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FOREWORD

Documentation for the SPARK program is comprised of two manuals: the SPARK Reference Manual and the
Visual SPARK Users Guide. These documents are available as downloadable PDF files from
http://SimulationResearch.|bl.gov.

This Manual isintended to cover the basic principles of SPARK programming. To the extent possible, itis
intended to be independent of the platform. Consequently, examples are demonstrated using the command
lineinterface only.

Thiswork was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of
Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of
Energy, under contract DE-ACO03-76SF00098.

NOTICE: The Government is granted for itself and others acting on its behalf a paid-up, nonexclusive,
irrevocable, worldwide license in this data to reproduce, prepare derivative works, and perform publicly and
display publicly. Beginning five (5) years after (date permission to assert copyright was obtained) and subject
to any subsequent five (5) year renewals, the Government is granted for itself and others acting on its behalf a
paid-up, nonexclusive, irrevocable, worldwide license in this data to reproduce, prepare derivative works,
distribute copiesto the public, perform publicly and display publicly, and to permit others to do so.
NEITHER THE UNITED STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY, NOR
ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES
ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR PROCESS DISCLOSED, OR
REPRESENTS THAT ITSUSE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

The SPARK simulation program is not sponsored by or affiliated with SPARC International, Inc. and is not
based on SPARC architecture.
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LICENSES AND COPYRIGHTS

UMFPACK Version 4.0 (Apr 11, 2002). Copyright (c) 2002 by Timothy A. Davis. All Rights Reserved.
UMFPACK License: Your use or distribution of UMFPACK or any modified version of UMFPACK implies
that you agreeto this License. THISMATERIAL ISPROVIDED ASIS, WITH ABSOLUTELY NO
WARRANTY EXPRESSED OR IMPLIED. ANY USE ISAT YOUR OWN RISK. Permission is hereby
granted to use or copy this program, provided that the Copyright, this License, and the Availability of the
original version isretained on all copies. User documentation of any code that uses UMFPACK or any
modified version of UMFPACK code must cite the Copyright, this License, the Availability note, and "Used
by permission.” Permission to modify the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, and a notice that the code was modified is
included. This software was developed with support from the National Science Foundation, and is provided to
you free of charge. Availability: http://www.cise.ufl.edu/research/sparse/umfpack

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper. Copyright (c)
2001, 2002 Expat maintainers. Availability: http://www.libexpat.org/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the" Software"), to deal in the Software without restriction, including without limitation
the rightsto use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above
copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE ISPROVIDED "ASIS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGSIN THE
SOFTWARE.
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TEXT CONVENTIONS

Throughout this manual, we use different typefaces as follows:
Program Name

File Name
KEYWORD
Screen Display, Code, Key

In addition, when discussing SPARK terminology (starting with Section 2.1), italic and bold typefaces identify
the different entities, as follows:

problem name macr o class
object name atomic class
probe, link name port name

problemvariable port variable
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1 INTRODUCTION

1.1 WHATIS SPARK?

Simulation of a physical system requires development of a mathematical model that is usually composed of
differential and/or algebraic equations. These equations must then be solved at each point in time over some
interval of interest. The Simulation Problem Analysis and Research Kernel (SPARK) is an object-oriented
software system that performs such simulations. By object-oriented we mean that components and
subsystems are modeled as objects that can be interconnected to specify the model of the entire system. Often
the same component and subsystem models can be used in many different system models, saving the work of
redevel opment.

1.2 KINDS OF PROBLEMS THAT SPARK CAN SOLVE

SPARK may be thought of as ageneral differential/algebraic equation solver.
This meansthat it can be used to solve any kind of mathematical problem
described in terms of a set of differential and algebraic equations. The term
Since nearly any physical or  continuous system” is often used to describe this class of problems. Typical
biological sytemcanbe  €xamplesinclude building heating and cooling systems, heat transfer analysis,
described intermsofa ~ @nd biological processes.
mathematical model, SPARK
can be used in many scientific
and engineering fields.

While, in principle, any system can be described in terms of differential and
algebraic equations, there are many systems that are more easily described in
terms of discrete states. Typical examples include assembly lines from the
field of manufacturing engineering and queuing problems from various fields.
SPARK is not designed for discrete state simulation problems. However, there
are limited facilities for handling discrete events in otherwise continuous
systems.

1.3 DESCRIBING PROBLEMS FOR SPARK SOLUTION

Describing a problem for SPARK solution begins by breaking it down in an object-oriented way (Nierstrasz
1989). This means thinking about the problem in terms of its components, where each component is
represented by a SPARK object. A mode is then devel oped for each component not already present in a
SPARK library. Sincethere may be several components of the same kind, SPARK object models, i.e.,
eguations or groups of equations, are defined in a generic manner, called classes. Classes serve as templates
for creating any number of like objects that may be needed in a problem. The problem model isthen
completed by linking objects together, thus indicating how they interact, and specifying data values that
specialize the mode to represent the actual problem to be solved. Section 2 has several examples

Naturally, model descriptions must be expressed in some formal way. SPARK class models are described in a
textual language that is similar to other simulation programming languages except that it is non-procedural .
That is, it is neither necessary to put the equationsin order, nor to express them as assignment statements.
This property derives from the input/output free manner in which the classes are defined, and the use of
mathematical graphs (McHugh 1990) to find an appropriate solution sequence.

In SPARK, the smallest programming element is a class consisting of an individual equation, called an atomic
class and stored in a file with extension *.cc. Macro classes bring together several atomic classes (and
possibly other macro classes) into a higher level unit. Macro classes are stored in files with the extension

1 Introduction
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*.cm. Problem models are similarly described, using a combination of atomic and macro classes, and placed in
a problem specification file with extension *.pr.

Figure 1-1 shows the steps involved in the SPARK build process whereby the problem description expressed
in the SPARK language is transformed into an executable program that can be executed to solve the problem
for given boundary conditions.

class0 ce, class em,
problem pr classl.cc, classl.cm,

e

problem stp

defanlt prf —— sctupepp —— problem prf

R

problem cqs problem.cpp problem xml

Figure 1-1: SPARK Build Process.

When the problem is processed by SPARK, the problem specification problem.pr file isfirst parsed along with
the macro and atomic classes used in the problem, in order to generate the setup file problem.stp. The setup file
contains aflat representation of the problem, which is then used for the graph-theoretical analysis performed
by the setupcpp program. This step produces an efficient solution sequence for the underlying system of
equations. The setupcpp program writes this information out in various files with different formats: the user-
readable equation file problem.egs, the C++ file problem.cpp and the XML file problem.xml.

To produce an executable simulator the problem.cpp file can be compiled and linked against the solver’s
library. Another approach to generating an executable simulator consists in loading the problem description
provided in XML format in the problem.xml file and instantiating the corresponding solver at runtime. The
process of building the executable simulator is typically automated using a makefile or abuild program in the
SPARK ingstallation. Finally, at runtime the preference file, problem.prf can be used to specify the settings for
the various solution methods.

Y ou must have access to a C++ compiler on the machine running SPARK. On Windows 95/98/NT platforms,
the default WinSPARK installation assumes that you have Microsoft Visual C++ installed, but Borland, GNU,
and Symantec compilers are also supported. Visual SPARK on Windows 95/98/2000/ME/NT platforms
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usually uses the mingw implementation of the GNU C++ compiler. UNIX installations normally use the
GNU compiler, but SPARK has also been used with other compilers commonly available on Sun workstations.

While specifying problemsin the SPARK language using existing classes isrelatively easy, writing SPARK
class models can be tedious. One necessary task is deriving the inverses for the class equation, i.e., closed-
form solutions for several or all variables that occur in the equation. The labor of thistask is multiplied in
certain kinds of problems, such as those described in terms of partial differential equations. Such equations
must first be expressed as sets of ordinary differential equations replicated many times with slight variations.
To simplify this, SPARK can beinstalled with symbolic tools, such as Maple (Char, Geddes et al. 1985).
With such tools you need specify only the atomic class equation, from which all necessary inverses and
supporting C++ functions are generated automatically through symbolic manipulation. For users without
Maple, SPARK comes with its own symbolic manipulation tool that, while very limited, can find inverses of
many equations encountered in simulation practice. For more involved problems, these symbolic tools offer a
significant improvement in productivity. However, initialy it will be more instructive for you to use SPARK
directly, as we show here.

14 PORTABILITY AND USER INTERFACES

SPARK isintended to be portable. The basic elements, i.e., the parser, setup program, and fixed elements of
the solver, will compile and run on nearly any platform for which there isa C++ compiler. In the current
release, executables, necessary source code, and graphical user interfaces are provided for the UNIX and
Windows platforms. On both platforms, the graphical user interfaces allow text-based creation of classes and
problems using the SPARK language, as well as problem execution and results display. Post processing for
visualization of resultsis supported in both environments.

1.5 THE HISTORY OF SPARK

Although a general tool, SPARK was developed for use in the ssmulation of building service systems, e.g.,
heating, ventilation and air-conditioning. Most usage up to the time of this writing has been on systems from
thisfield.

The first implementation of SPARK, which solved only agebraic problems, was done at the Lawrence
Berkeley National Laboratory in 1986 (Anderson 1986). The basic ideas, including the graph-theoretic
aspects, were based on earlier work at the IBM Los Angeles Scientific Center (Sowell, Taghavi et al. 1984).
Then, in 1988, the LBNL implementation was extended to allow solution of differential equations (Sowell
and Buhl 1988). The MACSYMA and Maple interfaces were developed by Nataf (Nataf and Winkelmann
1994), who aso made many other improvements. Since that time there have been new developments. For
example, the solver was revised to decompose the problem into separately solvable components (Buhl, Erdem
et al. 1993).

Then in preparation for the initial public release (version 1.0), SPARK was completely rewritten in 1995-96.
In this rewrite a new class and problem description language was implemented to improve modeling
flexibility, and the solver was redesigned to improve solution speed. In addition, several user interface tools
were devel oped, including a simple symbolic manipulation tool.

The current release (version 2.0) significantly extends the modeling capabilities of earlier versions by
supporting multi-valued inverses which cal culate multiple values simultaneously instead of asingle value. A
multi-valued inverse essentially models a multi-dimensional vector function. Also, it is now possible to attach
private data to each inverse instance in the problem under study with the help of the added callback
mechanism. Finally, real-time operation of a SPARK simulator is made possible by the addition of the request
mechanism that allows to synchronize the solver’s global time with user-specified meeting points at runtime.
Furthermore, this capability along with the possibility of customizing the driver function facilitates integrating
a SPARK simulator as a black-box solver in another application.
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1.6 VERSIONS OF SPARK

A document, entitled README.txt, isincluded in the release package of Visual SPARK. Thefileislocated in
the doc subdirectory and describes new features, changes and bug fixes from the previous to the current

version.
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2 BASIC METHODOLOGY

Although SPARK isintended for the analysis of complex physical systems represented as large systems of
nonlinear equations, both algebraic and differential, an understanding of the basic methodology can best be
obtained by working first with simple mathematical problems. We begin with the ssmplest possible problem,
asingle linear equation. This problem is then extended in steps to demonstrate more and more SPARK
features. Thiswill prepare us for dealing with more complex systemsin later sections.

2.1 OVERVIEW AND TERMINOLOGY

We begin by defining some terminology. The basic entity in a SPARK model is the object, it consists of a
single algebraic equation that calculates one value and itsinterface or port variables. Objects are created by
reference to a class, which may be thought of as atemplate for the equation object. Asan example, consider
the simple equation for the sum of two real numbers:

a+b=c (2.1)

The class, which we might call sum, would contain this equation (2.1), and its ports would consist of the
variablesa, b, and c. Figure 2-1 isapictorial representation of thisidea.

Note that we distinguish between an object and the
class from which it was created. Thisis because there
might be need for more than one equation of thisform
in aparticular model. We can create as many a X
instances (objects) from the class sum as we wish. —
Moreover, classes are saved, allowing their usein
many different problems. In thisway, SPARK reduces
the model development work through code reuse. S u m b I y

Note also that the possibility of multiple instances of a
class means that we must distinguish between the
symbols used in defining the class and the C Z
corresponding variable names occurring in the
problem definition. That is, if we wish to have the
sum classrepresent bothx + y=zandr + s=t,itis
obvious that a must represent X in one placeand r in
another. We call variables such asx and r problem

Figure 2-1: sum classdiagram

variables because they relate to a particular problem being described. On the other hand, a, b, and c relate
only to the class definition and are called interface or port variables. Itisaso common to refer to SPARK
problem variables as links because the keyword L INK is used to connect object ports, thus introducing the
variable and assigning to it aname. We will seethisin examples that follow.

In addition, when discussing SPARK terminology, italic and bold typefaces identify the different entities, as
follows:

problem name macr o class
object name atomic class
probe, link name port name
problemvariable port variable
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2.2 A PROBLEM WITH A SINGLE OBJECT

As afirst exercise we will develop a SPARK solution for a simple math problem called 2sum. In 2sumwe
seek solutions for the equation:

X+y=z (2.2)

Aswe saw in Section 2.1, thereis a class in the SPARK foundation class library globalclass called sum that we
can useto solve this problem. Asshown in Figure 2-1, its port variablesare a, b, and ¢, and it enforces the
relationship of Equation (2.1). Obviously, by associating a with x, b with y, and ¢ with zwe can represent
Equation (2.2) with an object of the sum class.

Equation (2.2) is amathematical model involving three variables and one equation. To create a well-posed
problem, we have to define two inputs. For this example, let's specify x and y as input, so that zisto be
determined. The problem definition file 2sum.pr then has the following contents:

/* Problem Definition File for Simple Math Problem 2sum.pr */
DECLARE sum s;

LINK X s.a INPUT REPORT;

LINK y s.b INPUT REPORT;

LINK Z s.c REPORT ;

Inputs are the quantities known Here the DECLARE statement creat_es an object sasan ?nstance_of thg class
sum. The LINK statements associate the problem variables with object port
at the outset. variables. The links x and y are associated with the corresponding object port
variables s.a and s.b respectively. Note that we employ the notation
Links that arenot inputsare namevariable to refer to the port variable of object name. The keyword
variables to be solved for. These INPUT* in the L INK statements indicate that these problem variables are
_ inputs, as opposed to being determined by the solution process. A LINK
variables are also referred to asg atement with the keyword INPUT is also referred to asan INPUT
the output variablesor the ~ statement. The LINK statements without the INPUT keyword are variables
to be solved for rather than inputs. The keyword REPORT in LINK

Unknowns: statements means that the variable should be reported in the SPARK output.

This resultsin the following directed graph for the sum problem with the specified input/output designation.

y
X S cC——>
—>a

Figure 2-2: Directed graph for the sum problem.

After creating 2sum.pr as shown above, you must create an input file called 2sum.inp with the following
contents:

L A LINK statement with the INPUT keyword can also be specified using the INPUT keyword in place of the LINK keyword. With this shorthand
notation it is no longer necessary to repeat the INPUT keyword in the statement. E.g.:

INPUT X s.a REPORT;
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2 X Y
0 1 2

Here we see the format of a SPARK input file. Thefirst line gives the number of input items, followed by
their symbols as defined by the INPUT statements in the problem specification file. The subsequent lines
give values for each input variable, preceded by the time at which these values apply. If the problemisnot a
dynamic one, i.e., we are seeking a solution for only one set of inputs, only two lines are required as shown
above. However, if we seek solutions at other time values, as many lines as needed can be given. Thisis
discussed further when we take up dynamic problemsin Section 6.

2.2.1 Running the SPARK Problem

Y ou can now run the problem with SPARK. The commands to do so differ somewhat depending on your
installation and platform. For aWinSPARK installation on the Windows platform, type:

buildsolver 2sum.pr spark.prf <enter>

This creates an executable program called 2sum.exe  Severa other files are also created, including 2sum.prf
and 2sum.run, that are needed to execute 2sum.exe. To execute the program for numerical solution enter:

sparksolver 2sum.prf 2sum.run 2sum.xml <enter>
If you are working with Visual SPARK on either the Windows or UNIX platforms, the equivalent command is:

runspark <enter>

This builds and executes the single allowed problem file in the current working directory. It can be executed
again without rebuilding with the command line;

sparksolver 2sum.prf 2sum.run 2sum.xml <enter>

Since SPARK is often used to solve dynamic problems, run-control information is needed when the program
beginsto execute. Thisinformation is provided in a problem run-control file, probName.run, generated
automatically when you first run anew SPARK problem. The file has the format of a SPARK preferencefile,
discussed in Appendix C.

The run-control file for 2sum.pr, i.e., 2sum.run, is:

InitialTime ( 0.0 O)
FinalTime (0.0 O
InitialTimeStep (1.0 O)
FirstReport 0.0 O)
ReportCycle (1.0 O)
DiagnosticlLevel (3 0O)
InputFiles ( 2sum.inp )
OutputFile ( 2sum.out ()
FinalSnapshotFile ( 2sum.snap ()
InitialSnapshotFile ( 2sum.init ()

)

The first five keys define the interval over which the problem is solved and other time related data. The keys
InitialTime, FinalTime, and Initial TimeStep control the solution interval and the initia time
step used to step through the solution pointsin thisinterval. By default, the time step is kept constant during
the simulation. Thus, the Initial TimeStep key specifies the constant time step. Since you may not wish
to generate output at every solution point, you are allowed to specify when reporting is to begin and the
interval between reporting with FirstReport and ReportCycle respectively. Because we are working
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asimple, algebraic problem here and want a single solution, we specify Final Time to be the same as the
InitialTime and FirstReport attime0. Thekey DiagnosticlLevel specifies the amount of
intermediate output wanted in therun log file. Thisis discussed further in Section 12.5.

The remaining lines in the run-control file specify various files related to the problem. We have already
discussed the 2sum.inp and 2sum.out files. Here we see that in the 2sum.run file you can specify where these
filesarelocated in your directory structure. In the above example, they are specified to reside in the current
working directory. The other two keys, InitialSnapshotFile and FinalSnapshotFile, are
discussed in Section 17. They specify the names of the snapshot files requested at theinitial time and at the
final time of the simulation run.

When the problem runs, summary output is displayed in the run log file and the principal output iswritten to
thefile called 2sum.out. For this problem the 2sum.out file contains:

3 Y X z
0 2 1 3

Aswith theinput file, the first line gives the number of outputs, followed by the link names of each. The
second line gives the time, followed by the result values for each output listed in the preceding line. As
expected, adding 1 and 2 gives 3!

2.2.2 Arbitrary Input/Output Designation

The preceding example showed the basic steps required to set up a SPARK
problem. However, it did not show SPARK's unique capabilities. One of these
capahilitiesis that we can easily change which variables are input and which are
output. That is, the problem can be changed without changing the model. For
example, if we are interested instead in what y will be for specified values of x
and z, we simply designate zas input and y as link:

/* Add 2 numbers together */

With SPARK, the problem
can be changed without
changing the model.

/* 2sum.pr */

/* */
DECLARE sum s;

LINK X s.a INPUT REPORT;
LINK y s.b REPORT;
LINK Z S.cC INPUT REPORT;

Thisresultsin the following directed graph for the sum problem with the re-arranged input/output
designation.

«—YL 5
X S C&——
—»a

Figure 2-3: Directed graph for the new sum problem.
And, we must also change the input file to be:

2 X z
0 1 3
The resulting output file, 2sum.out, contains:
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3 z X y
0 3 1 2

Thuswe seethat y is calculated given zand x. Although shown here for avery simple problem with asingle
eguation, this feature extends to more complex problems aswell. The only requirement is that the model and
the designated input variables must form a well-posed mathematical problem, i.e., one for which a solution
exists.

2.3 PROBLEMS WITH SEVERAL OBJECTS

The previous examples were problems with asingle
equation and required only one SPARK object. Most

real problems involve more than one equation and x1 —a X5
more than one object, thus raising the question of how — sl E—\_
objects are interconnected in SPARK. The following X2 —b a
two examples show how thisis done. — 83 E_ x7
x3 —a _,— b
The problem we consider first is asfollows: — s2 E
x4 —b x6
X+X =%
X+ X, =X (2.3) Figure 2-4: The 4sum example
X+ X =%

Obviously, each of these equations can be represented by an object of class sum. The diagram in Figure 2-4
shows how these objects would have to be interconnected to represent this problem.

The problem specification file for this problem contains the following code:
/* Add 4 numbers together */

/* 4sum.pr */
DECLARE sum sl1,s2,s3;

LINK x1 sl.a INPUT REPORT;
LINK x2 sl1.b INPUT REPORT;
LINK x3 s2.a INPUT REPORT;
LINK x4 s2.b INPUT REPORT;

LINK x5 sl.c, s3.a;
LINK x6 s2.c, s3.b;
LINK x7 s3.c REPORT ;

Observe that the L INK statement named x5 connects the problem variable x5 to the port ¢ of sl and a of s3,
demonstrating the basic object interconnection method of SPARK. Any number of object ports can be
specified following the problem variable name, causing al to be equated to the single problem variable
defined in the LINK statement and named after the L INK statement. The L INK and DECLARE statements
(plus afew others yet to be discussed) form the SPARK language. The complete language is presented in
reference form in Section 19.

