to 10 expressing the desirability of using the associated link to break cycles in the
computation graph.

class
A general description of an equation (atomic class) or group of related equations (macro class). A class acts as
a template for instantiation of objects.

command file
A file containing MSDOS commands. Also called a “batch” file .

continuous variable
Variable that can take on any real value between a minimum and maximum value.

cut set
A set of variables (links) that will break all cycles in the computation graph. SPARK attempts to minimize the
size of the cut set. The variables in the cut set are called “break variables” and are used for iterative solution.

cyclic
In graph theory, the property of having closed paths, or circuits.

differential algebraic equation system
A system of differential and algebraic equations for simultaneous solution.

discrete state variable
A variable that can take on only specific values rather than any real value within a range.

 76 Glossary of Terms

VisualSPARK 2.0 Users Guide

dynamic variable
A variable for which the derivative appears in a differential equation.

environment variable
A symbol whose value is assigned in your computing environment, as opposed to within the SPARK program
system. See documentation for Microsoft Windows for more information and to learn how environment
variables are set. See also sparkenv.

GNU
GNU is not UNIX; GNU is a system of free software programs developed through the Free Software
Foundation.

graph
See “mathematical graphs.”

HVAC
Heating, ventilation, and air-conditioning.

ill-posed
A problem that is not well-posed is said to be ill-posed. See “Well-posed.”

implicit inverse
A form of an equation in which a particular variable occurs on both the left and right sides of the equation.
Used when explicit inverses cannot be obtained. Solution requires iteration.

initialization
Specifies the value of variable at InitialTime. Required for dynamic variables and break variables.

initial time
The time when the simulation starts. This is the time at which initial conditions for differential equations
apply.

input set
The complete set of information needed to define execution of a SPARK problem. Includes input data files
and run control information.

input/output free
A style of model expression that provides a set of equations rather than an algorithm. Since any set of inputs
that leads to a well-posed problem can be specified in conjunction with these equations, it is sometimes called
“input/output free.”

instantiate
To create an instance of a class. To create an object based on a class definition. The DECLARE statement
performs instantiation in SPARK.

integration formula

 77 Glossary of Terms

VisualSPARK 2.0 Users Guide

A formula used in numerical solution of differential equations to calculate a value for the integration variable
at the next point in time. The formula can be explicit, in which case the new value appears only on the left
side of the equation, or implicit in which case the new derivative also appears on the right of the equation.

interface variable
A class variable that is to be visible from outside. Interface variables are defined with the PORT statement.

inverse
A form of an equation in which a particular variable is isolated on one side of the equation; i.e., a formula for
a variable. The formula is obtained by symbolic manipulation of an equation for a particular variable in the
equation. An explicit inverse has the wanted variable on the left side only, while an implicit inverse has that
variable in the formula as well.

Jacobian
The square matrix of partial derivatives of residual equations with respect to the break variables in a strongly-
connected component.

macro classes
A group of SPARK atomic or other macro classes linked together through their respective ports to form a
subsystem model. A macro class can be used wherever an atomic class can be used.

make
A utility program that creates a program from its composite parts, in response to commands embedded in a
makefile. GNU make is used for both the UNIX and Windows implementations of SPARK.

makefile
An input file for a make program. Contains various targets, their dependencies, and commands for building
them.

match level
An integer from 0 to 10 expressing the desirability of matching the associated link variable with the
associated object port, and therefore with the inverse for this object port.

mathematical graphs
A structure comprising a set of vertices (nodes) and edges (arcs) that connect them. Often used to model
systems of interacting entities.

object-oriented
A methodology in which the model behavior and data are encapsulated in a programming entity comparable
to the physical entity that it represents.

panel
A discernible region within a window on your computer screen.

parser
The program that interprets the SPARK files that describe the model as the first step toward solution. Builds
the setup file.