Because there are four INPUT statements in 4sum.pr there must be a 4sum.inp file with values for the same
four variables. Thisfileisformatted asfollows:

4 x1 X2 X3 x4
0 1 1 1 1

As before, the leading number in thefirst line, 4, isthe number of inputs. It isfollowed by as many symbols,
corresponding to input variables, as defined in 4sum.pr. The first number in the second line isthe initial time,
followed by values for each of the input variables.
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The problem is built and executed using the same commands as for our 2sum example. The results are placed
in 4sum.out which is formatted like the input file:

5 x4 X3 X2 x1 X7
0 1 1 1 1 4

Severa other files of interest are also produced when a SPARK problem is built and executed. First, various
files with the extension *.log may appear in the workspace. Asyou might suspect, these contain any error or
warning messages that may have been produced, as well as intermediate output and diagnostic from the
numerical solution step.

Also produced isthe equationsfile, e.g., 4sum.egs. For complex problems exhibiting numerical difficulties, it
is sometimes useful to examine this file because it contains the computation sequence determined by SPARK
and used to solve the problem. For 4sumthisfile contains:

Known variable(s) :

x4 INPUT
X3 INPUT
X2 INPUT
x1 INPUT

Component 0O :
Solution sequence :

X6 = s2:sum__c( x3, x4 )
x5 = sl:sum__c( x1, x2 )
X7 = s3:sum__c( x5, x6 )

Inthisfile, inputs are listed first, followed by a sequence of assignments to problem variables, each computed
by aright-hand-side function reference. These functions represent the inverses of the underlying class
eguation. In this case there is only one component that contains three function references in a non-iterative
sequence. Later, we will seethat in more complex problems SPARK will break problems down into several
components that can be solved independently in sequence. Note that here we use the word * component” ina
graph theoretical sense, meaning a group of nodes and edges, i.e., equations and variables, that can be solved
together; these have nothing to do with physical components. Some components are strongly connected,
meaning that there are cyclesin that part of the graph. The practical significance of strongly connected
components is that the corresponding equations have to be solved simultaneously, by iteration until
convergence. Thisistypically achieved using the Newton-Raphson solution method.

Aswith the single object example, we can use the same model to solve different problems by changing what
isinput and what is solved for. For example, suppose we want to specify x5 and determine x1. The problem
fileisthen:

/* Add 4 numbers together */

/* 4sum.pr */

/* */
DECLARE sum s1, s2, s3;

LINK x1 sl.a REPORT ;
LINK x2 sl1.b INPUT REPORT;
LINK x3 s2.a INPUT REPORT;
LINK x4 s2.b INPUT REPORT;

LINK x5 sl.c, s3.a
LINK x6 s2.c, s3.b;
LINK X7 s3.c REPORT;

A suitableinput fileis:

INPUT;
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4 x5 X2 X3 x4
0 2 1 1 1

After building and executing, the resulting 4sum.out fileis:
5 X4 X3 X2 X7 x1
0 1 1 1 4 1

And the equations file shows the solution sequence:
Known variable(s) :

X4 INPUT
X3 INPUT
X5 INPUT
X2 INPUT

Component O :
Solution sequence :

X6 = s2:sum__c( x3, x4 )
X7 = s3:sum__c( x5, x6 )
x1 = sl:sum__a_or_b( x5, x2 )

Just as you might do, based on Figure 2-4, SPARK evaluates object s2 followed by object s3 in the “forward”

direction yielding x6 and x7, then evaluates object sl in the “reverse” direction to get x1.

2.4 PROBLEMS REQUIRING ITERATIVE SOLUTION

Up to this point all of our examples have been such that non-iterative solutions could be found. Each

component could be solved using forward substitution of the unknowns in the sequence of equations. In more
complex problems this may not be possible. For example, consider the set of equations below, in which ¢

and c, aregivenand X, X,, X;, and X, areto be determined.

X +X+% + % =¢

= x et
X=X , (2.4) C conl
XXy + XX+ X, =6, x1
— X3 Xl Xl
Xy = %€ rl 2
_ . X2 X2
This set of equations does not have a closed form X2
solution and is very difficult to solve by any means. X3
In fact, with some values of ¢, and C,, it hasno 1
solution at all. However, with ¢, =3000 and ¢, =1 X | X3
thereisasolution and SPARK can easily find it. r3 X3 4 X3 r4
X
The problem can be specified for SPARK exactly as X4 X4
for simpler ones. Figure 2-5 shows a SPARK diagram C
with objects and interconnections. con2

Figure 2-5: Four nonlinear equations
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In this case we have used four objects, each representing one of the equations. We assume for the moment
that there are classesrl, r2, r3, and r4 representing the equations in the order given previously, presumed to
have been defined and placed in the problem class directory.? The SPARK problem file can then be
constructed as follows:

/* Four nonlinear equations */
/* example.pr */
DECLARE r1 ri;
DECLARE r2 r2;
DECLARE r3 r3;
DECLARE r4 r4;

LINK conl ril.c INPUT REPORT;
LINK con2 r3.c INPUT REPORT;
LINK x1 rl1.x1 MATCH_LEVEL = 0, r2.x1, r3.x1 REPORT;
LINK X2 rl1.x2, r2.x2 REPORT;
LINK x3 rl1.x3, r3.x3, r4.x3 REPORT;
LINK x4 r3.x4, r4.x4 REPORT;

The two constants, ¢, and C,, in the equations are defined as input variables conl and con2. Inthese INPUT

statements, the port variables representing the ¢, and C, constants are called cinthe classesr1 and r3.

Similarly, in the LINK statementsit is evident that the other port variables have the same names as the
corresponding problem variables. Usually, in the interest of code reuse, it is better to define a generic class
using local names for port variables, as we have done in the earlier examples. Here, however, whereit is
unlikely that we will have need for other instances of these rather specialized objects, it would introduce
unnecessary confusion to employ different port and problem variable names. Hence the x1 problem variable
islinked to the x1 port variable of all objectsin which it occurs, i.e., r1, r2 and r3.

A new SPARK language keyword, MATCH_LEVEL, isused in this problem. The purpose of this keyword is
to provide a hint to SPARK on how to match certain variables to certain equations. Here, by placing the
MATCH_LEVEL = O after therl port connection for x1, we are discouraging SPARK from using therl
object, i.e, thefirst equation, to calculate x1. Although most often SPARK can do without such hints, there
may be times when you have particular insights into the numerical properties of the problem, and the
MATCH_LEVEL keyword provides one mechanism for capitalizing on this knowledge. For example,
experience with the current problem indicated that the above MATCH_LEVEL restriction leads to a better
solution sequence. Unfortunately, it is not always easy to discover appropriate matching preferences, but
when you do develop the insight for a particular problem it isimportant to be able to control SPARK in this
manner. This subject is discussed further in Section 12.3.

The results of running SPARK on the problem so described, with values of 3000 and 1 for the constants conl
and con2, respectively, are shown below:

6 con2 conl X4 x1 X2 X3
0 1 3000 0.288576 2.927303 54 _.67379 0.4547163

Naturally, the values reported for X, through X, satisfy the given equations.

The equations file, example.eqs, shows how SPARK arrived at these answers:®

Known variable(s) :
con2 INPUT

2 Wewill see how to define SPARK object classesin Section 2.4.

8 Asis often the case for nonlinear problems, this example has multiple solutions. The solution found will depend upon the starting point in the
iterative solution process.
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conl INPUT

Component 0O :
Break variable(s) :
X3 PREDICT _FROM LINK = x3

Solution sequence :

x4 = r4:r4 x4( x3 )
x1 = r3:r3_x1( x3, x4, con2 )
X2 = r2:r2_x2( x1 )

[BREAK] x3 = rl:rl x3( x1, x2, conl )

We see there is a single component (called “Component 0”) in the solution, meaning that this problem does
not allow partitioning. Within this single component, the function r4_x4(x3) represents object r4, i.e., the
fourth equation in (2.4), solved for x4 in terms of x3. The value returned by the function is assigned to the x4
problem variable. Similarly, r3 x1(x3, x4, con2) represents object r3, i.e., the third equation, solved for x1,
r2_x2(x1) isr2 solved for x2, and finally r1_x3(x1, x2, conl) isr1 solved for x3. It is apparent that these
assignments form a cycle, i.e., x1 must be known to get x3, but x3 must be known to get x1. That is, the
component is strongly connected. Recognizing this, SPARK has selected x3 to break the cycle, i.e., avalue
of X3 is guessed to start an iterative solution process. Thus after evaluating r1_x3 (using the guessed value of
x3 to get x4 and then x1 and x2) SPARK will use anumerical method for estimating a new value of x3 and
repeat the calculations from the first assignment. Thiswill continue until the predicted and calculated values
of x3 agree to within the SPARK precision, which defaults to 10°. By default, the solution is computed with
the Newton-Raphson method. If convergence is not achieved, alternate methods can be tried. Usualy,
convergence is obtained with the Newton-Raphson method.

The above functions are based on the respective object class equations. By chance, the function r4_x4
happens to be the way the r4 equation was originally expressed, i.e., asaformulafor x4 in terms of x3.
However, the function r3_x1 isthe r3 object class rearranged symbolically, i.e.,

X, = (Cz — XX~ X43) 25)
Xy

Thisis called an inver se of the object. Part of the task of developing a SPARK class is performing these
symbolic inversions of the given equations and embedding them in C++ functions. Thisis discussed in
Section 3.2

2.5 ITERATIVE SOLUTION AND BREAK VARIABLES

Aswe have noted in the previous example, systems of equations often have to be solved iteratively. In
SPARK, this can be true even if the equations are al linear, because no specific test is done for linearity.
Usually, you need not be concerned with the iterative process, so we will not go into detail here. However, a
general awareness of the methods used is helpful if solution difficulties are encountered.

First, in the problem setup phase, SPARK determines if iteration is required by detecting cyclesin the problem
graph. If cycles are detected, a graph algorithm is used to find a small set of variables (nodes in the graph)
that “cut” the cycles. The associated problem variables, called break variables, are placed in a vector to act
as the unknown vector x in a multi-dimensional Newton-Raphson solution scheme. The residual functions
that are forced to zero in the Newton-Raphson process are of the form

F(X) = f(X)—x (2.6)

13 Basic Methodology



SPARK 2.0 Reference Manual

where Xisthe vector of break variables, and f (X) represents the directed acyclic graph formed when the

original problem graph is cut at the cut-set vertices. In other words, the current solution estimate, x, is applied
to the graph, producing f (X) , from which the original estimate is subtracted. At the solution, the residual

functionsis equal to zero.

F(x)=0 2.7

The Jacobian matrix for the residual function is defined as
oF

J= e~ (2.8)
In each Newton-Raphson iteration the next estimate X, is calculated by solving the linear set

JAX=-F(x) (2.9)
for AX, then calculating

X = X+ AX (2.10)

The solution of the linear set, Equation (2.9), is carried out with Gaussian elimination, LU decomposition, or
similar method. Note that the size of the Jacobian matrix is the size of the cut set, so this solution can be
much more efficient than if we had not attempted to minimize the cut set.

Normally, this process converges to the solution quite rapidly (quadratically). However, it iswell known that
the Newton-Raphson process, like all methods for solving general sets of nonlinear equations, can fail to
converge under certain circumstances. Failure occurs when the residual functions have particular kinds of
non-linearities and the starting values are not sufficiently close to the actual solution. Thus starting values are
important.

In SPARK, we refer to the process of selecting a starting value for the iteration process as “prediction.” By
default, the prediction for solution at a particular time step is the final solution value for the same variable at
the previous time step. This can be changed by use of the PREDICT_FROM_LINK=11nkFrom keyword in
the corresponding L INK statement. In this case, the value of the 1 inkFrom link is used as the predictor.

Note that at theinitial solution when thetimeisequal to InitialTime, thereisno proper “previoustime
step value.” Inthiscase, if thereisno PREDICT _FROM_LINK=linkFrom, SPARK will use the default
value for the break variable astheinitial predictor. Since default values determined in this way are not
appropriate for every variable, they may not be very close to the solution value. Thereforeit is best to
provideinitial predictorsviainput files. Thisissueis discussed further in Section 7.2.

2.6 WELL-POSED PROBLEMS

In Section 2.2.2 we saw that SPARK allows us to change which problem variables are input and which are to
be solved for without changing the underlying model. This flexibility is the result of specifying object
models without a priori specification of inputs and outputs (Sahlin and Sowell 1989). Thus we were ableto

solvefor X;, X5, and X, in the example Equation (2.3) given X, through X,, or by asimple change of
INPUT and L INK designations solvefor X, X, and X, given X,, X;, X,, and X;.

It would be grand if we could say that this selection of the input and output sets was completely arbitrary. For
example, in the example of Section 2.3, Equation (2.3), there are three equations (objects) and seven
variables, so one might hope that any set of four inputs could be used to determine the remaining three
variables. However, we are constrained by what is mathematically possible. In many problems there are sets

of inputs that will not define a problem that has asolution. For example, if we specified X,, X;, X,, and X,
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it isimpossible to determine a solution. From Figure 2-4, we seethat if X, and X, are both specified then X

cannot be specified. Moreover, thereis no way to determine X, X;, and X, givenonly X,. Mathematically,

aproblem issaid to be well-posed if it admits asolution. Thus with thisinput set we have an ill-posed
problem.

Naturally, SPARK has no ability to solveill-posed problems; however, in this case, SPARK can immediately
determine that the problem is not well-posed. Specificaly, it discoversthat thereis no possible matching of
equations and variables. Other forms of ill-posedness cannot be discovered until anumerical solutionis
attempted and, in such cases, alack of convergence will be reported. Unfortunately, however, lack of
convergence also may be the result of other numerical problems, such asimproper starting values, so we
cannot always conclude that this means ill-posedness. Problems of this nature are all too familiar to those
who routinely work with nonlinear systems of equations. Often, insights afforded by knowledge of the
physical problem under analysis suggest waysto fix the numerical problem. In seeking to resolve these
difficulties, we should be motivated by the realization that proper mathematical models of physical systems
arewell-posed. Otherwise, the physical system could not behave in the observed way.

In summary, SPARK offers a method for specifying and solving sets of equationsin a computationally
efficient way, provided solution is possible. But it should be no surprise that it cannot solve insoluble
problems, and numerical difficulties may be encountered as they would be in other solution methods.
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3 CREATING SINGLE-VALUED ATOMIC CLASSES

In Sections 2.2 and 2.3, the examples have so far made use of existing SPARK classes that implement single-
valued inverses, i.e., calculating the value for asingle port. In practice, it is often necessary to create new
classes to meet special needs, as shown in Section 2.4. This can be done either by hand, with symbolic tools
such as the SPARK symbolic solver, or third-party tools like Maple, Mathematica or MACSYMA. Here we
present the manual process of creating a single-valued atomic class which will alow you to better understand
the use of the symbolic tools as discussed in Section 3.3. The process of creating a multi-valued atomic class
will be discussed in Section 4.

3.1 CLASS DEFINITION

Creating a SPARK atomic classis atwo step process. First, you must create the class definition. Second, the
functions required by the class definition* must be expressed in C++ following the SPARK function protocol.
The class definition and the supporting C++ callback functions are stored in the same file with a.cc
extension. These steps are demonstrated below for the sum atomic class.

#ifdef SPARK PARSER
PORT a "'Summand 1"

PORT b "'Summand 2"
PORT ¢ "Sum" ;

EQUATIONS {
c=a+b ;

3

FUNCTIONS {
a=sum_aor b(c, b) ;
b = sum__ _r(C, )
c=sum_c( a, b) ;

s

#endif /* SPARK_PARSER */
#include "'spark.h"

EVALUATE( sum__a or_b )
{
ARGDEF(0, ©);
ARGDEF(1, b);
double a or_ b ;

aorb=c- b;
RETURN( a_or_b )

}
EVALUATE( sum__c )
ARGDEF(0, a);

ARGDEF(1, b);
double c;

4 They are referred to as the callback functions since they implement a callback mechanism with the solver.
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c=a+ b;
RETURN( ¢ ) ;
}

As shown above, it is customary to begin a class with comments to describe what it does. After the comment
header comes the body of the class definition. Thisis placed within C-style#ifdef SPARK_PARSER and
#endi T so thefile can be processed both by the SPARK parser and the C++ compiler.

3.1.1 The PORT Statement

Thefirst part of the class definition isalist of the ports. It isthrough these ports that objects of the class
communicate with other objects. Although the PORT statement has additional optional clauses (See Section
19.10), the only requirement is the name of the port variable. Here, we also provide a description string that
isused for error reporting.

The port variable name can be arbitrarily chosen and of any length and is placed following the PORT
keyword. Note that throughout the SPARK language user selected names are case sensitive; however,
keywords of the language are not. Thus, either port or PORT will do, but a and A are considered different
PORT names. Like all SPARK statements, the PORT statement can span multiple linesif necessary. Each
PORT statement ends with a semicolon.

3.1.2 The EQUATIONS Statement

After the PORT declaration, the eguation for the class can be given in the optional EQUAT IONS block.
Although this SPARK atomic class presently has a single equation, the possibility of multiple equationsis
allowed for with the compound statement using braces, EQUATIONS {..}.°

3.1.3 The FUNCTIONS Statement

Following the equationsisthe FUNCTIONS {..} compound statement that defines the set of inverses
assigned to each mutually exclusive set of ports between the braces. An inverse consists of a set of tar get
ports followed by the = sign and alist of comma-separated callback functions, each prefixed by a callback
keyword. A calback function is specified with its name followed by the list of the argument ports using
parenthesis. The argument ports are the ports whose values are needed to implement the behavior of the
callback. Each inverse statement ends with a semicolon. The following code snippet shows the structure of
the FUNCTIONS statement.

FUNCTIONS {
portl = <callback-keywordl> inversel_callbackl( port2, port3, .),
<cal lback-keyword2> inversel_callback2( port2, port3, port4,
)

|5ort2 <cal lback-keywordl> inverse2_callbackl( portl, .),

<cal lback-keyword2> inverse2_callback2( portl, 5ort4,...)

}

Thelist of callback keywords and the behavior of each callback function is explained in Section 9. The
callback function responsible for calculating the values of the target port variable(s) assigned to it isthe
EVALUATE callback function. It isthe only callback function for which the callback keyword may be
omitted.

5 The equations block is optional since SPARK currently does not processit. Future releases may automatically generate the C++ functions based on
the equation block.
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Since any inverse defines the EVALUATE callback function it is customary to refer to each inverse with the
name of the associated EVALUATE callback function. Here the atomic class sum defines three inverses:

e theinversesum__a_ or_b assigned to the port a;
e theinversesum__a or_b assignedto the port b; and
e theinverse sum__ c assigned to the port c.

Note that each inverseis assigned to a different port and that it defines only the EVALUATE callback
function. Theinverse assigned to the port a is different than the inverse to the port b although they both rely
on the same callback function sum__a_or_b.

Aninverse that calculates the value of only one port variable is referred to as a single-valued inverse, whereas
an inverse that calculates simultaneously the values for more than one port variable is referred to as a multi-
valued inverse (See Section 4).

In the atomic class sum we define three single-valued inverses for calculating each of the three port variables.
Usually, defining an inverse for each port variable is the best practice, since it allows SPARK greatest
flexibility and efficiency in devising a solution strategy for various problems in which the class might be
used. That is, some problems may require c to be determined in terms of a and b, while in othersit may be
preferred to calculate b given aand c. Aswe shall see below, each inverseisa“mathematical” inverse
function of the object equation.

For complex equations, some inverses may be difficult or impossible to obtain. Or, it may be that special
knowledge about the problem under investigation suggests that a particular inverse should not be used,
because, for example, it might lead to numerical difficulties. For these reasons, SPARK alows you to omit
unavailable or unwanted inverses. For example, we could simply omit the function for calculating a from the
sum class. Should the need to calculate c from a and b then arise in some problem using the class, SPARK
would have to perform the calculation iteratively.

3.2 INVERSE FUNCTIONS DEFINITION

After the class definition comes the definition of the inverse functions. These functions, supporting the
SPARK class definitions, are expressed as C++ free functions implementing the callback functions (See
Section 9). Although some familiarity with C++ would be helpful here, you should be able to understand the
discussion with background in any similar language.

3.2.1 Basic Structure of a Single-Valued EVALUATE Callback

The basic structure of the EVALUATE callback function in a SPARK atomic classis:
EVALUATE( funct_name )

// Code for calculating the result from the arguments,
// returned as a double using the RETURN preprocessor macro.
double result;

iiETURN( result );
}

In order to make the definition of the callback functions easier to the user, C preprocessor macros that hide
the implementation details of argument passing as well as the function prototype are defined in the header file
spark.h. With these preprocessor macros we can write the body for the sum___ ¢ callback function as follows:

EVALUATE( sum__c )
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{
ARGDEF(0, a);
ARGDEF(1, b);
double c;
c=a+ b;
RETURN( ¢ ) ;
s
3.2.2 Defining the C++ Callback Function
The code

EVALUATE( sum__c )

declares the C++ function sum___c asan EVALUATE callback. The EVALUATE callback is responsible for
calculating the value of the port variable assigned to the inversein the FUNCTIONS {..} statement. Inthis
case, the EVALUATE callback of the sum___c inverse calculates the value of the target port ¢ from the values
of the argument portsa and b. Other callback functions can be specified for a SPARK inverse to implement
other operations beside evaluating the value of the target port. However, the EVALUATE callback is the only
function that must always be specified for any inverse.®

The macro preprocessor EVALUATE expands to the C++ function prototype expected for a EVALUATE
callback with the proper argument list.
3.2.3 Defining the Argument Variables
The code
ARGDEF(0, a);

declares a as the argument port passed in the first position (index 0) to the callback function sum___c in the
FUNCTIONS { } statement for thisinverse. Note that indexing in the argument list is zero-based as is
customary in C++. Similarly, the code

ARGDEF(1, b);
declares b as the argument port passed in the second position (index 1) to the callback function sum__ c.

The SPARK solver implements the argument variables as instances of the class TArgument. Thus, the
macro preprocessor ARGDEF declares the variables a and b as instances of this C++ class.

3.2.4 Calculating the Result Value

The code

double result = a + b;

calculates the sum of the argument ports a and b to be assigned to the target port c. This statement implements
the mathematical relation expected by thisinverse using the TArgument instances a and b.

The C++ variables named a and b are directly used in the arithmetic expressiona + b to compute the sum
of the two associated argument ports asadoublle value. Thisis possible because the class TArgument

5 The default SPARK atomic class describes an equation that returns the value(s) of the target port(s) that is/are assigned to each inverse. However,
there are other types of atomic classes (See Section 8.6) that are not required to return value(s). Therefore, these classes will not define the EVALUATE
callback.
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behaves as a numerical value by overloading the operator double() method. Therefore, the C++
variables a and b return their respective current numerical values where they appear in the expression.

Each instance of the class TArgument aso stores information about the other properties of a SPARK
variable, such asits name, units, minimum value, maximum value, and initial value. The htm/chm tutoria
SPARK Atomic Class API should be consulted for more information on the class TArgument and how to use
its methods.

3.2.5 Returning the Result Value

Finally, the RETURN preprocessor macro takes care of returning the calculated value resul t to the variable
connected to the target port c for this single-valued inverse sum___c. This ensure the proper data flow across
the set of the unknown variables in the problem.

SPARK functions can be as simple as the above example, or quite complicated. The full expressive power of
C++ isalowed. Also, code for existing models can be integrated by means of afunction call. Furthermore,
by following the rules for mixed language programming in your environment, the referenced functions can
be in FORTRAN, Pascal, or Assembly language. The principal requirement is that the EVALUATE callback
function returnsthe calculated value for the associated target variable. Perusal of some of the classesin
the SPARK globalclass and hvactk\class directories may be beneficial before beginning devel opment of
complex classes of your own.

3.3 SYMBOLIC PROCESSING

Asseenin earlier examples, SPARK atomic classes are constructed from equations. While these classes can
be constructed manually, the process can be time consuming and tedious. First, the equation must be solved
for al (or most) of itsvariables, one at atime. For example, if the equation isthe ideal gasrelationship,

pv =nRT , we need to do the algebrato get the following formulas:

p=nRT/v
v=nRT/p
n=pv/RT (3.1
R= pv/nT
T=pv/nR

These are called inver ses of the original equation. Then, for each inverse we must construct a C++ function
that evaluates the right hand side and returns the resulting value. Finally, all of these functions must be
incorporated in a SPARK atomic class representing the ideal gas law, following the syntax shown in the
earlier examples (Section 3.1).

Fortunately, these tasks can be automated using symbolic processing (also called computer algebra) tools.
SPARK provides a program called sparksym that fills this need. With it you can generate all symbolic
inverses of an algebraic equation, generate C++ functions implementing these single-valued inverses, or
create the complete SPARK atomic class.

Actually, sparksymis an interface to third-party symbolic programs. Currently, it can use either Mathomatic,
Maple, Mathematica or MACSYMA, as selected by a command line option. A subset of the Mathomatic
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program is integrated in sparksym, so that option isaways available.” If Maple, Mathematica or MACSYMA
are detected on your machine when SPARK isinstalled, or if you install them later and take stepsto link them
to SPARK, you can select one as an aternative symbolic engine for sparksym. Maple, Mathematica and
MACSYMA are more powerful than Mathomatic, allowing more complex equations to be handled.

3.3.1 Simple Symbolic Processing
Command-line usage of sparksymis with the command:

sparksym —engine -option [name] "equation' [target] [outFile] <enter>

where:
engine = 0 (Mathomatic), P (Maple), E (Mathematica), S (MACSYMA)
option = 1 (singleinverse), a (al inverses), ¥ (function), c (class)
name = Name for function of class (used only with option f or c)
equation = Anequation of theform <expression>=<expression>

(enclose in double quotes if spaces occur)

target = Thevariableto be solved for (used only for options 1 and f)
outFile = Optiond filefor theresult

3.3.2 Generating an Inverse

For example, to generate the inverse equation for T using the ideal gas law, with output to the screen:
sparksym -0 -1 "p*v = n*R*T" T <enter>

Inverse:

T = p*v/n/R

Or to create the SPARK ideal GasL aw atomic class, with results written to idealGasLaw.cc:

sparksym —0 -c i1dealGasLaw "'p*v=n*R*T" I1dealGasLaw.cc <enter>

The class generated is directly usable, but perhaps not as complete as you may wish. For example, the ports
are all assigned a description which is the same as the port name, unitsare [-] (i.e., unspecified), and the
INIT, MIN, and MAX values are set at 1, -100000, and 100000 respectively. You can edit the output file to
give more appropriate values for these itemsif you wish.

3.3.3 Caveats

Y ou are advised to carefully check all symboalic results, since computer algebra software often gives
unexpected results, sometimes simply wrong.

Fparksym using the Mathomatic option is not as robust as a full-featured symbolic package, although it may
meet many of your needs. With it, you are limited to expressions using the operators +, -, *, /, and *
(exponentiation). It will fail quickly if it cannot easily invert the equation for the desired variable. Note that
the atomic class generated with the —c option will have functions for each variable in the equation, whether or
not an explicit inverse was found for it. Variablesfor which it could not find an explicit inverse use an
implicit inverse asin Section 12.2. 'Y ou may wish to edit the implicit functions, as discussed in the same
section, to improve numerical stability.

" The sparksym executabl e provided with SPARK does not give you the full capability of Mathomatic. Y ou can download the DOS shareware program
from http://www.lightlink.com/george2/. Among other features, it is capable of symbolic elimination of variables and equationsin sets of equations;
sometimes this feature can be used to help develop efficient SPARK classes.
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With the Maple option, practically any equation can be handled, including various mathematical functions.
Additionally, it will sometimes find multiple inverses. In this case al inverses are written in the generated
functions, with all but one commented out. Thereforeit isagood ideato examine the generated class to see
that the wanted inverse is being used.
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4 CREATING MULTI-VALUED ATOMIC CLASSES

One limitation of the concept of the single-valued atomic class presented in Section 3 is that only asingle
result can be communicated to the rest of the problem, even though many variables may be determined in the
process. In order to deal with situations like that, it is possible to define multi-valued atomic classes that will
determine the values of more than one variable simultaneously. This section describes the process of defining
the inverse of a multi-valued atomic class.

4.1 MOTIVATION

When writing the model classes situations also arise where a developer or analyst wishesto use a model
expressed in an agorithmic language within a SPARK model (Sowell 2003). This comes up when thereis an
existing, trusted model written in a procedural language, e.g., FORTRAN, C, or C++, and time or other
factors argue against re-implementation as an equation-based SPARK model through the definition of the
equivalent single-valued atomic classes.

n m
Wrapper

|:> for external >
program

Figure 4-1: Diagram representing a wrapper multi-valued class.

Additionally, sometimes there are small sets of equations within a system that are numerically problematic for
any global iterative solution scheme, but which can be reliably solved simultaneously with well-known
procedural algorithms,

In both of these situations there are multiple equations being solved for multiple variables simultaneously
within the subsystem model. Thisisin contrast to the normal SPARK approach of breaking subsystems into
the constituent individual equations and variables to be solved globally. To better accommodate such
subsystem models, there is a need for SPARK to accept subsystem models that provide multiple values back
to the global solver using multi-valued atomic objects, rather than the normal single-valued atomic objects.

Following is a non-exhaustive list of possible applications for multi-valued atomic classes:

» Compute values for a set of target variables at once, thus potentially saving duplicate intermediate
calculations used to calculate the value for each individual target variable.

» Implement the symbolic solution of a set of equations instead of relying on the SPARK solver to find
the numerical solution.

» Implement rule-based, multi-dimensional control algorithms as C++ code.

Specify awrapper atomic class around a third-party program which describes a directed set of
equations with fixed inputs and outputs as shown in Figure 4-1. E.g.,

0 Integrate alegacy-code model expressed in any procedural language.
0 Couple SPARK with other programs such as a CFD code.
0 Operate a SPARK model in real-time with embedded digital controllers and sensors.
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» Specify awrapper atomic class around another SPARK problem to embed inside a master SPARK
problem. It is also possible to model discrete states for the atomic class implemented through different
embedded problems that describe the change in formulation of the underlying equations
corresponding to each discrete state.

4.2 LIMITATIONS

When writing a multi-valued atomic class you become responsible for devising an agorithm for the
EVALUATE callback function that calculates the values of the target ports as a multi-dimensional function,
thereby bypassing one of SPARK's most unique capabilities. If the underlying equations of the multi-valued
inverse are described as a nonlinear problem in residual form, then the appropriate solution algorithm?® must
be implemented in the body of the callback function.

It isof course possible to define a separate SPARK problem that solves this set of nonlinear equations and
embed the resulting problem in the multi-valued inverse using the SPARK Problem Driver APl documented in
separate html/chm help files. Thus, the solution agorithm for the subproblem is devised automatically by
SPARK and your task consists only in embedding the subproblem in the multi-valued atomic class.

Another limitation of the current implementation of the multi-valued inverse mechanism stems from the
matching algorithm executed in the setupcpp program. Only one multi-valued inver se can be specified per
atomic class. Thus, the multi-valued objects represented as directed objects in the computational graph force
the links connected to the target ports to be matched with their unique multi-valued inverse. Future versions
of SPARK might be capable of handling more than one multi-valued inverse per atomic class as long as each
inverseis assigned to a the set of mutually exclusive target ports.

4.3 CLASS DEFINITION

As an example of amulti-valued atomic class we use the root2.cc atomic class that is part of the global classes
stored in the globalclass subdirectory. This atomic class calculates the roots of a 2™ order polynomial
described through its coefficients. Thisis a clear case where using a single multi-valued inverse to calculate
both roots simultaneously is more efficient because it allows to reuse the intermediate value for the
discriminant in the calculation of each possibly distinct root.

// root2.cc

// Multi-valued object that returns the 2 roots of a second order

// polynomial

// a*x"2 + b*x + c =0

/1177777777777 77777777777777/77/77/77/7777777777/777/777/77/77/77/7/77777777

#ifdef SPARK_PARSER

PORT a;

PORT b;

PORT c;

PORT root plus;
PORT root_minus;
PORT discriminant;

EQUATIONS {
a*x"2 + b*x + ¢ = 0;

8 The Newton-Raphson method is usually used to solve such a set of nonlinear equations.
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}

FUNCTIONS {
root plus, root minus, discriminant = root2_ mroot2( a, b, c )

}

#endif /* SPARK_PARSER */
#include "'spark.h"

EVALUATE( root2__mroot2 )

{
ARGUMENT( 0, a );
ARGUMENT( 1, b );
ARGUMENT( 2, c );
TARGET( 0, root plus );
TARGET( 1, root_minus );
TARGET( 2, discriminant );
double discriminantx = b*b - 4.0*a*c;
it (discriminantx < 0.0) { // Atomic class error

REQUEST __ ABORT( "*Cannot compute complex roots.™ );

}
double square_discriminant = sqrt( discriminantx );
root plus = (-b + square_discriminant)/(2.0*a);
root_minus = (-b - square_discriminant)/(2.0*a);
discriminant = discriminantx ;

}

Since only asingle inverse is alowed for a multi-valued atomic class, the data flow through the classis
automatically directed from the argument ports to the target ports as shown in Figure 4-2. Using multi-valued
classes therefore constrains the matching algorithm performed in the setupcpp program and might lead to
incomplete matching.

—>»{a root plus —»

—» b | root2 | root minus —*

—¥C discriminant ——»

Figure 4-2: Directed graph representing the r oot2 multi-valued atomic class.

4.3.1 The PORT Statement
Thefirst part of the class definition isalist of the ports. The root2.cc atomic class defines six ports:

e onefor each coefficient a, b and c;
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e onefor each possibly distinct root, root_plus and root_minus; and
e one port to expose the value of the discriminant, discriminant.

Note that the port discriminant could be defined with the keyword NOERR to indicate that it is not required
that this port be connected to any link variablesin the problem definition, thus making it an optional port.

4.3.2 The EQUATIONS Statement
After the PORT declaration, the equation for the classis given in the optional EQUAT 10NS block.

4.3.3 The FUNCTIONS Statement

Following the equationsisthe FUNCTIONS {..} compound statement that defines the unique multi-valued
inverse assigned to the target portsroot_plus, root_minus and discriminant between the braces. Aswith
single-valued inverses, the list of target portsis specified on the left hand-side of the = sign. Thisinverse
defines only the EVALUATE callback function named root2___mroot2, which depends on the three
polynomial coefficients defined as the portsa, b and c.

4.4 INVERSE FUNCTION DEFINITION

4.4.1 Defining the C++ Callback Function

After the class definition comes the definition of the inverse functions. The code
EVALUATE( root2_ mroot2 )

declares the C++ function root2__mroot2 as an EVALUATE callback which calculates the values of the
target portsroot_plus, root_minus and discriminant from the values of the argument portsa, b and c.

4.4.2 Defining the Argument Variables

The code

ARGUMENT( 0, a );
declares a as the argument port passed in the first position (index 0) to the callback function
root2___mroot2inthe FUNCTIONS { } statement for thisinverse. This declaration using the
ARGUMENT macro is exactly equivalent to using the ARGDEF macro preprocessor as shown in Section 3.2.
Similarly, the code

ARGUMENT( 1, b );
ARGUMENT( 2, ¢ );

declares b and c as the argument ports passed in the second (index 1) and third (index 2) positions to the
callback function root2___mroot2.

4.4.3 Defining the Target Variables

The code
TARGET( O, root_plus );
declares root_plus asthe target port defined in the first position (index 0) in the list of target ports

specified for theinversein the FUNCTIONS {..} statement. The SPARK solver implements the target
variables asinstances of the class TTarget. Thus, the macro preprocessor TARGET declares the variable
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root_plus asaninstance of thisC++ class. Thetutorial SPARK Atomic Class API should be consulted for
more information on the class TTarget and how to use its methods.

Similarly, the code

TARGET( 1, root_minus );
TARGET( 2, discriminant );

declarestheinstances root_minus and discriminant of theclass TTarget for the target ports
specified in the second (index 1) and third (index 2) positions.

4.4.4 Calculating the Result Values

Thelast part of the C++ code of the callback function deals with calculating the values for each target ports
and assigning the results to each of the associated TTarget instances. Here the full expression of the C++
programming language can be used to derive the results from the values of the TArgument instances.

The distinct real roots of a 2™-order polynomial expressed as
a-x*+b-x+c=0 (4.1)

are obtained with the following equations when the discriminant A is strictly positive:

A=b’-4-a-c
X+:M (4.2)
2-a
_—b-JA
B 2-a

When the discriminant is equal to zero, then thereisarea double root instead of the two distinct real roots,
Xoot = X, = X_. When the discriminant is negative, the two roots are no longer real but conjugate complex

numbers. Since SPARK does not have native support for complex numbers, we will not treat this case in our
implementation of the root2.cc atomic class.

The code
double discriminantx = b*b - 4.0*a*c;

if (discriminantx < 0.0) { // Atomic class error
REQUEST __ ABORT( "'Cannot compute complex roots." );
}

calculates the value of the discriminant A using the previous equation and stores it in the temporary double
variable discriminantx. Note that we use the TArgument instances a, b and c directly in the C++
code that implements the discriminant equation. Indeed, thanks to the overloaded doub I e operator, a
TArgument instance returnsits current value as adoub I e value whenever mentioned in a C++ expression
that expectsadouble value. It is aso possible to use any other methods of the TArgument classin the
code.

Thefollowing 1T {..} statement detects when the discriminant is negative and stops the simulation by
sending an ABORT request to the solver. The request isimplemented using the REQUEST __ ABORT
preprocessor macro that takesaconst char™ string as an argument to identify the context of the request at
runtime. See Section 10 for more information on the request mechanism.
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The code
double square_discriminant = sqrt( discriminantx );

calculates the square root of the discriminant using the C library function sgrt defined in <cmath>.

4.45 Returning the Result Values

Finaly, the code
root_plus = (-b + square_discriminant)/(2.0*a);
root_minus = (-b - square_discriminant)/(2.0*a);
discriminant = discriminantx ;

assigns the result valuesto each TTarget instance. This statement implements the mathematical relations
shown in Equation (4.2) to compute the real distinct roots X, and X_. Again, we can freely write code that

mixes the TArgument instances and the locally defined, temporary variables defined as doubl e.

Unlike in our example of a single-valued inverse in Section 3.2, we can no longer rely on the convenient
preprocessor macro RETURN to assign the result values to the target variables. Indeed, the RETURN macro
assumes that there is only one target port assigned to the inverse, therefore always returning the result value
for thefirst (and only!) target port.

In the case of amulti-valued inverse, you have to explicitly write the assignment statements for each
TTarget variable before returning from the EVALUATE callback function. Thisis achieved by using the
operator = of the TTarget class, whereby on the left hand-side of the = sign you write the name of the
TTarget instance and on the right hand-side the doubl e result value or a C++ expression that can be
evaluated asadouble value.

For example, the code
root_plus = (-b + square_discriminant)/(2.0*a);

assigns the value of the mathematical relation for theroot X, tothe TTarget instance root_plus. A
similar assignment statement follows for the TTarget instance root_minus using the corresponding
mathematical relation for theroot X .

The last statement assigns the value of the temporary double variablediscriminantx tothe TTarget
instance discriminant. Thisline smply copies the value of the local variable to theinternal data structure
representing the SPARK variable. Y ou might wonder why we did not directly use the TTarget instance
discriminant to hold the value computed for discriminantx in the first place. The reason why thisis
not allowed originates in the graph-theoretical analysis performed in the setupcpp program.

In order to ensure the correct variable dependency between target and argument ports across all the atomic
objects defined in the SPARK problem, the value of atarget port cannot be used in the computation of the
inverse assigned to the target ports unless the same port is aso specified as an argument port. Essentialy, the
argument ports provide read-only accessto their current values through the overloaded operator double,
whereas the target ports provide write-only accessto their current numerical values through the overloaded
operator =. If you need to access the current value of atarget port in the callback function, then you must also
declare the port in the argument list of the corresponding callback in the FUNCTIONS {..} statement. Thus,
the inverse appears to depend uneguivocally on the value of one of its target port(s), which forces the variable
connected to this target port to be a break variable.

Were it possible to access the current value of atarget port when computing the value of the same target port,
it would create a hidden dependency between the target variable and the inverse it is matched with, resulting
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in an algebraic loop that would go unnoticed during the graph-theoretic analysis. Clearly, this situation would
produce awrong solution sequence that no longer accounts for the topology actually described by the
underlying equations.

This explains why we had to use atemporary variable discriminantx to hold the value of the
discriminant so that this value could also be reused in the computation of the two roots. Indeed, it would not
have been possible to retrieve the value stored in the TTarget instance named discriminant, had we
foregone the use of the temporary variable.

Our implementation of the root2.cc atomic classis not very robust since it does handle the special numerical
cases whereby the polynomial coefficients a or b are zero, resulting in adivision by zero at runtime. It would
be afairly simple task to extend the current implementation to make it more robust numerically. Consult the
root2.cc atomic class provided as part of the global classes for a more robust implementation.

4.4.6 Basic Structure of a Multi-Valued EVALUATE Callback

The EVALUATE callback function of a multi-valued inverse implements a multi-dimensional function, also
commonly referred to as avector function, that calcul ates the values of the m target variables Yl from the

values of the n argument variables X, . The target variables are the output values of the function, whereas the
argument variables are the input values to the function.