 78 Glossary of Terms

VisualSPARK 2.0 Users Guide

pdf
A portable file format from Adobe Systems that retains page layout and graphics. You need a special
program, called Acrobat Reader, to view a file in PDF format. This program is freely available on the
Internet.

predictor
Value of a break variable at beginning of iterative solution. Defaults to value at previous time step if not
specified with PRED_FROM_LINK.

prf file
A file that contains various component settings (also called preferences) needed for a program to run. In a
sense, a generalization of command line options and environment variables.

propagation
Process by which SPARK infers certain LINK or PORT statement settings, e.g., ATOL, INIT, MAX and MIN,
from settings at lower or higher levels.

relaxation coefficient
Multiplier, usually a fraction, on calculated correction that is applied in order to get new break variable values
during iterative solution.

retained state
Value that needs to be saved between successive uses of an object. Currently, SPARK objects cannot retain
state internally. However, values of LINK variables are retained for four previous time steps.

run-control
Data controlling the solution phase for a SPARK problem, e.g., start time, finish time, time increment, and list
of input files and output files.

setupcpp
A program used in the process of building a SPARK problem. Processes the setup file produced by the parser.

solver
The executable program that SPARK builds to solve a particular problem. Called probName.exe (Windows) or
probName (UNIX). The underlying program used by SPARK in constructing this executable is also sometimes
referred to as the “solver.”

sparkenv
A command file for setting up your environment for running SPARK at the command line.

spawn
To create a computational process in a computer.

strongly connected component or strong component
In graph theory, a maximal set of vertices and edges that allow any vertex to be reached from any other
vertex. In SPARK, a strong component corresponds to a separately solvable sub-problem that SPARK
automatically determines using graph theory. Sometimes called simply “Component.”

 79 Glossary of Terms

VisualSPARK 2.0 Users Guide

symbolic manipulation
Operations on mathematical expressions in terms of contained symbols, as opposed to numerical evaluation.
The goal is often to solve for a particular variable in terms of all others in the expression, i.e., to obtain an
inverse. Often done with computer software, i.e., computer algebra.

target
A file or other object that can be created with one of the command sequences in a makefile.

tool bar
A row or column of icons, usually at the top of a window, that can be clicked to perform commonly needed
tasks. The icons usually are pictorial, suggesting what the tool does. For example, the Print icon on many
VisualSPARK windows looks like a laser printer.

updating
Setting the value of Previous-Value Variable to the value of a variable specified with INPUT_FROM_LINK.
Occurs at beginning of time step, before solving the components.

well-posed
A problem is said to be well-posed if it admits at least one solution. One requirement is an equal number of
equations (objects) and unknowns (links). There also must be a complete matching, i.e., a matching of each
variable to a unique equation inverse. However, problems can meet these requirements and still not be well-
posed. For example, the two curves ()y f x= and ()y g x= may not intersect, so there is no value of x
that satisfies both equations.

 80 Glossary of Terms

VisualSPARK 2.0 Users Guide

INDEX
accuracy controls .. 30 runspark ...14
algorithmic programming 75 Runspark..17
As Text.. 44 comments...50
assignment... 75 component ...31
atomic class ... 41, 55, 75 editor..31

pi_formula... 62 component editor...31
bash ... 14 component preferences......................................30
Basic Dynamic Plot... 45 constant..51
batch.. 75 continuous variable..75
Bourne... 14 copy ...25
break level... 75 create
Build and Run ... 15 ac_pi ..62
button input data ...58

delete selected ... 25 macro class ..56
edit input Set ... 27 new project ..59, 61
go to line ... 39 pi_formula ...62
go to selection ... 39 room ..65
make real-time... 34 supporting classes....................................55, 59
modify ... 24 create new project..53
new class ... 55 cut set...75
NONAMEs ... 28 data
rescan .. 23 create input ..58
text editor .. 25 dataset..42, 43, 44, 50

class... 75 decomposition ...31
atomic.. 41, 55, 75 delete
class directory ... 24 selected ..25
class files... 42 diagnostic
macro... 77 output...31
new.. 55 differential equation
subdirectory (UNIX)..................................... 13 algebraic ..75