{Rﬁakﬂmmnewnwl
(4.3)

F: XY= F(X), XeR"YeR"
The following code snippet shows the basic structure of the EVALUATE callback function defined for a multi-
valued inverse calculating the values for (M+1) target ports from (N+1) argument ports. This code can serve

as template for the callback function of your own multi-valued inverse, whereby the number of target and
argument ports must be adapted and the code that calculates the result values must be added.

EVALUATE( callback_name )

// Declare (N+1) argument variables
ARGUMENT( 0, arg 0 );

ARGUMENT( N, arg N );

// Declare (M+1) target variables
TARGET( O, target O );

TARGET( M, target M ):

// Calculate (M+1) result values for all target variables
double result 0 = . ;

aouble result M = . ;

// Assign (M+1) result values to corresponding target variables
target O = result O ;

Earget_M = result_M ;
¥
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) MODELS OF PHYSICAL SYSTEMS

The previous examples were purely mathematical in nature. They allowed us to discuss the basic ideasin
SPARK, unencumbered by details. Here we take up some of the other issues that arise when modeling
physical systems. In particular, we show how SPARK handles the problems of unit consistency and range of
valuesfor variables. Also, we show provision in SPARK for modeling at alevel higher than individual
eguations. Then, using these new ideas, we show the development of a SPARK model for a system of modest
complexity.

51 UNITS, VALID RANGE, AND INITIAL VALUES

When simulating real physical systems, there must be consistency in the units of measure throughout the
problem. In terms of a SPARK problem specification, this means that the units of a problem variable linked to
an object port must be the same as the units assumed for the port variable when the object class was defined.

SPARK has alimited capability to ensure unit consistency. Thisis provided by associating an optional unit
string with each port. Then the SPARK processor can check and report an error if you inadvertently connect
variables of different units. Also, you can giveinitial, minimum, and maximum values for the port variable.
For example, the cpair class from the HVAC Toolkit has a port for the specific heat coded as follows:

port CpAir “Specific heat of air” [J/(kg _dryAir*deg CO)]

INIT = 1.0
MIN = 0.01
MAX = 5000.0;

The unit string is placed in square brackets [...]. Any connection to this port will have to have an identical
unit string. The MIN and MAX values have the obvious meaning; run time warnings are issued when the
valueisoutsidethisrange. The INIT valueisused by SPARK as the default starting value for the initial time
solution if noneis provided elsewhere. For example, if the associated variable happens to be a break variable,
then the very first iteration will usethe INIT vaue of 1.0 for CpAir.

In order for SPARK units checking to work to your benefit you must define a consistent set of units. Table 5-1
shows the Sl units used in the HVAC Toolkit (see Appendix B). Other consistent sets could be used instead.
Note that the units and value ranges given in are not built into SPARK; they are simply the units employed in
the HVAC Toolkit classlibrary. However, they do serve as an example of a consistent set of units. When
developing SPARK models you have the choice of adhering to these units or developing your own library
with units of your choice. Obviously, you should be consistent with whatever unit system you choose,
otherwise you will have to implement special unit conversion objects when your objects are connected. The
INIT, MIN, and MAX values should be set as appropriate for each port.

Table 5-1: SPARK Units (SI) used in the HVAC Toolkit

Unit String Description Initial Minimum Maximum
[-1 Unspecified

[J/kg_dryAir] Enthalpy, air 25194.2 -50300.0 398412.5
[J/kg_water] Enthalpy, water 25194.2 -50300.0 398412.5
[kg_water/kg_dryAir] | Massratio .002 0.0 0.1
[kg_dryAir/s] Mass flow rate, air 10000. 1000. 1000000.
[kg_water/s] Mass flow rate, water 10. 0. 1000.
[deg_C] Dry-bulb temperature 20. -50. 95.
[m3/kg] Specific volume, fluid 1.0
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[m"3/kg_dryAir] Specific volume, air 0.6 1.6

[kg/m"3] Ratio of total (air plus 1.2026 0.6 1.8
moisture) mass to volume

[J/kgl Enthalpy, steam

[J/(kg*deg_C)1] Specific heat, fluid 1.0 0.01 5000.0

[J/(kg_dryAir*deg_C)] | Specific heat, air 1.0 0.01 5000.0

[kg/s] Mass flow rate, fluid 0.0

[m3/s] Volumetric flow rate, fluid 1

[m] Distance 1

[m"2] Surface area 0

i Power 1 -10000 10000

[Pa] Pressure 101325 0 110000

[W/deg_C] U*A, heat transfer 0 -1.0E6 1.0E6

[s] Time, seconds 0.0 0 1.0E30

[fraction] Any ratio 1.0 0.0 1.0

[scalar] Any non-dimensional 1.0 -1.0E30 1.0E30

To demonstrate, consider the sercond class from the HVAC Toolkit, which models two conductors in series.

The ports are defined as:

PORT U1 ""Conductance 1" [W/deg_C];
PORT U2 "Conductance 2" [W/deg_C];
PORT Utot "Overall conductance"™ [W/deg C];

Then, when the sercond classis used in a problem definition you have to give matching unit strings at each
LINK or INPUT statement for the problem variables connected to the ports of sercond:

DECLARE sercond sc;

LINK UA1l sc.Ul [W/deg_C]
LINK UA2 sc.U2 [W/deg_C] [INPUT REPORT;
LINK UATotal sc.UTot [W/deg C] REPORT ;

The SPARK parser can then check to be sure you have not made a units error; if the units stringinaL INK or
INPUT statement does not match those of all port variables in the same statement, a units error will be
reported.

INPUT REPORT;

There are times when you may not want strict enforcement of unit consistency. For example, the sum class
isused in many places, sometimes adding heat flux and other times mass flow rates. |f we insisted on strict
unit consistency, we would have to have a separate sum class for every different case. To avoid this problem,
and to allow for problems where units are not important, there is an unspecified unit identifier. Unitson a
port are unspecified when you do not give any unit information, or when you explicitly declare unspecified
unitswith “[-]” asthe unit identifier. When a port has unspecified units, no unit checking is done on links
to that port.

52 MACRO CLASSES

SPARK uses a computational graph based on individua problem variables and equations to produce an
efficient solution strategy optimized for simulation speed. The SPARK atomic class is the fundamental
building block where the equations are described. Because of this unique approach, SPARK isreferred to as
an equation-based solver.
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While thisis an advantage for efficient solving, the disadvantage is the tedium of defining alarge system
model entirely in terms of individual equations. When modeling physical systems, it is sometimes more
convenient to work in terms of larger elements, such as models of physical components or subsystems. Such
models most often will involve several equations and variables rather than one.

The macro class provides the abstraction mechanism for allowing more complex
Macro classes allow youto gpARK classes. It allows multiple atomic classes, and even other macro classes,
work at a high level of  tg be assembled into a single entity for use by the model builder. Macro classes
abstraction, while allowing are used in problems or in other macro classes exactly like atomic classes, i.e., by
SPARK to employ efficient, yse of the DECLARE keyword. However, when processed by the SPARK parser,
equation-based solution gy declared macro objects are separated into atomic objects so that the graph-
strategies. theoretic solution methods can be applied in the normal manner.

As an example of the need for amacro class, consider  m, m,
the flow of air in aduct network, such as might occur
in a heating system for abuilding. In simulation of h

—> —
these systems there is a need for models of various 1 h
components such as diverters that split the flow into
two streams and mixers that merge the flow of two
duct sectionsinto one. Here, let's focus on the mixer
and devise amodel for it in the form of a SPARK T

macro class.

The diagram in Figure 5-1 shows the mixer
component.

The air duct mixer model must include two laws from Figure 5-1: Dry air mixer.
physics: conservation of mass and conservation of
energy. These can be expressed in the following

m, h,

equations:
m +m, =m, (5.1)
rnlhl + mzhz = msha .

where m represents mass flow rate and h represents the enthalpy of the air streams. The subscripts 1 and 2
represent the conditions at the two inlets, and 3 the condition at the outlet.
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To construct a macro object class for the mixer let's
assume that we aready have object classes for the
mass and energy balance equations. Actually, the

mass equation can be represented with the familiar

sum class. Alsointhe SPARK object library thereis  —— M1

an object class called balance that represents EI |

equations like the enthalpy one. The port variables _‘EI SLC
analogous to mand h are m and q respectively. _ |h1| —Am3r—
The macro class will connect the constituent classes

exactly asif we were creating a problem definition m1l |

file. Constituent class port variablesthat areto have =~ ——m2 al|.Im h3

the same meaning in the context of our new macro m2 b q

class are linked together, forcing equivalence. Those

that are to be available for interfacing to problemsor ~ ——— h2 _|_ q2

other macro classes are “elevated,” i.e., made port

variables of the macro class.

Figure 5-2 shows thisidea and serves asaguide in

writing the macro class. Because all represent the Figure 5-2: Mixer macro class diagram.

same quantity, the port variable m1 of the macro class must be connected to the a port of the sum class and
the m1 port of the balance class. Other port variables are linked in a similar manner. The SPARK expression
of thisis shown below.

/* SPARK Mixer Object Macro Class
*
*/
PORT ml1 *Stream
PORT m2 "Stream
PORT m3 "Stream
PORT h1l "'Stream
PORT h2 "'Stream
PORT h3 "'Stream
DECLARE sum s;
DECLARE balance b;
LINK massl .ml, s.a, b.ml;
LINK mass2 .m2, s.b, b.m2;
LINK mass3 .m3, s.c, b.m;
LINK enthalpyl .hl, b.ql;
LINK enthalpy2 .h2, b.qg2;
LINK enthalpy3 .h3, b.qg;

It will be observed that thisis very much like a problem definition. The principal differenceis the absence of
inputs. Also, note that a macro class has ports, whereas a problem does not. Ports provide the interface to the
outside. That is, when an object of this class is used, connections will be made to its ports. The internal links,
on the other hand, are not exposed to the outside at all. If you want a variable represented by a macro class
link to be available for outside connections, you must connect it internally to a port. For example, theline:

mass flow rate"™ [kg _dryAir/s];
mass flow rate" [kg_dryAir/s];
mass flow rate” [kg_dryAir/s];
enthalpy" [J/kg_dryAir];
enthalpy" [J/kg_dryAir];
enthalpy" [J/kg_dryAir];

WNEFPWNPEP

LINK massl .ml, s.a, b.ml;

means that the link named massl connects the m1 port of the mixer macro class to the a port of sand them1
port of b.
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Note the dot (.) in front of the first connection following the link names in the above example. Therationale
for the dot syntax is based on the general connection notation x.p, where we are referring to the p port of the x
object. When the port in question belongs to the macro class being defined, as opposed to one of its
constituents, the class name is that of the very class we are defining and therefore is not expressed.®

The similarity between macro classes and problems makes it common practice when developing a macro class
tofirst test it as aproblem. For example, you could devel op the mixer class as a problem, saving it in afile
with .pr extension. Once it isworking properly, you simply change the inputs to links, add ports for the
variables needed at the interface, connect the corresponding links to these ports, and save it asa.cm file.

Y ou may have noticed in the above example that the names of links, e.g., massl, are not used anywhere. This
is because we express the internal connections entirely in terms of the class and port names, asin s.a, or with
an implied class name and port name asin.m1. Because link names are not used, they are optional when
defining macro classes. That is, we could write:

LINK .ml1, s.a, b.ml;

instead of the previous statement with exactly the same effect. In contrast, link names are required for
problems, as these are the names by which we know the problem variables. Further discussion of link names
isprovided in Section 8.2.

Note that we have included unit strings in the ports. Thiswill prevent you from connecting inappropriate
links to objects of the mixer class. Also, we could have placed unit stringsin the links to allow unit checking
of the links to the ports of the classes which are used in the macro. We elect not to do so here, however,
because both sum and balance are mathematical classes with generic ports.

Finally, note that macro classes are entirely equivalent to normal SPARK classes in terms of usage. They can
be used in creating problem specification files or in building other macro classes. The SPARK parser
recursively expands the macro objects as it generates the solver code.

% 1n some object-oriented languages, such as C++, the name of the class being defined is known internally asthis. In SPARK we chose to have the
name this be understood rather than expressed.
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6 DIFFERENTIAL EQUATIONS

Thus far we have focused on problems with only algebraic equations. However, many simulation problems
are dynamic in nature and involve differential equations aswell. That is, some of the problem variables
appear as derivatives with respect to time. In this Section we see that SPARK is capable of representing and
solving such problems. We begin with a brief review of numerical methods used in solving ordinary
differential equations.

6.1 NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

Numerical solution methods for differential equations start with given initial values for the dynamic
variables™ and attempt to project to a new solution a short time later. When the differential equation is part of
alarger system of equations the entire set must be solved at each point to ensure accuracy. The processis
then repeated, with the newly calculated values becoming the basis for the next projection forward. The
amount by which timeis advanced at each projection is called the time step. It isinitialized with the value of
thekey InitialTimeStep specified in the run-control file. Generaly speaking, the time step has to be
small in order to achieve sufficient accuracy of the solution. Since simulations are often carried out over long
periods of time, many small time steps are required. Computational efficiency is therefore very important.

The projection is done by means of an integration formula involving current and/or past values of the
dynamicvariables and their time-derivatives. For example, the simple Euler integration formulafis:

x= (X, %, ) =%, +hx, (6.2)

where X isthe dynamic variable, X isits derivative with respect to time, and h isthe time step. Note that the
Euler formulainvolves variable and time-derivative values only from the previoustime, indicated by the
subscript p. Thisis called an explicit formula because it gives the new solution explicitly, i.e., without
reference to unknown values at the end of the current time step. On the other hand, some integration formulas
do involve values of the dynamic variables at the new time, i.e.,

X = f(xp, X1 X, X) (6.2

Such formulas are called implicit because they involve values at the new point as well as past values.™
Obvioudly, iteration might be required for implicit integration formulas, while not for explicit integration
formulas. The aim of the more complex formulasisto get improved accuracy and numerical stability with
larger time steps.

SPARK deals with differential equations by introducing object classes to represent integration formulas.
These can be from the SPARK globalclass library, or user defined. Y ou can define many different kinds of
integration object classes, ranging from simple explicit formulas such as Euler’ s to complex implicit formulas
used in predictor-corrector methods. Unlike other simulation languages, SPARK even allows you to use
different integration formulas in different parts of the same problem.*

Below we will learn how to solve asimple differential equation. First we will use integrators from the
SPARK library, and then see how integrator object classes are created. In Section 6.5, this will be extended to
amore complex problem with mixed algebraic and differential equations.

O The dynamic variables are the variables appearing in differential form in the set of equations.
! The terms open and closed are sometimes used instead of explicit and implicit.

12 Thisis however not recommended as there are numerous numerical issues involved with mixi ng integration schemes in the same problem.
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6.2  SOLVING A SIMPLE DIFFERENTIAL EQUATION

As asimple example, consider the differential equation:
x+ax=b;  x(t;) =%, (6.3)

where X isunderstood to be the derivative of X with respect to time, t, the independent variable. We see this
to be awell-posed problem: x(t) can be determined given the parameters a and b, and the initial condition

Xy -

To achieve anumerical solution in SPARK we view the derivative as a separate dependent variable. In order
to preserve the balance between equations and variables, this additional variable requires an additional
equation to be added to the set. An integration formula provides this needed equation, giving the value of X
a the next point intime. 1f we employ the Euler formula, Equation (6.1), the set of equationsto be solved is:

{)‘(Jr a-x=b
(6.4)

x=xp+h~xp

It is seen that we again have a well-posed problem consisting of two equations in the two variables X and X .
Since both equations are algebraic, they can be easily solved by the established SPARK methodology.

This example is simple, but the method is general. Regardless of problem complexity, we simply introduce a
new problem variable for every (first order) time-derivative, and at the same time introduce an integrator
object for the dynamic variable.

The SPARK solver then has an algebraic problem to deal with. Observe also that implicit integration
formulas, Equation (6.2), require no special consideration. Such formulasinvolvethe X at the new time, i.e.,
areimplicitin X. But thisis of no concern, because the SPARK solver anticipates that an iterative solution
process may be necessary due to the possibility of other cyclesin the problem. Theimplicit integration
formulais simply one more equation to be converged through the normal iteration.

One other issue needs to be dealt with, and that is preserving past values of dynamic variables and their
derivatives. From Equation (6.1) we see that the Euler integration formula uses values of X and X from the
previoustime to calculate X at the new time. Some integration formulas use values of these quantities from
earlier time stepsaswell. In order to provide these past values, SPARK provides four past valuesfor all
problem variables. This allows definition of awide range of practical integrator classes.”

dt

a-a X |— dt X
b E_l_ C |E_'—xdot E
P |_ S |xDot c

b

Figure 6-1: First-order differential equation diagram.

With these ideas we can continue with our example. Figure 6-1 shows a SPARK diagram for our differential
equation. We use an instance of the safprod object class, p, to form the ax product, and an instance of the

3f needed, SPARK can be reconfigured to allow more past values.
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sum object class, s, to form the sum X+ ax. We then link the a port of s and the xdot port of the instance ¢
of the euler class using a problem variable called xDot. This causes the x port of ¢ to carry the problem
variable, x, which we a so link to one of the multiplicand ports of the object p.

/* First order differential equation
&S xdot + a*x = b
* frst_ord.pr
*/
DECLARE safprod p;
DECLARE sum S;
DECLARE euler C;
LINK a p-a INPUT;
LINK b S.c INPUT;
LINK dt c.dt GLOBAL_TIME_STEP;
LINK X p-b, c.x REPORT;
L INK xDot s.a, c.xdot;
L INK ax s.b, p-c;

The values of the variables a and b, must be placed in an input file, frst_ord.inp. Also, when you solve
differential equationsit is necessary to provide initial conditions for each dynamic variable. In SPARK there
are two waysto accomplish this. Oneway isto place INIT=VALUE inthe LINK statement for the variable.
Alternatively, you can specify theinitial values by giving the initial time and associated initial values for the
dynamic variablesin theinput file. Thisis preferableif you want to carry out parametric runs with different
initial conditions without changing the problem specification file. To demonstrate the latter method, suppose
aand b are both 1.0, the initial timeis 0, and x has an initial value of 0. Then frst_ord.inp should be:

3 a b X
0 1 1 0

Since x is adynamic variable rather than specified as input, its value will be read from the input file only at
start-up (see Section 7.1). Some numerical integration methods require values of dynamic variables and their
derivatives at times earlier than the initial time. When needed, these values can be provided in the same
manner, using time values earlier than the problem initial time (i.e., negative timeif initial time is0).

Note that the units of time are not defined in SPARK, so you are free to choose whatever time units you wish
and develop your differential equationsto reflect your choice. For example, if in the above differential
equations X ismeasured in metersand X isto bein meters/second, the coefficient a must have units of
reciprocal seconds and b must have units of meters/second.

The run-control file needed to run this problem, frst_ord.run, is:

InitialTime ( 0.0 O)
FinalTime (5.0 O)
InitialTimeStep ( 0.015625 ())
FirstReport (0.0 O)
ReportCycle ( 0.03125 )
InputFiles ( frst_ ord.inp Q)
OutputFile ( frst_ord.out Q)

)
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We ask for the solution over atime range of
0 to 5 seconds, with atime step of

0.015625.** Thelink for dt includes the I
GLOBAL_TIME_STEP keyword. This 10
propagates the time step specified in the run- i

x

control file to wherever it may be needed in
the problem and macro classes. The 0.5
reguested output at every other time stepis I
written to frst_ord.out. The results are plotted

|
‘ ‘ ‘ |
frst_ord.out with Microsoft Excel. 0 1 2 3 4 5

in Figure 6-2, generated by opening 0V

Alternatively, you could use the free-use Time

plotting program provided with WInSPARK, i )

wgnuplot, see Section 14. Figure 6-2: Resultsfor the frst_ord dynamic problem.

6.3 INTEGRATOR CLASSES IN THE SPARK LIBRARY

The SPARK library has severa integrator classes. All integrator classes have the same port interface
consisting of the port x for the dynamic variable, the port xdot for its time-derivative, and the port dt for the
global time step. In order to be able to distinguish the integrator objects from the other algebraic objects at
runtime, each integrator classis also typed as INTEGRATOR using the CLASSTYPE statement (See Section
8.6).

This approach of typing the integrator classes and of keeping the same port interface for al of them allowsto
identify the dynamic variables and their respective time-derivatives in the problem under study. This
information is then used during the solution phase in order to provide specific numerical treatment for the
dynamic variables. In particular, classes of type INTEGRATOR are allowed to send requests to the solver to
adapt the global simulation time step in order to satisfy the user-specified integration tolerance (See Section
10). Also, thelist of dynamic variablesis written out to the equation file generated by the setupcpp program
(See Figure 1-1). The eguation file should be consulted to find out which problem variables are the dynamic
variables for which initial conditions must be provided at the start of the simulation.

If the CLASSTYPE INTEGRATOR statement is omitted in the atomic classes implementing the integration
methods,” then the integrator objects are treated like any other atomic class'® during the SPARK build process.
The variables connected to the x port will not be tagged as dynamic variables and they will not be listed in the
equation file. During the solution phase, these integrator objects will not be able to provide error control by
adapting the time step. Notwithstanding these limitations, it is still possible to use integrator classes that are
not defined as CLASSTYPE INTEGRATOR.

However, we strongly recommend that you use the new integrator classes of the SPARK library defined as
CLASSTYPE INTEGRATOR in order to benefit from the improved numerical treatment such as the
capability to monitor the integration error.

The integrator classes in the SPARK library are shown in Table 6-1. For each integrator, we also indicate
whether it can be used with variable time step and whether it provides integration error control through
varying the time step. All of the implemented integration methods are fully described in numerical analysis
texts so we will just describe them briefly here.

14 Although the time step can be any wanted value we choose 1/2° =0.015625 because powers of 2 can be represented exactly in the binary storage
format used internally. Step sizes that are not powers of 2 are difficult to synchronize with reporting intervals.

5 Thiswasthe approach followed in SPARK 1.
16 By default, the atomic classes are considered to be defined as CLASSTYPE DEFAULT unless specified otherwise.
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Table 6-1: Integrator Object Classesin the SPARK Library.

I ntegr ation method Classfile }I'/i?rnie?gltip (Ejrorn(:rrol
Euler (explicit) euler.cm yes no
Implicit Euler implicit_euler.cc yes no
Backward-Forward Difference bfd.cc yes no
4th-order Backward - Forward Difference | bd4.cc no no
Adams-Bashforth-Moulton abm4.cc no no
PC Euler integrator_euler.cc yes yes
PC Trapezoidal integrator_trapezoidal.cc yes yes

The Euler method is based on the simplest of al methods, using only the time-derivative at the beginning
of the time step. It isa 1%-order integration method.

The Implicit Euler method is the same basic idea as the normal (explicit) Euler method except the time-
derivative is estimated at the end of the time step. It is also a 1%-order integration method but with better
stability behavior than the explicit Euler method.

The Backward-Forward Difference method is only slightly more complex, using the time-derivative at the
end of the time step as well as at the beginning. It is a 2™-order integration method.

The 4™-order Backward-Forward Difference method uses additional previous values and time-derivatives.
These Backward-Forward Difference methods are often used for “ stiff” differential equations sets (Press,
Flannery et al. 1988). This scheme cannot be used in the variable time step mode because the constant
coefficient implementation assumes equidistant previous solution points.

The Adams-Bashforth-Moulton method is a 4™-order predictor/corrector method. Such methods employ
two separate integration formulas, apredictor to make an initial estimate of the new solution, and a
corrector to refine the solution iteratively. The predictor is an explicit formula, while the corrector isan
implicit formula. This scheme cannot be used in the variable time step mode because the constant
coefficient implementation assumes equidistant previous solution points.

The PC Euler method is a 1%-order predictor/corrector scheme providing control of the local truncation
error when the solver is operated in the variable time step mode (See Section 18). The predictor scheme
implements the explicit Euler method and the corrector scheme implements the implicit Euler method.
The error estimate is abtained from the difference between the predictor and the corrector and is of order
1. The error control strategy uses the Euclidean norm of the local truncation errors estimated for each
dynamic variable. The time step adaptive strategy implements the Error Per Step approach, whereby the
error norm at each step is kept smaller than the user-specified tolerance.

The PC Trapezoidal method is a 2™-order predictor/corrector scheme providing control of the local
truncation error when the solver is operated in the variable time step mode. The predictor scheme
implements the explicit Euler method and the corrector scheme implements the trapezoidal method, aso
known as the backward-forward difference method. The error estimate is obtained from the difference
between the predictor and the corrector and is of order 1. The error control strategy uses the Euclidean
norm of the local truncation errors estimated for each dynamic variable. The time step adaptive strategy
implements the Error Per Step approach, whereby the error norm at each step is kept smaller than the
user-specified tolerance.
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6.4 CREATING SPARK INTEGRATOR OBJECT CLASSES

6.4.1 Simplified Implementation of the Euler Method

If none of the library integrator object classes are suitable, you can define your own. SPARK integrator object
classes are created much like any other object class. To see how thisis done, let’ s look at the following
implementation of the euler class. The port variables are the dynamic variable x, its derivative xdot, and the
time step dt. Aninverseisgiven for asingle port variable, the dynamic variable x.*’

/= euler.cc */
#ifdef spark parser

PORT x;

PORT xdot;

PORT dt;

EQUATIONS {
X = x[1] + dt*xdot[1];

}
FUNCTIONS {
x = euler__x(xdot, dt);

#endif /*spark_parser*/
#include "'spark.h"
EVALUATE( euler__x )

{
ARGUMENT( 0, xdot);

ARGUMENT( 1, dt);
TARGET( 0, X);
double result;
result = x[1] + dt*xdot[1];
RETURN( result );
}

The EVALUATE callback function euler__ x employed in the class definition isimplemented in C++ after
the classitself. It isbasically an expression of the Euler integration formula, Equation (6.1). First, the
arguments declared for the callback function euler__ x are defined asinstances of the class TArgument
using the preprocessor macro ARGUMENT called with the respective positions in the argument list®®: the time-
derivative argument xdot and the time step argument dt. Then, the target for the dynamic variable x is
defined as an instance of the class TTarget using the preprocessor macro TARGET.

The heart of the callback function istheline:
result = x[1] + dt*xdot[1];

which represents the Euler formula. As might be surmised from the code, X[ 1] refers to the value of the
target port x one time step back.” Similarly, xdot[1] refers to the value of the argument port xdot one time
step back. The right hand side adds the time step multiplied by the derivative at the beginning of the time step
to the variable at the sametime. Thisisthe new value of the dynamic variable, which isthen returned using
the preprocessor macro RETURN.

1 Theoretical ly, SPARK would not care whether the integration formula was used to calculate the dynamic variable or its derivative. Asatoken to the
sensibilities of most numerical analysts, however, here we restrict this relationship to be aformulafor the dynamic variable.

18 The ARGDEF macro uses zero-based indexi ng.

1% Remember that it is not possible to access the value at the current step of a TTarget instance but the values at previous steps can be freely
accessed as well as other properties.
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Finally, note that we did not define the euler classas CLASSTYPE INTEGRATOR. However, thiswould be
trivial to do by simply adding the statement in the class definition because our simplified implementation is
already compatible with the port interface required by an INTEGRATOR class.

6.4.2 The Initialization Issue

The function euler__ x in this example is simplified because there is no guarantee that the dynamic variable
X will be equal to the prescribed initial value X, at theinitial time t, in order to satisfy the prescribed initial
condition®

X(to) =% (6.5

To understand the initialization issue, we need to consider the situation at the very beginning of the
simulation period, i.e.,, Initial Time, and contrast it with conditions at |ater time steps. At
InitialTime, presumably we want the prescribed initial values of the dynamic variables to be used as
shown in Equation (6.5). However, at all other times in the dynamic solution process we need to calculate the
value of x from the integration formula used in the SPARK integrator object. That is, assuming we are using
the Euler formula, we want to enforce:

X=X, +hx (6.6)

where the subscript p refers to the previous time step values for x and its time-derivative X.

Thus we see that the system model isdightly different at InitialTime. Ideally, then, we should formulate
the problem twice, once with an object representing Equation (6.5) and again with the integrator relationship,
Equation (6.6), starting the simulation with the first formulation and switching to the second after the
InitialTime solution. However, SPARK cannot change the model during simulation; it allows for a
single problem formulation. Therefore we have to use the integrator object at InitialTime aswell as
throughout the simulation period.

An approach to achieve proper start-up is to modify the integrator class to behave differently at
InitialTime. For example, we could write

if ( ACTIVE_PROBLEM->IsStaticStep() )
result = x.Getlnit();

else
result = x[1] + h*xdot[1];

where ACTIVE_PROBLEM->I1sStaticStep() isaboolean function that returns true only when the
problem under study is currently solving a static simulation step, which istypically the case when the time
equals InitialTime. Also, x.GetInit() isamethod invocation that returns the initial value of x. The
htm/chm tutorial SPARK Atomic Class API should be consulted for more information on the TTarget and
TProblem classes.

Thisis actually quite a good solution to the start-up problem. It is easy to implement and will adapt to even
complex integrators. The drawbacks are small lossesin computational efficiency and generality. The
principal efficiency lossis due to the extraif-check which must be executed at every time step in the
simulation; it is doubtful that thisincrease in solution time will be significant in most problems. Thelossin
generality is because certain kinds of initial conditions, e.g.,

Xtp)=c 6.7)

D Wealso refer to theinitial condition for adynamic variable asitsinitial value.
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cannot be enforced because they require solving adifferent initial problem. Future versions of SPARK will
deal with this start-up situation more rigorously. Two different problem graphs will be constructed, one using
a start-up formula and the other a proper integration formula. Thiswill allow determination of completely
different solution sequences at start up if needed to enforce special initial conditions. Moreover, this
approach will permit use of different integration formulas whenever necessary later in the smulation, e.g.,
after achange in integration time step.

6.4.3 The Restart Issue

After initial time the solver might need to restart the simulation by computing a static step to calculate a
consistent, new set of “initial” values for the dynamic variables at the current time. This operation is
sometimes referred to as a warm restart” because it occurs after the initial time.

Resetting the integrators following awarm restart is a similar task to the one previously discussed with the
initialization issue whereby the integration formulais bypassed and a constant value is returned for the
dynamic variable. The difference with the warm restart is that this constant value is ssimply the value at the
previous step.

For example, we could write

if ( ACTIVE_PROBLEM->IsStaticStep() ) // No integration
result = (
ACTIVE_PROBLEM->IsInitialTime() ?
x.GetInit() // Initial time solution special case

X[1] // Use past value for restart after initial time solution

else // Perform integration
result = x[1] + h*xdot[1];

where ACTIVE_PROBLEM->1sInitialTime() isaboolean function that returns true only when the
global timein the problem under study is equal to theinitial time. Only at initial time do we return theinitial
value of the dynamic variable. For each static step after the initial time, we return the previous value of the
dynamic variable, as expected for awarm restart.

6.4.4 The Previous Value Issue

More complex integrators, differing primarily in the use of more previous terms, may be found in the SPARK
globalclass directory. Thereit will be seen that x two steps back iswritten X[ 2], and so on. Userswith
specia needs can reconfigure SPARK to work with any number of previous values of any class argument.

In addition to the initialization issue, the integrator in this example is aso simplified in another way. As
presented, it uses the variable name, xdot, that represents both the new value at the current time step and the
previous value. However, the integration formula only needs knowing about its previous value. That is, the
euler__ x calback function has the form:

X = euler__x(xdot, dt);

Written this way, the SPARK parser will assume that we are using the current-time value of xdot in the right
hand side of the integration formula, whereas in fact it is the previous-time value of xdot that occurs there as
can be seenin Equation (6.1). Since the code for the corresponding C++ callback function euler__ x
actually uses only the previous value of xdot on the right hand side, namely xdot[ 1], Euler integration will
be properly applied at execution time.

2 Theinitial time solution is also referred to as a cold start.
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However, the disadvantage of the way we have coded it hereis that the generated solver will potentially
include an unnecessary feedback loop, and therefore an additional but unnecessary break variable, if the
variable xdot depends on the variable x in the problem. A better way to implement explicit integrators that
avoids this undesired topological dependency in the computational graph is discussed in Section 8.3.

6.5 SOLVING A LARGER EXAMPLE: THE AIR-CONDITIONED ROOM

Asamore realistic simulation example, et us consider a simple air-conditioned room shown in Figure 6-3.%

Theroom is supplied by air at temperature
T, . Theflow rate of supply airis m,
which is controlled by a proportional

controller acting in response to the
difference between room air temperature,

T, , and the set point, limited between
maximum and minimum values T__ and

T.,. Heat Q,,, istransferred through
the external envelope in proportion to the
outside-to-inside temperature difference.
Also, heat Qq,, istransferred from the
floor slab to the room air in proportion to
the temperature difference between these
two bodies. Accounting for the heat
capacity of the floor slab, the

mathematical model for this system can be
written:

Qwall = UANaII (Ta _Tosa)
Qﬂoor = hAﬂoor (Ta _Tfloor )
Qﬂow (T T )

Qfloor = Qflow - Qwall
M, C

floor ~p, floor floor Qfloor

M. ifT,<T,

min

mC,, =| Moy + (T, Tmm)MT

max

M, ifT,>T_

max

where:

QWaII

/
/

1 7T

osa

£ _>

/ o |

Tfloor

Figure 6-3: Temperature-controlled room.

-M
T

min

min

(6.8)

is the wall conductance,

UAi

Qflow

isthe heat added (+) or removed (-) from
the room due to air flow,

T isthe outside air temperature,

0sa

isthe supply air capacity rate,

2 The Visual SPARK Users Guide contains a tutorial showi ng how a similar problem would be formulated using the Visual SPARK user interface.
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hAﬂoor is the floor to room air conductance, M ﬂoorcp’ﬂoor isthe floor slab heat capacity,

Toon isthe floor dlab temperature, M__ is the maximum supply air capacity rate,

T, isthe room air temperature, M. is the minimum supply air capacity rate,

Quan isthe heat flow from room air to T is the room temperature at which supply
walls, air capacity rate is maximum,

Qtioor isthe heat flow from room air to T . is the room temperature at which supply
floor, air capacity rate is minimum.

The first two equations express the rel ationship between the temperature differences and heat flow to the
room air, while the third gives the heat removal rate due to the stream of conditioned air. The next two give,

respectively, the heat storage rate of the floor dlab, Qy,,, , and the rate of change of energy stored in the slab,

M 0o Co fioor T

floor ~p, floor * floor ?

of course, these quantities are equal .

The last equation is the proportional control expression, stating that the air stream cooling capacity is
proportional to the difference between room air temperature and the set point, limited between maximum and
minimum values.

This system can be represented by seven SPARK objects, as shown in Figure 6-4. The three heat transfer
equations are represented by the objects flow, walls, and floor, all of which are instances of the HVAC
Toolkit class called cond (a conductor) having the form:

q=U12-(T1-T2) (6.9)

The dab heat storage rate relationship is represented by adiff object called net. Also, asafprod object called
rateisrequired to form a product between the dab heat capacity, MCp, and the rate of change of dlab
temperature, T_floor_dot. Anintegrator object called c implements the backward-forward difference formula
toget T_floor from T_floor_dot. Finally, the proportional controller isimplemented by the class called
propcont from the HVAC Toolkit (see Appendix B).
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Figure 6-4: SPARK diagram for temperature-controlled room (see file room_fc.cm).

Because several rooms are often required in a complete problem, we implement the diagram in Figure 6-4 asa
SPARK macro class called room_fc.cm, as shown below:

/*
Massive Floor Room, with Controller Macro room_fc.cm
*/
// Temperatures
PORT Ta [deg C] ""Room air temperature';
PORT T_floor [deg_C] ""Room Floor temperature';
PORT T_floor_dot [deg_C/s] ""Room floor temperature rate of change';
PORT Tosa [deg C] "Outside air temperature’;
PORT Tin [deg _C] "Supply air temperature';
PORT UA [W/deg_C] ""Wall conductance';
PORT hA [W/deg_C] "Floor to ailr conductance';
PORT mcp [W/deg_C] "Supply air heat capacity rate';
PORT Mcp [J/deg_C] "Floor mass heat capacity';

// Proportional controller

PORT T set high [deg C] "Set point temp, high";

PORT T_set_low [deg_C] "Set point temp, low';

PORT max_cap [W/deg_C] "Max supply air capacity rate";
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PORT min_cap [W/deg_C] "Min supply air capacity rate';

// Heat transfers

PORT Q_ flow [w] "Heat added (+) /removed (-) by air stream';
PORT Q _wall [w] "Wall heat transfer";

PORT Q_floor [w] "Heat from air to floor™;

PORT dt [s] “"Time step for T _floor differential’;
DECLARE cond flow; // Air mass flow "conductor™

DECLARE cond walls; // Walls conductance

DECLARE cond floor; // Floor to air conductor

DECLARE diff net; // Diff between Q in and out

DECLARE safprod rate; // Multiply T _floor_dot* Mcp

DECLARE propcont pc; // Proportional controller

DECLARE bfd C; // Backward-forward difference integrator
LINK _.Tosa, walls.T2;

LINK _.Tin, flow.T1;

LINK _UA, walls.U12;

LINK _hA, floor.uUl2;

LINK .mcp, flow.U12, pc.response;

LINK _Mcp, rate.a;

LINK _.T set low, pc.signal _lo;
LINK .T set high, pc.signal_hi;

LINK _max_cap, pc.response_hi;

LINK _min_cap, pc.response_lo;

LINK .Q wall, walls.q, net.b;

LINK .T Floor, floor.T2, c.x;

LINK .T_Ffloor_dot, rate.b, c.xdot;

LINK .Q floor, floor.q, net.c, rate.c;

LINK _.Ta, flow.T2, walls.T1l, floor.T1l, pc.signal INIT=20.0;
LINK .Q Flow, flow.q, net.a;

LINK .dt, c.dt;

This macro can be used to define a single-room problem as follows:

/* Alr-conditioned Room room fc.pr */

DECLARE room fc room;

LINK Mcp room.Mcp [J/deg_C] INPUT;

LINK UA room.UA [W/deg_c] INPUT;

LINK hA room.hA [W/deg_C] INPUT;

LINK Tosa room.Tosa [deg_C] INPUT;

LINK Tin room.Tin [deg_C] INPUT;

LINK T _set high room.T _set high [deg C] INPUT;

LINK T set low room.T_set low [deg _C] INPUT;

LINK max_cap room.max_cap [w] INPUT;

LINK min_cap room.min_cap [w] INPUT;

LINK dt room.dt [s] GLOBAL_TIME_STEP;
LINK mcp room.mcp [W/deg_C] REPORT;
LINK Q Flow room.Q Fflow [w] REPORT ;
LINK Q _wall room.Q wall [w] REPORT ;
LINK Q_ Floor room.Q_Ffloor [w] REPORT;
LINK Ta room.Ta [deg_C] BREAK_LEVEL=10 REPORT;
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LINK T _Floor room.T_Ffloor [deg C] INIT=30 REPORT;
LINK T_Ffloor_dot room.T_floor_dot [deg_C/s] REPORT ;

Here we have declared room as an instance of theroom_fc macro class. The room thermal characteristics and
control settings are defined asinputs. This alone would be sufficient to completely specify the problem since
the necessary linkages are al internal to the room_fc macro class. However, if we did not put some L INK
statements in the problem file, SPARK would have no problem variables and hence nothing to report. We
therefore introduce L INK statements to get reports on the room air temperature, Ta, floor slab temperature,

T floor, cooling rate of the air stream, Q _flow, and the air stream capacity rate, mcp. Alternatively, you could
use the PROBE keyword (see Section 8.5).

The input data for this problem is shown in Table 6-2. Note that the supply air temperatureisinitially 13°C,
and israised to 17°C at 20 hours (72,000 seconds) after starting. The room_fc.inp file to specify thisis
constructed as shown below:

9 hA UA Tosa Tin Mcp T set_low T_set_high max_cap min_cap
0 60 30 38 13 1.e6 23 24 50 0
71964 60 30 38 13 1.e6 23 24 50 0
72000 60 30 38 17 1.e6 23 24 50 0

*

Inthefirst line the first item, 9, is the number of problem input variables. The next nineitemsin thisline are
the names of the input variables as defined in the INPUT statements in the problem specification file. The
data that follow give the times (in this case, seconds) and values for the inputs at discrete points throughout
the intended simulation period. Thefirst line, with atime value of O, givesthe initial conditions. We specify
Tinto be set at 13°C from time 0 to 19.99 hours (71,964 seconds), and 17°C from 20.0 hours (72,000
seconds) forward. Other values are constant throughout the simulation. SPARK will interpolate linearly
between the given time values to arrive at the value of all input variables at each solution point as the
simulation proceeds.® Thelast line has an asterisk, *, meaning that all values remain fixed from that point
forward.

It will be observed that the time unit in the above exampleis seconds. While there is a certain awkwardness
with this choice, it has the advantage of allowing the other problem variables to be expressed in true Sl units.
For example, had we chosen to use hours instead of seconds, the time values would be the (perhaps) more
pleasing sequence 0, 19.99, 20.00, but then we would have had to express input data such ashAin
J(hour*deg_C) instead of W/deg_C.

Another observation in this exampleis that some input values do not vary with time, and this leads to many
repeated valuesin the file. While there is nothing wrong with repeating the constant values as done here,
there are alternatives that you may want to consider. Perhaps the best way to deal with this situation iswith
multiple input files, as discussed in Section 7.6.2. Another way to deal with a constant input variable, not
necessarily recommended, is simply to omit it from the input file. This sometimes works because problem
input variables not listed in an input file will assumetheir INIT values, if available. INIT values are
specified in the PORT statement (Section 19.10) when SPARK classes are defined. |f the class does not
provide INIT values, or the provided values are not acceptable, you can also givean INIT value on alink
connected to the port. The disadvantage of doing it thisway is that the problem must be rebuilt whenever
INIT values are changed.