class directories ... 42 directory structure
classes UNIX...13

create supporting... 55 Directory Tree ...21
global .. 13 discrete state variable ..75

classpath.env ... 14, 24 documentation
coefficient Windows..4

relaxation... 78 dynamic
command plot...44

Build and Run ... 15 problems ..32
command file .. 75 simulation ..19
Command Line Execution 13, 14 variable ..76
examples ... 18 edit
gmake.. 14 classes..39
menu input set ...26, 50

help.. 24 project..39, 42
quit .. 24 editor

rerun .. 18 input...27
run ... 29 Emacs ..18

 81 INDEX

Run-control ... 16 environment variable...76

VisualSPARK 2.0 Users Guide

epsilon... 31 input set ...76
equation edit ...26

differential algebraic 75 new ..58
equations file... 16, 17 input/output free ..76
errors ... 30 install
example unix..6

room_fc ... 42 windows ..8
room_pi ... 59 instantiate ..76

Examples... 18 integration
explicit .. 76 formula ..76
file Intel..4

equations ... 17 interface variable ...77
log ... 13 inverse ...77

run.log ... 17 implicit...76
preference.. 18 inverse functions..41
problem.inp ... 13 Jacobian ...77
problem.out ... 13 license..4
problem.pr... 13 Intel..4
system Solaris..4

UNIX... 21 SUN...4
Windows ... 21 log file ...13

Files log files ..17, 18, 19, 30
log macro

parser.log... 17 class ...77
setup.log .. 17 macro class ..56

formula ac_pi ..62
integration ... 76 room ..65

Getting Started .. 42 MACSYMA ..41
global classes .. 13 make ..77
gmake.. 14, 15, 18 make graphs...32

rebuild ... 18 MakeClean...26
gnu .. 76 MakeCleanAll ...26
gnuplot .. 19 makefile ...14, 15, 77
graph ... 44, 45, 47, 48, 76 makefile.prj..14

mathematical ... 77 MakeClean...26
GUI ... 20 MakeCleanAll ...26

UNIX makefile ...14, 15, 77
X Window System 20 makefile.prj..14

help.. 24 MakePackage...26
hold ... 48 manipulation, symbolic79
HVAC ToolKit.. 13 match
ill-posed problem .. 76 level ...77
implicit mathematical graph ...77

inverse ... 76 Mathomatic..41
initialization .. 76 modify ...24
initialtime .. 76 modifying the input data....................................50
input MSDOS ...14

data naming convention ..5
create ... 58 new
modifying.. 50 class ...40, 55

editor ... 27 input set ...26
set .. 13 project..25, 53

 82 INDEX

VisualSPARK 2.0 Users Guide

NONAMEs ... 28 plots ...32, 33, 34
object-oriented .. 77 multiple..35
output .. 19 zoom ..35

input/output free.. 76 viewing ..45
parser... 77 resume ...48
phase retained state..78

plot .. 44 room_fc example ...42
phase plot .. 48 room_pi example...59
plot .. 44, 45, 46 run..15, 29

dynamic... 44 run control ...16
phase ... 44, 48 run status ...29
results .. 32 run-control16, 18, 19, 21, 78

predictor .. 78 running the model..43
preference file ... 16, 18 runspark ...14, 17, 18
preferences .. 30 run-time parameters.......................................28
printer.. 47 scale ...47
PRINTER environment variable....................... 47 set-file..42
problem setupcpp...78

classpath.env ... 14 shell
file ... 13, 18, 39, 40 bash..14
ill-posed .. 76 Bourne ...14
preference file ... 18 Solaris..4
problem.cpp .. 16 solution accuracy...30
problem.prf.. 18 solution methods..30
problem.run... 16 solver ...78
problem.stp.. 16 sparkenv ..15, 78
well-posed ... 79 sparksym..40

progress ... 43, 48 strip chart...47
project graph..48

create new ... 53 strong component ..78
directory (UNIX) .. 14 strongly connected component78
menu sum5 Example ...53