However provided, running the room fc problem with the datain Table 6-2 produces the results plotted in

2 Note that there must be some time difference between successive pointsto allow legitimate interpolation.
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Figure 6-5 and Figure 6-6.*

Table 6-2: Input for the Temperature-Controlled Room Example.

Variable Link Value Units
see Equation (6.8) See room_fc.pr

hA,., hA 60 W/deg_C
UA,, UA 30 W/deg_C
T Tosa 38 deg C
M. min_cap 0.0 W/deg_C
M max_cap 50 W/deg_C
T T set low 23 deg_C
T T _set_high 24 deg C

dt dt 360 S

M 100 Co. oo Mcp 1.0E6 J/deg_C
T,,(0-71964) Tin 13 deg_C
T,,(72000~...) Tin 17 deg_C
Tooo, (O) T floor 30 deg C

All inputs are constant except Tin, which starts at 13°C and isincreased to 17°C at 20 hours (72,000 s). The

first of these plots,

Figure 6-5, shows the controlled quantity, mcp, and we see that it remains at its maximum value for about six
hours. During this period the room air temperature, Figure 6-6, is being rapidly reduced. Once within the
range of proportional control, the supply capacity rate modulates, maintaining the room air temperature close
to the set point. The slab temperature gradually cools. At the twentieth hour, the scheduled change in supply
air temperature takes place, causing the supply capacity rate to increase to the maximum. However, this

maximum is insufficient so the air temperature rises above the set point.

%70 get these plots we opened the output file with Microsoft Excel. Alternatively, gnuplot could be used.
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Figure 6-5: Supply Air Capacity Rate.
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Figure 6-6: Room and Floor Slab Temperatures.

Theroom_fc.egs file, shown below, reveals how SPARK solves this problem. We see that thereisasingle
strongly connected component, with one break variable, Ta. Theinitial value of Ta istaken fromthe INIT
values found in the macro or underlying atomic classes, since it is not mentioned in the input file, and no
INIT valueisgiveninthe LINK statement in the problem file.
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The dynamic variable T_floor isinitialized at Initial Time with the INIT value given inthe LINK
statement in the problem file. After theinitial timeit is computed by the integrator object room™c using its
time-derivative T_floor_dot and the global time step dit.

These, along with the problem inputs, alow the indicated sequence of calculations. The component isiterated
to convergence at each time step.

Global variable(s) :
GLOBAL_TIME_STEP = dt

Known variable(s) :

max_cap INPUT
min_cap INPUT
T_set_high INPUT
T _set_low INPUT
Mcp INPUT
hA INPUT
UA INPUT
Tosa INPUT
Tin INPUT

Dynamic variable(s) :
T_Floor <- room c( T_Ffloor_dot, dt )

Component 0 :
Break variable(s) :

Ta PREDICT_FROM_LINK = Ta
Solution sequence :
mcp = room pc:propcont__response( Ta, T_set_low,
T_set_high, min_cap, max_cap )
Q_flow = room™flow:cond_q( Tin, Ta, mcp )
Q_wall = room walls:cond_q( Ta, Tosa, UA )
Q_fFloor = room net:diff__difference( Q_flow, Q_wall )
T_floor_dot = room rate:safprod__a or_b( Q _floor, Mcp )
T floor = room c:bfd__x( T_floor_dot, dt )
[BREAK] Ta = room floor:cond_T1( Q_floor, T_floor, hA )
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7 How SPARK ASSIGNS VALUES TO VARIABLES

In abroad sense, one would think that variable values in a problem should either be user-specified or
calculated in the process of solving the problem. While thisisindeed true, there are issues having to do with
SPARK value assignments that sometimes need careful attention. Thisis best discussed in terms of four
different methods of value assignment that can take place in SPARK: initialization, prediction, updating, and
solution.

7.1 INITIALIZATION

Initialization refersto providing values that are needed at the beginning of the simulation. Using theseinitial
values, SPARK then computes values for all link variables at the initial time of the simulation. While all
SPARK variables can be initialized, not all need to beinitialized.

7.1.1 What Must be Initialized

There are two cases where variables must be given initial values, regardless of the numerical methods to be
used:

Dynamic variables. These arethelink variables that appear in differential equations, i.e., those attached
to an x port of integrators. This initialization requirement arises directly from the underlying
mathematical theory, namely that you need an initial condition, in addition to the differential equation, in
order to have awell-posed problem. This requirement isindependent of the choice of integration method
or other numerical considerations.

Previous-Value Variables. Previous-Value Variables (see Section 8.3) arein a special category in
SPARK. Most SPARK non-input link variables get valuesin the process of solving the problem equations
at thetime in question. Previous-Value Variables, on the other hand, get their values from calculations
done at the previoustime step.

As described in Section 19.14, the syntax INPUT_FROM_L INK=FfromL i nk defines the link from
which the variable in question getsitsvalue. For thisto work properly at InitialTime, obviously the
variable referred to as FromL i nk must be initialized at the time one time step before the problem
initial time. This can be done either in an input file, or using the INIT in the LINK statement defining
fromLink. Note, however, that Previous-Value Variables that arise in the definition of integrators need
not be initialized because they are not used at InitialTime. (See Section 8.3)

7.1.2 What Might Need Initialization

Additionally, certain numerical integration methods may need to be initialized not only at InitialTime,
but also at one or more earlier time steps. While this can be done in SPARK, as a practical matter it is difficult
or impossible to know such values.® Ideally you should attempt to provide past values as needed by
multistep methods, if used. That said, some analysts may be willing to accept some degree of inaccuracy in
early time steps, in which case this advice can be disregarded.

BDF-like multistep schemes require past values for the dynamic variables, as many as the order of the
method. For example, the bd4 class requires values at one, two, three, and four time steps before the initial
time of the ssimulation. Similarly, Adams-like multistep schemes, e.g., the classes bfd and abm4 require past
values for the derivatives of the dynamic variables, again as many as the order of the method.

% For this reason, SPARK will avoid use of such methods at the beginning of the simulation and until necessary histories of past values have been
solved for with single step methods.
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Finaly, it should be noted that the variables that SPARK selects as break variables may need initialization.
The reason for thisis that unless the LINK statement for break variable has the keyword
PREDICT_FROM_L INK=FfromLink (see below) the iteration process at each new time begins at the
previous value of the break variable. Without proper initialization, the previousvalue at InitialTime
would likely become the built-in SPARK default value, 0.01. To override use of the default value, you must
initialize the break variable at InitialTime.

7.1.3 How to Specify Initialization

Y ou can specify initial valuesin two ways. First, INIT=value can be placed in the LINK statement for the
variable, or in any equivalent link to a PORT statement in macro objects (see Sections 8.1and 19.14). An
alternative way to initialize is by means of input files. During the initialization phase of the smulation, al
variables can haveinitial and past values assigned through reading from input files. Thisis done by providing
the required variables and derivatives with valuesat InitialTime, and earlier time stepsif needed, using
negative timesif necessary.

Initialization of Previous-Value Variablesis a specia situation. Since avariable of thiskind getsitsvalue
from the previous value of another variable, the proper way to provideits Initial Time valueisto specify
the value of the corresponding fromL ink at onetime step before Initial Time, indicated by initial time
minus the time step, using time stamp prior to InitialTime inaninput file. Note that an attempt to use
the INIT keyword in a L INK statement in which the INPUT_FROM_ L INK keyword is used resultsin a
warning. Moreover, values given for Previous-Vaue Variables per sein input fileswill be ignored.

Thus we see that SPARK initial values can come from the default values, INI T=value, or input files.
Either of the latter two will override the first. If avariable has both INIT=value and occursin an input
file, thefileinput overridesthe INIT value.

7.1.4 Initial time solution of a dynamic problem

To ensure starting the integration process from a consistent set of initial values at the first dynamic time step
after theinitial time, SPARK computes the initial time solution of a dynamic problem by solving a surrogate
static problem (derived from the dynamic problem description), whereby al integrator objects return the
initial value of the dynamic variable instead of evaluating the corresponding integration formula (See Section
6.4.2). Thus, the dynamic variableswill be set to their desired initial values and the algebraic variables will
be solved to produce a consistent solution at the initial time.

The following steps are carried out by theinitial value loader in SPARK prior to solving the problem at initial
time:

1. Loadthe INIT property valuesfor al problem variables from the hard-coded values specified in the
*.pr, *.cm and *.cc files. The default INIT value, if none has been specified explicitly in the problem
specification, is 0.01.

2. Readinthe INIT property values from input files specified for the initial time stamp. Note that only
the INIT properties of the variables appearing in the input files are updated. The other variables
keep their INIT values as specified in the *.pr, *.cm and *.cc files.

3. Propagatethe INIT valuesto the current values of all problem variables.

4. Read inthe current values from input files for all problem variables specified for the initial time
stamp, thus overwriting the previously loaded INIT values. This ensures that values specified in a
snapshot file used to restart the simulation are loaded correctly, overriding prior INIT specifications.

5. Propagate theinitial valuesto the INPUT_FROM_LINK variables, if any.
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6. Finally, write the current values back to the INIT property for each problem variable, so that
subsequent firing of the method TArgument: :GetlInit() returnsthe correct initia value
resulting from the previous steps. This last step ensures proper initialization at Initial Time of
the dynamic variables through the usage of the TArgument: :GetInit() method in the integrator
classes (See Section 6.4).

7.2 PREDICTION

In SPARK prediction refersto providing values for break variables at the beginning of each time step, i.e.
prior to solving the simultaneous algebraic problem by iteration.

7.2.1 Where Prediction is Needed
Asarule, only break variables need predicted values.

7.2.2 How Prediction is Specified

By default, predicted values for break variables come from the final value for the same variable found at the
previoustime step. In many cases thiswill work well, so you don’'t have to take any special steps. If your
problem encounters solution difficulties, you may want to provide better prediction using either the
PREDICT_FROM_LINK feature for links, or the PREDICT feature in the class definition.

If PREDICT_FROM_LINK=fromLink appearsinthe LINK statement for a break variable, the starting
value for the iterative solution at the new time will be the value of fromLink. This mechanismis used
when you know that the value of fromL ink provides a more reliable estimate for the break variable than its
previous value. Note that since the FromL ink can be any link, this mechanism allows you to devise
predictor using variables from anywhere in your problem. Thereforeit isavery genera and powerful
mechanism.

Another mechanism for prediction is provided by the syntax:
PREDICT = predictor_fun(portl, port2, port3, ...)

inthe FUNCTIONS segment of a SPARK class definition. This methods provides a predictor at the class
level, as opposed to the PREDICT_FROM_L INK keyword which provides prediction at the link level.
Class-leve prediction is primarily used to implement predictor-corrector integration schemes (e.g., abm4.cc),
where the predictor scheme is specified following the PREDICT keyword. Another possible usage of
class-level prediction isto provide a predictor function for a nonlinear atomic class using a linearized form of
the nonlinear equation. This approach has been successfully applied with the airflow-pressure power law
relation in the zonal model context. Unlike link-level predictors, class-level predictors can involve only the
variables connected to the ports of the classin question.

If avariable has both link and class level prediction (an unlikely situation), the class level prediction will
override thelink level prediction.
7.3  UPDATING

The concept of Previous-Vaue Variables (see Section 8.3), requires the concept of updating as a means of
assignment of values to such variables.

7.3.1 What Needs to Be Updated
Updating refers only to providing values for Previous-Value Variables at the beginning of each time step.
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7.3.2 How Updating is Specified

To implement this concept, every Previous-Vaue Variable hasin its defining LINK statement:
INPUT _FROM_LINK = fromLink

Previous-Vaue Variables are viewed as receiving values by updating from the specified links. At the
beginning of every time step, before solving the problem equations, the saved previous value of fromLink
is assigned to the variable named in the L INK statement.

7.4  SOLUTION
Solution is the prevalent method whereby values are assigned to variablesin a SPARK problem.

7.4.1 What Needs to Be Solved For

Normally, values for SPARK variables are determined by the solution of the system equations at each time
point in the solution interval. The exceptionsto this are, input variables, previous-value variables, and
dynamic variablesat InitialTime.

7.4.2 How Solution Is Specified

As noted earlier, keywords in the associated L INK statements often determine the role of the variable. Inputs
variables are identified by the keyword INPUT either replacing the L INK keyword, or occurring elsewhere in
the LINK statement. Previous-Value Variables are defined by the keyword INPUT_FROM_L INK in the
LINK statement. Dynamic variables, on the other hand, have no special identifying keyword. Variables
become dynamic merely by being connected to an x port of an integrator. The absence of these specia
keywordsin a L INK statement indicates that the associated variable isto be solved for.

Break variables are normal SPARK variables, other than inputs or Previous-Value Variables, that happen to be
selected by SPARK for iteration. Although they are assigned predicted values at the beginning of iteration at
each time step, their final values after convergence at each time step are “solution” values, i.e., they satisfy the
system equations. Note that the break variables are determined automatically by SPARK.

7.5 PROPAGATION

As discussed previously, SPARK problem variables can have a default value assigned through the use of
keywordsin the PORT statement. This default value will replace the built-in default value (0.01) for the port.
However, when SPARK atomic classes are used to build macro classes, and when both become parts of
SPARK problem files, a question arises about precedence among these values as set at different levels.

For example, suppose we define atomic class acl which has aport called T with a default value of 20. Now
suppose we define a macro class mcl which uses acl, and this class also has aport called T with a default
value of 10 which islinked to the T port of acl. The question is, which default value will SPARK use for
variables linked to the T port of the class mc1 when it is used in a problem or another macro class? The same
guestion can be posed for the INIT, ATOL, MIN, and MAX values assigned through the PORT or L INK
statements.

These questions are answered by propagation rules built into the SPARK parser. Thefirst rule isthat the
higher level takes precedence. This meansthat aDEFAULT, INIT, ATOL, MIN, and MAX values given at
any level override those given in lower level portsto which there is a connecting path. That is, values will
automatically propagate downward as needed. Thus if mcl were to be used in a problem file (or another
macro class), any variable linked to its T port would have a default value of 10.
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Let us consider another facet of this problem. Suppose a default value is not given for the T port of the mcl
class discussed above. Will avariable linked to the T port of the mc1 class have a default value (other than
the built-in value of 0.01) when it is used in a problem or another macro class? Therule given above
addresses downward propagation, but this question is one of upward flow of information, from aport in alow
level classto aport linked to it in the higher level class or problem. To deal with this situation, SPARK
applies a second propagation rule, which isthat DEFAULT, INIT, ATOL, MIN, and MAX values are
propagated upward through connected ports whenever the higher level ports have no corresponding values.

Together, these propagation rules produce behavior that most users will find natural. However, ambiguity can
arise when amacro class port is linked to two or more ports of constituent classes. For example, suppose mcl
also uses another atomic class, ac2, which also hasa PORT called T, but with a default value of 15. Will the
value propagated upward (in the absence of default specification of the T port in mcl) be 20 or 15? Thereis
no way for SPARK to resolve such an ambiguity. Consequently, the propagated value will be determined by
the order in which the parser encounters the linkages in mcl. To avoid such ambiguity, you should assign
values at the higher levels when building complex macro classes.

7.6 INPUT VALUES FROM FILES

Most SPARK problems require data beyond that which is specified in the problem specification file. In
particular, as we saw in the examples of Section 2, variables designated as INPUT in the problem
specification file need run time values. Moreover, certain other kinds of data are needed to specify exactly
how the problem is to be solved numericaly, e.g., initial values for dynamic variables and prediction values
for iteration variables. All such data can be provided in SPARK input files. Although usualy bearing the .inp
extension, files of any extension can be used as SPARK input files.

7.6.1 Categorization of Different Types of Input

Although in simple examples we have dealt with in this manual so far we have used a single input file for a
SPARK problem, in practice it is often better to segregate the different kinds of input into separate files. One
useful categorization of different types of input is:

Constant data: These are usually physical characteristics of the system that do not change with time.
For example, surface areas, equipment capacities, and any other physical problem data that are assumed
to be constant, such as heat transfer coefficients.

Time-varying data: Thisincludes any problem input data that varies with time during the simulation
interval. The most common examplein HVAC problems is weather data, such as ambient temperature
and humidity. However, system control information, such as thermostatic set points, that are scheduled to
change at particular times are also time-varying inputs.

Initial Conditions. If the problem includes differential equations, the initial values of all dynamic
variables must be provided. Although these can be specified in the problem specification file with the
INIT keyword, it isusually better practice to specify them in an input file so they can be changed in
subseguent runs without rebuilding the problem.

Numerical support data: Numerical techniques used in SPARK sometimes need, or at least benefit
from, additional user supplied data. This category often includes initial predicted values for variables that
are solved for by iteration, i.e., break variables. Also, if the chosen numerical integration methods for
differential equations in the problem require previous values of the dynamic variables and/or their
derivatives, they belong in this category.

In awell organized problem, each of these categories should have a separate input file. Moreover, itis
sometimes wise to have multiple files within these categories. For example, you could have a separate
constant data file for each subsystem in a complex model. Another situation calling for multiple input files
within a category is when time-varying data has different temporal characteristics. For example, if we wanted
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to have outside temperature Tosa varying hourly in the room_fc problem example it would be far easier to
place thisin adifferent file than the one with Tin which changes only once.

7.6.2 Example of Multiple Input Files

We can demonstrate these ideas by revisiting the room_fc problem example from Section 6.5 For example, we
could create four separate input files using the above categories. The constant datafile, appropriately called
room_fcDesignParameters.inp, would contain:

8 hA UA Tosa Mcp T set low T set high max_cap min_cap

O 60 30 38 l.e6 23 24 50 0
while the time-varying data file, that we might call room_fcTimeVaryingParameters.inp, would contain:

1 Tin

0 13

71964 13

72000 17

*

Since the controlled room problem includes a differential equation, it is necessary to specify theinitial value
of the dynamic variable, T_floor. Rather than relying upon the INIT keyword to set the initial value for this
dynamic variable we can specify it in an initial conditionsinput file. Thisfile could be called
room_fclInitialConditions.inp and would contain:

1 T _floor
0 30
One advantage of this approach isthat it is not necessary to rebuild the problem when initial values change.

Finally, we should create an input file for whatever information is needed to support the numerical solution
process, provided such information is available. Oneissuein thisregardisinitial predictionsfor break
variables, as explained in Section 7.2. Asexplained there, at the very beginning of the solution an initial
predictor is needed because otherwise there would be no “previous time value” to use. If areasonable
estimate for abreak variable is not readily available, SPARK can sometimes find a solution beginning with the
default initial value, 0.01. However, if you can estimate more appropriate initial predictions the iteration
process will have a better chance of quickly finding the correct solution at the start of the problem. Note that
while better accuracy of these initial predictors will improve the chances for solution, usually great accuracy
iS not necessary.

In the case of the controlled room exampl e the equation file reveals that SPARK chooses Ta as break
variables. For the Ta variable, we can easily provide an estimate more accurate than the default value. For
example, avalue half way between theinitial T_floor value and the supply air temperature value should be a
reasonable for Ta. Thusanumerical support input file called room_fcNumericalSupport.inp could therefore be
created as:

1 Ta
0 21.5

A problem run-control file (see Section 18) must list the names and locations of al input files. For this
example, we have room_fc.run as:

fnitialTime (0.0 O)
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FinalTime ( 108000.0 O)

InitialTimeStep ( 180 ()

FirstReport C 0.0 O)

ReportCycle ( 360.0 O)

InputFiles ( room_fcDesignParameters.inp

room_fcTimeVaryingParameters.inp ()
room_fcinitialConditions.inp
room_fcNumericalSupport.inp O

OutputFile ( room_fc.out ()
)
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8 ADVANCED LANGUAGE TOPICS

8.1 MACRO LINKS

When systems with fluid flow are modeled, the component models are often connected with a common set of
links. For example, HVAC system air components such as fans, heating and cooling coils, and mixing boxes
are connected by links representing air enthalpy (or temperature), humidity, and mass flow rate.

In SPARK, aset of ordinary links such as these can be grouped together and used as a macr o link, connecting
macr o ports of classes, thereby simplifying specification of such models.®

As an example of macro links and ports, consider amoist air mixer in which we define the interface to have
three macro ports, representing two inlet flow streams and one outlet flow stream:

PORT AIrEntl “Inlet air stream 1" [airflow]

, -M "air mass fFlow" [kg_dryAir/s]
, =W "hum. ratio” [kg_water/kg_dryAir]
, -h "enthalpy' NOERR [J/kg_dryAir]

PORT AirEnt2 "Inlet air stream 2" [airflow]
, -M "“air mass flow" [kg_dryAir/s]
, =W "hum. ratio” [kg_water/kg_dryAir]
, -h “enthalpy”™ NOERR [J/7kg_dryAir]

PORT AirLvg ‘'Leaving air stream'” [airflow]
>, -M "air mass flow" [kg_dryAir/s]
, =W “hum. ratio™ [ kg water/kg_dryAir]
, -h "enthalpy" NOERR [J/kg_dryAir]

In this example, each macro port has three properties or subports, namely mass flow rate, humidity ratio, and
enthalpy. Although the individual subports of one of these ports have separate names, description strings, and
physical units, the macro port itself also has a name, description, and units string.?’

When an abject of this classis instantiated you can connect similar macro ports (i.e., those with like units and
similar internal structure) in the same manner as you would connect ordinary ports. Thusif the class with the
above interface were called mixer M P we could write (in some macro class or problem we were creating):

DECLARE mixerMP ml, m2;
L INK AirStreaml ml_AirLvg, m2_AirEntl;

Thiswould connect the humidity ratio, mass flow rate, and enthalpy of the air stream leaving m1 with the first
inlet of m2.

Developing classes that use macro ports requires great care, sinceif it is not done correctly the objects will
not connect properly. The principal requirement is that if the macro ports of two objects are to connect
properly, the ports must be similarly defined in both objects. By “similarly defined,” we mean that the unit
strings for both macro ports must be identical, and that there must be at least one common port name between
the two ports. Thisisno problem in the above example, since m1 and m2 are of the same class, and the
leaving air port is defined exactly the same as the two entering ports.

% Technically, amacro link does not exist in its own right asa SPARK construct. It isjust aterm for referring to alink connected to a macro port.

2z Although, rather than physical units, the macro port “units’” are merely a unigque name, selected by the user.
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However, errors can easily occur if the two ports being connected belong to objects of differing class, perhaps
developed by different people. For example, suppose a fan class were to be defined with the entering air port
defined as:

PORT AirEnt "Inlet air stream" [airflow]
, -massFlow 'air mass flow" [kg_dryAir/s]
, =W "hum. ratio” [kg_water/kg_dryAir]
, -h “enthalpy”™ NOERR [J/7kg_dryAir]

Since the units string , ai rflow, isthe same, SPARK would allow the following connection to be attempted:

DECLARE mixerMP ml;
DECLARE mfan f1;
L INK InFlow m1_AirLvg, F1_AirEnt;

However, since the flow subport is called m in the mixer M P class and massFlow in the mfan class, only the
w and h subports would be successfully connected. Thisis because when the SPARK parser expands the
macro link/port, it attempts to match subports of like names. If there are no subports in the second object that
match any of the subports of the first, the parser rejects the L INK statement as erroneous. But if at least one
of the subports at one end matches a subport at the other end, SPARK assumes you know what you are doing
and acceptsthelink. Thisisuseful since you may indeed want to connect some but not all subports; for
example, you may wish to connect one component with adry-air macro port (i.e., no humidity ratio) with
another component that was designed for moist air calculations.?®

There are also situations where you need to qualify an individual subport in amacro link with one or more
keywords. For example, suppose the first inlet port of mlin our first example comes from problem input
data, and the mass flow rateisto be reported. The syntax to accomplish thisis shown below:

DECLARE mixerMP ml, m2;

L INK AirStreaml ml.AirLvg, m2_AilrEntl;
INPUT massFlowl ml.AirEntl.m REPORT;
INPUT hFlowl ml.AirEntl.h;

INPUT wFlowl ml.AirEntl.w;

Asisseen in this example, this syntax is much the same as for ordinary links or inputs; the only differenceis
that we qualify the port name, e.g., m, with the subport name as a prefix. Thedot (.) is used as a separator.

While the above syntax isvalid and easy to interpret, it isnot concise. A more concise syntax that expresses
the same connectionsis:

DECLARE mixerMP ml, m2;
LINK AirStreaml ml1_AirEntl (.h) INPUT (.w) INPUT (.m) {INPUT REPORT};
LINK AirStream2 ml.AirLvg, m2_AirEntl;

Thefirst LINK statement defines a macro link called AirStreaml that is connected to the Air Ent1 macro port
of the ml1 object. We see that each subport is referenced with the notation (.portName), and that following
such reference there is a keyword such as INPUT that applies only to that subport. If more than one keyword
is needed, they are enclosed in braces, e.g., { INPUT REPORT}. Thuswe seethat all three subports are to
come from input, and the m subport is to be reported.

The need to make direct subport connections also arises in defining classes that have subports. For example,
the mixer M P class might be (partially) implemented using the concise syntax as:

DECLARE enthalpy el, e2, e3;
DECLARE sum S;
DECLARE balance hb, wb;

2 Thisis somewhat like plugging a 2-wire appliance cord into a 3-wire wall outlet.
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LINK AIrEntl .ailrEntl,

(-TDb) e1.TDb

(-w) {el.w, wb.ql}

(-h) {el.h, hb.ql}

(.m) {s-a, hb.ml, wb.ml};
LINK AirEnt2 _.airEnt2,

(-TDb) e2.TDb

-w) {e2.w, wb.g2}

(-h) {e2.h, hb.qg2}

(-m) {s-b, hb.m2, wb.m2};
LINK AirLvg .airlLvg,

(-TDb) e3.TDb

(-w) {e3.w, wb.q}

(-h) {e3.h, hb.q}
(-.m) {s.c, hb.m, wb.m};

Here we see that each subport of the three macro portsis linked to the appropriate ports of the constituent
enthalpy and balance objects. The normal syntax could also be used here, but this would require four times as
many statements.”

8.2  INTERNAL SPARK NAMES FOR VARIABLES (FuLL NAMES OF LINKS OR
PORTS)

In our early examples the name of a problem variable was synonymous with the user-defined name assigned
inaLINK or INPUT statement. For example, in:

DECLARE room r;
LINK Ta r.Ta;

Taisthelink name and it obviously represents the variable placed at the Ta port of the r abject, probably a
room air temperature. However, due to the hierarchical nature of SPARK programming, there are places
where internal names used by SPARK might not be quite so obvious. This matter can be important when you
are reading certain SPARK files, such as the .egs file for complex problems, and when using the PROBE
keyword (see Section 8.5).

To understand SPARK naming conventions you must understand that at solution time the solver works
entirely at the equation level. This means that when SPARK parses a problem file, all macro objects and
macro links must be expanded into atomic objects and links. When this happens, link names in higher level
objects are propagated downward, as might be expected, overriding names that may have been assigned in the
class definition of lower level object. For example, suppose that the room class used in the above link
statement is (partially) defined as:

DECLARE cond flow; /7* Air mass flow "conductor" 274
DECLARE cond walls;/* Walls conductance */
DECLARE cond floor;/* Floor to air conductor */
DECLARE diffF net; /* Diff between Q in and out */
DECLARE propcont pc; /* Proportional controller */
LINK Tair .Ta, flow.T2, walls.T1l, floor.T1l, pc.signal [deg C];

From this we can see that the problem level link named Ta is known as Tair inside the room class, and is
connected to the Ta port of that class, and to ports of various names of the constituent classes of room. By
the noted propagation rule, al of these lower level names are overridden by the problem level name Ta.

2 The mixerMP class s one of the many classesin the HVAC Tool Kit implemented in the macro port form.
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Asaresult of this downward propagation of link names, all problem level variables are readily identifiable
when reported, for example, in the .egs file.

However, often there are links in lower level objects that do not appear at the problem level. This occurs
whenever a macro class developer elects not to connect an internal link to a port, or if the user of the class
elects not to connect some unessential port (i.e., one with the NOERR keyword. See Section 19.10). Asan
example, the mixer classinthe HVAC Toolkit classlibrary is defined as:

PORT m "Combined flow rate, e.g., total mass flow" ;
PORT g '"Combined transported quantity, e.g., enthalpy” ;
PORT ml "First inlet flow rate" ;

PORT g1 "First inlet transported quantity" ;

PORT m2 "Second inlet flow rate" ;

PORT (@2 "Second inlet transported quantity" ;

DECLARE safprod spl, sp2, sp;

DECLARE sum S;

LINK -m, sp-a ;

L INK -q, sp-b ;

LINK C sp.c, sS.c ;

LINK -ml, spl.a ;

LINK -ql, spl.b ;

L INK a spl.c, s-a ;

LINK .m2, sp2.a
LINK -q2, sp2.b ;
LINK b sp2.c, s.b ;

Note that the links named a, b, and ¢ are not connected to ports. Consequently, they cannot be accessed from
higher level objects, and therefore cannot be problem level variables.* Nonetheless, these links represent
variables whose values must be calculated by the SPARK solver at run time, and they will be assigned names
by the SPARK parser. Under normal circumstances, you would not need to know these names; after all, they
are merely intermediate variables needed to solve the mixing equations. However, if your problem does not
solve properly you may have to look in the .egs file, in which case you may want to know the names SPARK
assignsto such links. Also, if you need to use the PROBE keyword, you will need to know how to refer to
lower level links and ports (see Section 8.5).

Link names that do not resolve to problem-level links are generated by concatenation of object, link, and port
names beginning at the highest level at which the link appears and going down to the port of an atomic class.
The special prefix symbols (single quote( ™), tilde (~), and dot (. )) are used in the concatenation to ensure
unambiguous names. Asan example, if we declare aroom in aproblem file as:

DECLARE room r;

and the room declares amixer:
DECLARE mixer mixl1;

then the c link in the mixer would be referred to as:
r mixl~c
This might be read “the c link in the mix1 object in ther object.” The single quote (7) prefixes an abject in a

hierarchy of objects, whilethetilde (~) prefixeslinks. In amore complex situation, objects may be nested
deeper, for example,

objl obj2 obj3~linkname

% Unlessthe probe statement is used (Section 3.8).
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Also, as mentioned in Section 5.2, links within a macro class are often unnamed. In this case, SPARK will use
agenerated string of the form “NONAMEN” where n isan integer. Thusyou might see:

objl obj2  obj3~NONAME7
in SPARK equation files.

An additional complication isintroduced when macro links are used (see Section 8.1). Since macro links may
have several subports, the link name must be qualified with the name of the particular port of interest. For
example,

objl obj2 obj3~linkname.pl

refersto the p1 port of link linkname in obj3 that is part of obj2 that is part of obj1. And if the p1 port itself
was in fact amacro port, we could go on with:

objl obj2 obj3~linkname.pl.a

to refer to the a subport of the p1 port of the link linkname in obj3 which is part of obj2 which is part of obj1.
Fortunately, since you are primarily concerned with higher level problem variables, you don't often have to
cope with this complexity.

8.3 PREVIOUS-VALUE VARIABLES, OR UPDATING VARIABLES FROM LINKS

Asdiscussed in Section 7.4, most SPARK variables are determined by solution of the problem equations at the
current simulation time. This means that each variable gets assigned a value that is calculated from an inverse
of one of the problem equations. There are situations, however, when avariable in a simulation must
represent the previous value of some other variable. Such a variable needs no equation sinceitsvalueis
determined merely by assignment of the value of some variable at the previous point intime. A variable of
this nature can be called a Previous-Value Variable.

Since SPARK variables are carried on links, Previous-Value Variables are viewed as receiving values by
inputting from specified links. Consequently, SPARK provides INPUT_FROM_L INK* as an optional
keyword in a LINK statement, taking the form:

LINK ITinkName <connections> INPUT_FROM_LINK = FromLinkName;

At the beginning of the time step, before solving the problem equations, the saved previous value of
FromLinkName isassigned to 1 inkName. Asdiscussed in Section 7.1 initializing a Previous-Value
Variable must come from the INIT= keyword in the FromL i nkName, not in the Previous-Vaue Variable
link itself. Indeed, it is an error to placethe INIT keyword in aLINK statement that contains the
INPUT_FROM_LINK keyword. Alternatively, theinitial value can come from .inp files as discussed in
Section 7.1.

As an example we shall revisit the Euler integration formula discussed in Section 6.4. For simplicity there we
implemented the Euler integration formula as a SPARK atomic class with a port xdot representing the time-
derivative of the dynamic variable, and the name of this port was used in the argument list of theeuler__ x
callback function, i.e.,

X = euler_ x(xdot, dt);

However, as explained in Section 6.4.4 this results in unnecessary iteration since the SPARK parser will not
know that, internal to the function, only the past value of xdot isused. We can usethe INPUT_FROM_L INK

% The keyword INPUT_FROM_LINK had been named UPDATE_FROM_LINK in previous version of SPARK up to 1.0.1 The name was changed to
INPUT_FROM _LINK to better reflect the behavior.
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keyword to correct this deficiency asfollows. First, we rename the atomic class as euler_formula.cc and the
callback functionaseuler_formula__x.

/* euler_formula.cc */
#1fdef spark_parser

PORT x; // Dynamic variable
PORT xdot; // Previous-value variable updated with INPUT_FROM_LINK
PORT dt; // Time increment

EQUATIONS {
X = x[1] + dt*xdot[1] ;
bad_inverses = xdot, dt ;

}

FUNCTIONS {
X = euler_formula_x( xdot, dt);
}

#endift // spark_parser
#include "spark.h

EVALUATE( euler_formula_ x )

{
ARGUMENT( O, xdot ) ;
ARGUMENT( 1, dt ) ;
TARGET( 0, x ) ;
double result;
if ( ACTIVE_PROBLEM->IsStaticStep() ) { // No integration
result = (
ACTIVE_PROBLEM->IslInitialTime() ?
x.Getlnit() // Initial time solution special case
k[l] // Past value for restart after initial time solution
)
else { // Perform the actual integration
result = x[1] + dt*xdot[1];
}
X = result ;
}

Note that we renamed this atomic class euler _formula in order to be able to define a new macro class called
euler which conceals the complexity of the INPUT_FROM_L INK considerations and preserves the
convenient interface used in the Section 6.2 examples. Hereisthe euler macro class:

/= euler.cm */

PORT x;

PORT xdot;

PORT dt;

DECLARE euler_formula e;

LINK DT .dt e.dt;

LINK X X e.x;

LINK XDOT .xdot;

LINK XDOT_p e.xdot INPUT_FROM LINK = XDOT;
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Internal to the macro class we create links for both the current and previous values of X. The previous-value
variable XDOT _p is updated from the current-time variable XDOT.

Note that alink name, not a port name, must follow the INPUT_FROM_ L INK keyword. Dueto this
requirement we define the links XDOT, connect it the port xdot, and use it as argument to the
INPUT_FROM_L INK keyword.

Finally, note that it is not necessary to initialize the previous-value variable in this example because, as a
consequence of the if-statement in the function definition, they are not used at Initial Time, but only at
the solution points after InitialTime.

There are uses for previous-value variables other than in integrators for solution of differential equations. For
example, simulation of discrete time controllers requires past values, both to calculate controller “integral
action” and to determine when to update the controller output. An additional usage is for introduction of an
artificial time delay in atroublesome iterative loop. By simply making some variable in the loop a previous-
value variable the need for iterative solution isremoved. If the time step is short, the error introduced may be
acceptable.

8.4 USAGE OF THE LI KE KEYWORD IN PORT STATEMENTS

PORT statement can have the L IKE keyword to copy the properties of another port, that was previously
defined. The subports are also copied. The usage of the L 1KE keyword has the form:

LIKE = anotherPortName

Note that any other input that is specified in the current port statement overrides the copied information. In
the example below the port statements using the L IKE keyword:

PORT AirEntl "Inlet air stream 1" [airflow]
.m "air mass flow" [kg_dryAir/s] MIN=0.1
, -W "hum. ratio" [kg_water/kg_dryAir]
, -h "enthalpy' NOERR [J/kg_dryAir] ;

PORT AirOutWithT ""Outlet air stream” [airflowWithT]
LIKE=AIrEnt
.T "air temp™ [deg C]
, -m MIN=3.4 ;

produce the same specifications for port AirOutWithT as:
PORT AirOutWithT "Outlet air stream' [airflowWithT]

-m "air mass flow" [kg_dryAir/s] MIN=3.4
, -W "hum. ratio” [ kg water/kg_dryAir]
, -h "enthalpy'" NOERR [J/kg_dryAir]
, -T "air temp" [deg_C] ;

Here, when defining the port Air OutWithT, the subports of the port AirEnt1 are copied, the MIN=0.1
attribute of the subport .m is changed to MIN=3 .4, and the new subport .T is added.

8.5 THE PROBE STATEMENT

As noted in the section 8.2, there are often SPARK links that are not visible at the next higher level due to not
having been elevated to a port of the classin which they are defined. Y et, sometimesit is convenient or
necessary to be able to gain access to such links from higher levels. For example, you may want to report the
c link internal to the mixer classin Section 8.2. While you could solve this problem by editing the mixer
class, i.e., adding a new port for c, thisisnot a good solution. First, making changesto widely used classesis
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hazardous; errors might be introduced, or you might cause unwanted behavior in other applications that use
it. Another reason to avoid this approach isthat if the needed accessis several levels up in ahierarchy, you
will have to edit every classin the hierarchy to elevate the needed link to whereit is needed. The PROBE
statement is provided to give an easier and better solution to such problems. It allows you to reach down into
lower level objects, either to report values or set DEFAULT, INIT, ATOL, MIN, or MAX values. You can aso
set MATCH_LEVEL and BREAK_LEVEL for the link.

The PROBE statement has the same general format as the L INK statement. However, you must use the full
SPARK-generated name for the low level link, as explained in Section 8.2. As an example, we will use
PROBE to set the INIT value and request reporting for the ¢ port of the mixer classin the room class
mentioned in Section 8.2:

PROBE mixer_c r mixl~c INIT=0.5 REPORT;

This statement would be put in the problem file in which the room r is declared. Here mixer_cisauser-
defined name for the probe. The expanded name of the wanted lower level link isr mix1~c. Withthe INIT
keyword we set the initial value, to be used if thislink was selected as a break variable for iterative solution,
to 0.5. Finally, the REPORT keyword causes the value of the c link in the mixer class to be reported along
with other requested report variables during solution. The probe name mixer_c will be used asthe label in the
requested reporting.

Asan aside, it isinteresting to note that the above statement could also be written as:
PROBE mixer_c r mixl sp.c INIT=0.5 REPORT;

or as
PROBE mixer_ ¢ r mixl s.c INIT=0.5 REPORT;

In these alternative forms, we set the probe to point at the ¢ ports of either the sp or s objects to which the ¢
link is connected. Since the values on the ports will be the same as the value on the link at run time, the same
values will be reported.

8.6 USAGE OF THE CLASSTYPE KEYWORD IN ATOMIC CLASSES

In SPARK, atomic classes are typed. An atomic class can be;
e anintegrator class,

e asinkclass, or

e adefault class.

The classtype is specified using the CLASSTYPE statement in the atomic class. If no CLASSTYPE
statement is specified, parser assumes that the class typeis DEFAULT.

CLASSTYPE [SINK | INTEGRATOR | DEFAULT];

Typing the atomic classes alows to provide special processing for these classes during the graph analysis
and/or the numerical solution phase at runtime.
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8.6.1 INTEGRATOR classes

INTEGRATOR classes implement an integrator object whereby a dynamic variable® connected to the x port is
integrated using its time-derivative variable connected to the xdot port and the global time step connected to
the port dt. A dynamic variable can only be connected to one INTEGRATOR object to ensure well-posedness
of the DAE™® system. Also, the names of the ports are fixed and cannot be changed for any INTEGRATOR
classor it will generate aparsing error.

Usually, an INTEGRATOR class also provides a specific behavior for the initial time solution that consistsin
solving a static problem to ensure a consistent initial calculation. Typicaly, the EVALUATE callback returns
theinitial condition for the dynamic variable instead of computing the solution of the integration scheme (See
Section 6.4).

Sinceal INTEGRATOR classes have the same port interface and define a unique inverse that is assigned to
the port x, they all can be represented with the same directed graph shown in Figure 8-1.

—» xdot

x:J'xdot-dt X ——»

—»{ dt

Figure 8-1: Directed graph representing an INTEGRATOR object.

8.6.2 SINK classes

A SINK class does not calculate any values. It acts as a sink node in the directed, computational graph from
which no edge leaves. It allows you to define classes that do not directly participate in the calculation process.
Therefore they are invoked at the very end of the solution sequence. Also, aSINK class can implement
neither the EVALUATE nor the PREDICT callbacks (see Section 9).

The FUNCTIONS {..} statement for asink class looks a bit different than for the other class types because
there areintrinsically no target ports and there can be only one inverse per class, called the sink inverse.
Furthermore, all the ports defined at the interface the atomic class must be listed as arguments of the callbacks
comprising the inverse of the SINK atomic class. If some ports do not appear in any argument lists of the
callback functions, then parser will generate an error. Finaly, the uniqueinverse of aSINK classis named
after the class name since we cannot use the name of the EVALUATE callback as with the other class types
(See Section 3.1.3).

This following code snippet shows the class definition of a SINK class that only defines the CONSTRUCT and
DESTRUCT callbacks.