MakeClean .. 26 SUN...4
MakeCleanAll ... 26 symbolic
MakePackage .. 26 manipulation..79

new.. 25, 53 symbolic tools..40
Project symbolic tools ...41

directory .. 13 symbols..47
problem file... 13 testhvac..13

projects directory .. 13 text view ..44
projects menu .. 25 time-varying
propagation ... 78 input
quit .. 24 variables...28
real time .. 47 input variables ...51

real-time graph .. 48 tolerance ..31
relaxation coefficient .. 78 uninstall
rerun .. 18 unix..7
rescan .. 23 windows ..8
results UNIX

graphing .. 44 directory structure..13
output .. 32 xterm..14
phase plot .. 35 updating...79

 83 INDEX

VisualSPARK 2.0 Users Guide

utility
testhvac ... 13

variable
continuous... 75
discrete state.. 75
dynamic... 76
input

static .. 28
time-varying.. 28

Input .. 27

interface ...77
vi 18
well-posed problem ...79
window size...48
Windows

documentation ...4
X Window System...20
xterm..14
zoom..47

 84 INDEX

	Introduction
	Availability and Licensing
	Documentation
	Help
	Naming Convention

	UNIX Versions: Downloading and Installation Instructions for Red Hat Linux 8.0 (Intel Processors)
	Registration
	Other Software Required
	Install VisualSPARK
	Uninstall VisualSPARK

	Windows Versions: Downloading and Installation Instructions for Windows 95/98/Me/NT/2000
	Registration
	Other Software Required
	Install VisualSPARK
	Uninstall VisualSPARK
	Specify Target C++ Compiler

	VisualSPARK Environment Settings
	Environment Variables
	SPARK_DIR
	PATH
	SPARK_PDFVIEWER
	SPARK_HTMVIEWER
	SPARK_CHMVIEWER

	Environment Files
	classpath.env
	projects.env
	sparkenv.sh or sparkenv.csh
	sparkenv.bat

	Command Line Execution of SPARK
	The SPARK Directory Structure
	Commands
	Preparations
	Build and Run
	Run-Control Information
	Results
	The runspark Command
	The runspark Flags
	Re-running a Problem Executable

	Examples
	Using SPARK Output

	Using the Graphical User Interface (GUI)
	The Main VisualSPARK Window
	The Project Menu
	Creating and Copying Projects
	Make Package, Make Clean, Make CleanALL

	New Input Set or Edit Input Set
	Input Editor
	Run-Time Parameters
	Diagnostic levels

	Running
	The Run Command
	Log Files and Error Reports

	Component Preferences
	“Defaults/Global/Structure” Tab
	The Components Tabs

	Viewing and Plotting Results
	View results file (as text)
	Dynamic, 1 Variable per Plot
	Dynamic, multiple variables per plot
	Real-Time Dynamic Plot
	Phase Plot
	Zooming In and Out
	Plotting Results from Several Different Problems

	Editing Projects and Classes
	Creating SPARK Classes

	Tutorial
	room_fc Example
	Getting Started
	Running the Model
	Viewing the Results
	Output As Text
	Output as Graphs
	The Basic Dynamic Plot
	Real-Time Graph
	Strip Chart Graph
	Phase Plot

	Modifying the Values for the Input Variables

	sum5 Example
	Create a New Project
	Create the Supporting Classes
	The Atomic Class
	The Macro Class

	Create the Input Data

	room_pi Example

	The equations for air cooler with PI controller are:
	The coupling equations between the air cooler and room model are:
	
	Create the Project
	Create the Macro Class ac_pi and the Atomic Class pi_formula
	Create the Macro Class Room
	Create a New Input Set and Run the Problem
	Specify Constant Input Values
	Specify Time-varying Input Values
	Specify Run-Time Parameters
	Specify Initial Values for Dynamic Variables
	Specify Initial Predictor Values for Break Variables

	Run Simulation and Plot the Results
	Use Temperatures from EnergyPlus Weather Data File

	Support