CLASSTYPE SINK;
PORT x;

FUNCTIONS {

%2 Also called adifferential variable. The other problem variables are referred to as algebraic variables.
33 DAE stands for Differential-Algebraic Equation.
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CONSTRUCT
DESTRUCT

fn_construct( x )
fn_destruct( x )

}

This class definition results in the directed graph without outgoing edge shown in Figure 8-2. SINK objects
are treated as directed objects by the setupcpp program during the matching phase.

—» X sink

Figure 8-2: Directed graph representing a S INK object defining only the port x.

8.6.3 DEFAULT classes

Therole of the default classes isto calculate the values for the target ports defined with each inverse. In
particular, any atomic class from SPARK 1 falsinto this category as well as the classes defined in the HVAC
ToolKit library.

8.7 UsAGE oF THE RESIDUAL KEYWORD IN EVALUATE CALLBACKS

8.7.1 Motivation

For complex equations, some inverses may be difficult or impossible to obtain as functionsin explicit form.*
Or, it may be that special knowledge about the problem under investigation suggests that a particular inverse
should not be used, because, for example, it might lead to numerical difficulties such as:

e adivision by zero resulting in an infinite number, or
e aninvaid domain for amathematical function (e.g., square root of a negative number), or
e aninfinite partial derivative that would make the resulting Jacobian matrix badly conditioned.

Another situation whereit is not desired to express an inverse in explicit form occurs when the inverse acts as
awrapper around a third-party program that calculates residual equations. Such a program, typically alegacy

code, cannot easily be changed to return the values of the target ports. Instead you can embed it unchanged in
aresidual inverse. Note that it is also possible to define multi-valued inversesin residual form.

To deal with such situations, it is possible to specify inverses that do not return the values of the target ports
but instead return the residual values for the equations assigned to each target port. Such an inverseis said to
be expressed in residual form.

Clearly, this affects the way the EVALUATE callback defined for the residual inverse has to be implemented.
Also, defining aresidual inverse forcesitstarget ports to be break variables because they must also appear as
argument ports, therefore creating a de-facto algebraic loop in the resulting computational graph generated by
the setupcpp program.

3 Thisis achieved by symbolically rearranging the terms in the equation in order to produce an functional form that solves for the target variable, i.e.
the target variables appear on the left-hand sign of the = sign. The terms defined on the right-hand side of the = sign then correspond to the function in
explicit form for this target variable.
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8.7.2 Implications for the Graph-Theoretic Analysis

For the graph-theoretic processing, aresidual inverse is defined with adefault match level of 4, as opposed to
5 for the other inverses in explicit form. This makesit less likely for the inversesin residual form to be chosen
during the matching process. The rationale behind this design decision is that usually residual inverses are
numerically less efficient to solve than their counterpart in explicit form because they tend to increase the
resulting number of break variables.

Therefore, setupcpp favors using inversesin explicit form to inversesin residua form whenever possible. It is
of course possible to overload this default match level in any L INK statement connected to the port assigned
to the residual inverse (See Section 12.2).

8.7.3 Mathematical Example

As an example of aresidual inverse we use the square_robust.cc atomic classthat is part of the global classes
found in the globalclass subdirectory.

/> +++
Identification: Square root of a value using a residual form to avoid
numerical problems due to badly-conditionned jacobian matrix
for small values of the square port.
———*/
#ifdef SPARK_PARSER

PORT root “square™0.5" ;
PORT square 'root"2" MIN = O ;

EQUATIONS {
square = root * root ;

}

FUNCTIONS {
root = RESIDUAL square_robust root( root, square ) ;
square = square_robust__square( root ) ;

}

#endif /* SPARK_PARSER */
#include "'spark.h"

// Residual form that is numerically more stable than the direct
// inverse (see square_root() in square.cc) for values of
// the port square close to zero.

// Also, the sign of the port square depends on the sign
// of square in the following way :

// sign(root) = sign(square)
// Make sure that this convention is respected.
EVALUATE( square_robust__root )

{
ARGDEF(0, root);

ARGDEF(1, square);
double residual = SPARK::sign(root)*pow(root, 2.0) - square;

RETURN( residual );
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// Same direct inverse as square_square() in square.cc
EVALUATE( square_robust__square )

ARGDEF(0, root) ;
double square ;

square = SPARK::sign(root) * root * root;

RETURN( square );
}

The square_robust class calculates the square root of the value of the port squar e from the value of the port
root. When the square value is negative the class models the symmetric function for the square root of the
absolute value. Figure 8-3 shows the graphical representation of the equation modeled by the class.

square
w
L

1 root 2

Figure 8-3: Graphical representation of the equation modeled by the square_robust class.

This approach makes the resulting function valid over the entire domain of the real numbers, and not just the
positive real numbers. It also prevents the discontinuity at zero for the root inverse that would result from
piecing together two square root functions, one for the positive domain and its reverse function for the
negative domain. A typical application of the square_robust class would be to implement the power law
equation that calculates the airflow as a function of the pressure difference across an opening.

The mathematical relation modeled by thisclassis:

root = \/|square|, if square>0

(8.1)
root =—,/|square|, if square<0
Theinverse for the port squareis expressed in explicit form by:
square=root-root, if root >0
. (8.2
square=—root - root, if root <0
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Thisisaclear case where using aresidual inverse to calculate the sgquare root is more efficient because it
allowsto express the inverse equation in a numerically more robust functional form. The inverse for the port
root isexpressed in residual form by:

0=sign(root)-(root - root ) — square (8.3)

The residual form enforces the exact same mathematical relation between the variables square and root as
expressed in Equation (8.1) when it is transformed with the root square operator. It is a more robust
expression because the partial derivative with respect to square no longer tends to infinity when the value of
square approaches zero. The resulting numerical behavior is better suited for solution with the Newton-
Raphson method, which is typically the way strongly-connected components are solved in SPARK. Of course,
this matters only if the inverse for the port root is defined as part of a strongly-connected component and if
the variable connected to the port squar e is selected as a break variable.

To compare the partial derivatives for each functional form, we first have to express the Equation (8.1) in
residual form, as solved in the Newton-Raphson iteration:

|square| —root, if square>0
F, (root, square) = (8.4)

—/|square| - root, if square<0

Then the partial derivative for Equation (8.4) with respect to the variable square is:

1 __oroot if square> 0
oF, 2,|square|  dsquare’ -
_ (8.5)
osguare -1 oroot if square<0

2\/|square| - osgquare

When the variable square tends to zero, the partial derivative for F, will tend to infinity as observed in
Equation (8.5). This compares to the partial derivative obtained for the functional form F, of Equation (8.3):

F, (root, square) = sign(root) - (root - root ) — square

8.6
i:ggn(root).ﬂ.z.root_l (8.6)
osguare osquare

Clearly, the partial derivative for F, isnumerically better as thereis no longer a problematic division by zero
when the variable square is equal to zero.

8.7.4 Class Definition

A residual inverse isdefined in the FUNCTIONS {..} block by using the RESIDUAL keyword after the
equal sign introducing the EVALUATE callback function.

FUNCTIONS {
root = RESIDUAL square_robust_root( root, square )
square = square_robust_square( root ) ;

}

The square_robust class defines two inverses, one for each port. For each inverse only the EVALUATE
callback function is specified.
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e Theinverse assigned to the port root is defined as aresidual inverse by adding the RES 1DUAL
keyword in front of the name of the EVALUATE callback square_robust__ root.

e Theinverse assigned to the port squareis by default an inverse in explicit form since no keyword is
specified in front of the name of the EVALUATE callback square_robust___square.

Note that the target port r oot appears also as an argument port in the EVALUATE callback
square_robust___root asrequired by any inverse expressed in residual form. If you omit to declare the
target port(s) also as argument port(s) of the EVALUATE callback for aresidual inverse, it will generate a
parsing error.

8.7.5 Inverse Function Definition

The EVALUATE callback square_robust__root implements the residual inverse for the target port r oot
by calculating the residual value using the Equation (8.3). Finally, the residual value is returned using the
preprocessor macro RETURN. Here the returned value must be the residual value for the EVALUATE
callback. Thisisto contrast with an EVALUATE callback expressed in explicit form, whereby the result value
of the explicit functional form is returned (See Section 3.2.5).

EVALUATE( square_robust__ root )

{
ARGDEF(0, root);

ARGDEF(1, square);
double residual = SPARK::sign(root)*pow(root, 2.0) - square;

RETURN( residual );
}

8.8 USAGE OF THE DEFAULT RESIDUAL INVERSE IN THE FUNCT I0ONS STATEMENT

A default residual inverse can be specified at the class level using the DEFAULT _RESIDUAL keyword before
the=signinthe FUNCTIONS {..} block, in place of thelist of target ports. A default residual inverse must
be asingle-valued inverse that returns the value of the residual equation modeled by the class. This method is
equivalent to populating the atomic class with the same residual inverse for these ports with no inverse yet.

By defining a default inverse for the ports for which no inverseis explicitly specified, the default residual
inverse mechanism provides the matching algorithm in setupcpp with aternatives in case no complete
matching can be obtained with the normal inverses (See Section 12.2).

The following rules apply to default residual inverses.

o A default residual inverseis not assigned to any target portsin the FUNCTIONS {..} statement of
the atomic class.

e Theargument list of the EVALUATE callback must mention every single port defined in the classto
ensure correct variable dependency during the graph analysis.

e A default residual inverse cannot define a PREDICT callback as it very unlikely that the same
predictor function can apply to each port defined in the class.

o A default residual inverse must be asingle-valued inverse in order to be avalid default inverse that
can be assigned to each individual port defined at the interface. Therefore it can be used only in
single-valued classes.

e Thedefault residual inverseis defined with a default match level of 1 to make it the least likely
alternative to choosing any other “dedicated” inverse specified in the class.
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e The default residual mechanism is supported only with the DEFAULT and INTEGRATOR atomic
classes, since the SINK atomic classes cannot define EVALUATE callbacks.

The following code snippet shows an atomic class that defines an inverse in explicit form for the port x and a
default residual inverse for the other portsy and z. The class models a mathematical expression that does not
lend itself very well to finding closed-form equations for each variable through symbolic manipulation.

#ifdef SPARK_PARSER

PORT x;
PORT vy;
PORT z;

EQUATIONS {
X = exp(y)*cos(1/2) ;

FUNCTIONS {
DEFAULT _RESIDUAL = default residual( X, y, zZ ) ;
x = inverse_ x(y, zZ);

}

#endif /* SPARK_PARSER */
#include "'spark.h"

EVALUATE(inverse__x)
ARGDEF(0, y);
ARGDEF(1, z);
double result = exp(y)*cos(1.0/z);
RETURN( result );

}
EVALUATE(default_residual)

{
ARGDEF(0, X);
ARGDEF(1, Y);
ARGDEF(2, 2);
double residual = x - exp(y)*cos(1.0/z);
RETURN( residual );
¥

Clearly, it isdifficult to produce closed-form inverses for the port y and z that are expressed in explicit form
and that are numerically robust. Instead, we define a default residual inverse with the EVALUATE callback
default_residual. Notethat all the ports of the class appear in the argument list of the callback. This
default inverse will be assigned to either the port y or the port z, were they to be selected during the matching
phase of the setupcpp program.

The EVALUATE callback of aDEFAULT _RESIDUAL inverse isimplemented in the same manner as the
EVALUATE callback expressed in residual form for asingle-valued inverse, whereby the residual valueis
returned using the RETURN preprocessor macro (See Section 8.7).
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9 THE CALLBACK FRAMEWORK

9.1 OVERVIEW AND TERMINOLOGY

An important modeling feature of SPARK isto be able to associate private data with each inverse comprising
an atomic classin order to hold state information or temporary cal cul ations between successive calls. The
internal mechanism that enables to support private data while providing backward compatibility with SPARK
1isthe calback framework.*

The callback framework adds object-oriented capahilities to SPARK by providing data encapsulation and
polymorphic behavior for each inverse through a collection of callback functions implemented as C++ free
functions (i.e., normal C functions). Each callback function isinvoked by the SPARK solver engine at
predetermined points of the simulation task, therefore allowing the user to implement specific operations for
each inverse beside calculating the values of the target port(s).

9.1.1 Inverse Type

An atomic class consists of a set of inverses. Each inverse implements a directed data flow through the port
interface. The ports assigned to an inverse are called the target ports. Clearly, each inversein aclassis
associated with a set of mutually exclusive target ports. In turn, an inverse consists of a set of callback
functions. The computational graph produced by the setupcpp program is derived from the topol ogical
information described by the EVALUATE callback functions.

Single-valued inverse

A single-valued inverse returns the value for one target port only. At most one single-valued inverse can be
specified for each port defined at the interface of the atomic class. All inverses defined in SPARK 1 were
single-valued inverses.

Multi-valued inverse

A multi-valued inverse returns the values for more than one port simultaneously. Only one inverse can be
specified for an atomic class that defines a multi-valued inverse. This limitation facilitates the matching
operation performed by setupcpp by forcing the data flow through the directed multi-valued objects. Future
versions of SPARK might support more than one multi-valued inverse per class as long as they are each
assigned to mutually exclusive sets of ports.

Default residual inverse

A default residual inverse can be defined at the class level. A default residual inverse must be a single-valued
inverse that returns the value of the residual equation for the class. It provides an default inverse for the ports
for which no inverse is explicitly specified, thus providing the matching algorithm in setupcpp with
alternatives in case of incomplete matching with the other inverses.

9.1.2 Inverse Instance

A problem consists of a collection of inverse instances defined during the matching operation in setupcpp.
Oneinverseinstance is defined for each occurrence of aclass in the problem definition. There are as many
inverse instances as there are atomic objects in the problem.

5 The callback framework is an extension of the EVALUATE and PREDICT functions defined for each inverse in SPARK 1.

74 The Callback Framework



SPARK 2.0 Reference Manual

Evaluating the collection of inverses for the variables connected to the matched portsin each class solves the
problem for the unknown variables. The inverse instances are invoked in a specific order that implements the
solution sequence derived by setupcpp. The ordered set of inverse instancesis also decomposed in
independent components identified by atopological sort of the directed computational graph.

Aninverseisrepresented internally in the SPARK solver with the TInverse class whereas an inverse
instance is represented with the TOb ject class. We also refer to the instance of an inverse as an object.

9.1.3 Callback Function

Aninverse consists of acollection of callback functions. A callback function isimplemented as asimple C++
free function with a predetermined prototype depending on the type of the callback (See Section 9.1.2). Each
callback defined in an inverseisidentified by a keyword which precedes the callback function namein the
FUNCTIONS {..} statement of the atomic class (See Section 9.2). Each inverse can define at most one
callback of each type. Other restrictions apply for certain callback functions depending on the type of the
inverse.

Callback classification

Callback functions belong to one of the following categories.

Table 9-1: Callback categories and function types.

Callback Callback Instance | Static
Category Function Types Callback | Callback
construct yes yes
structors
destruct yes yes
. evaluate yes no
modifier
predict yes no
prepare step yes yes
non-modifier commit yes yes
rollback yes yes
predicate check integration step | yes yes

Detailed description of the callback functionsin each category is provided in the Sections 9.4, 9.5, 9.6 and
9.7.

Static and instance callbacks

We distinguish between static callbacks and instance callbacks. Static callbacks apply to an inverse type,
whereas instance callbacks apply to each particular instance of an inverse. Static callbacks defined for an
inverse are invoked only once whereas the instance callbacks are invoked for each instance of the inversein
guestion.

Using the analogy with the C++ programming language, static callbacks can be viewed as the static methods
of the inverse class, whereas the instance callbacks can be viewed as the methods of the object instantiated
from thisinverse class. For example, if there are N instances of an inverse, then the static callbacks will be
invoked only once per simulation step but the instance callbacks will be invoked for each instance, namely N
times.
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Typically, static callbacks deal with managing private datathat is shared by all instances of the same inverse.
Note that static modifier callbacks cannot be defined for an inverse. Also, static callbacks cannot have
arguments.

9.1.4 Private Data

It is possible to associate private data with each inverse instance by implementing appropriate data
management through the different callbacks that the user can define for each inverse. In particular, the
structor callbacks can be used to allocate and deallocate the private memory required by each inverse
instance. SPARK provides the user with a data management API* defined in the classapi.h header file. It isthe
user’ sresponsibility to implement the appropriate operations in the corresponding callback functions using
this APl (See Section 9.8).

9.2 CALLBACK ENTRY POINTS IN SIMULATION LOOP

Figure 9-1 shows the entry points in the simulation loop where the callback functions are invoked to interact
with the solution process. The dotted boxes indicate the different phases of the solution process. First, the
problem under study isinitialized, then it is solved for each step until the simulation end time is reached or
some other condition stops the run. Finally, the problem solver is terminated. The gray boxes represent the
entry points where the different types of callback functions are invoked.

36 API stands for Application Programming Interface.
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Figure 9-1: Callback entry pointsin simulation loop.

The evauate callbacks are invoked when evaluating the components comprised in the problem. The strongly-
connected components typically require iterative solution performed in the SPARK nonlinear solver.
Therefore, the evaluate callbacks might be invoked multiple times over the same step until convergenceis
obtained in the nonlinear solver. The predict callbacks are invoked only if their target ports are connected to
break variables, and they are invoked only once before starting the iterative solution.

Therollback callbacks are invoked only following arejected step. The commit callbacks are invoked only
after an accepted step. The check step entry point is where the check integration step callback functions are
invoked whenever the solver is computing a dynamic step.

9.3 SPECIFYING THE CALLBACK FUNCTIONS

9.3.1 The FUNCTIONS Statement

Callbacks are declared in the FUNCTIONS {..} statement of an atomic class for each inverse using
keywords that identify the various callback types. The following code snippet shows the general syntax of the
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FUNCTIONS {..} statement where callbacks can be declared either for a default residual inverse or an
inverse assigned to target port(s). Elements specified within < > are optional.

FUNCTIONS {
DEFAULT_RESIDUAL

residual_function( portl,...,portN )

<methodl = methodl function( port2,...)
method2 = method2_function( ... )
>

portl <,port2,port3,...>
<methodl
method?2
>

}

<RESIDUAL> evaluate_function ( port2,...)
methodl function( port2,...)
method2_ function( ... )

Note that the keyword DEFAULT_RES IDUAL indicates the inverse type, and not the callback type, although
thisinverse type implies that the evaluate callback function be expressed in residual form (See Section 8.8).

9.3.2 Callback Keywords

Heremethodl, method?2... are keywords that uniquely specify the type of the callback function along with
the expected prototype of the C++ function that implements the callback.

Table 9-2: Keywords for the instance callbacks.

Keywords for instance callbacks

Description

Used to specify a evauate callback in explicit form (single-valued

EVALUATE or multi-valued inverse). Implied if not specified.

RES 1DUAL Used to specify an evaluate callback in residual form (single-
valued or multi-valued inverse). Optional.

PREDICT ggﬁﬁ I;[garre;zlr\rll e?.redicted values before the first iteration of the

CONSTRUCT Used to specify the construct callback function.

DESTRUCT Used to specify the destruct callback function.

PREPARE_STEP Used to specify the prepare step callback function.

COMMIT Used to specify the commit callback function.

ROLLBACK Used to specify the rollback callback function.

CHECK_INTEGRATION_STEP

Used to specify the check integration step callback function.
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Table 9-3: Keywords for the static callbacks.

Keywords for static callbacks Description

STATIC_CONSTRUCT Used to specify the static construct callback function.
STATIC_DESTRUCT Used to specify the static destruct callback function.
STATIC_PREPARE_STEP Used to specify the static prepare step callback function.
STATIC_CHECK_INTEGRATION_STEP leJ;eC(ilian.specify the static check integration step callback
STATIC_COMMIT Used to specify the static commit callback function.
STATIC_ROLLBACK Used to specify the static rollback callback function.

Preprocessor macros named after the callbacks keywords are defined in the file spark.h to facilitate the
implementation of each callback function by hiding the prototype and argument declarations.

94 STRUCTOR CALLBACKS

Asdescribed in detail in Section 9.8, the structor callbacks are used to alocate and deallocate memory for
private data:

e gpecific to each inverse instance using the CONSTRUCT and DESTRUCT callbacks, or
e shared by all inverseinstances using the STATIC_CONSTRUCT and STATIC_DESTRUCT callbacks.

Constructor callbacks are called before solving the first step during the problem initialization phase and
destructor callbacks are called after solving the last step during the problem termination phase (See Figure
9-1). Onetimeinitialization of private data can also be performed in the constructor callbacks.

9.4.1 Syntax
Structor callbacks cannot modify the solution values of the target ports associated with the inverse.

The structor callback functions are specified with the following keywords in the FUNCTIONS {..} statement
of the atomic class. Homonymous preprocessor macros can be used to implement the C++ functions for each
structor callback.

Table 9-4: Structor callbacks.

Callback Type | Callback Keyword C++ Function Prototype
CONSTRUCT void F(TObject* object, ArgList args)
consirudt STATIC _CONSTRUCT void F(TInverse* inverse)
desiruct DESTRUCT void F(TObject* object, ArgList args)
STATIC _DESTRUCT void f(TInverse* inverse)

9.4.2 Rules

e |f the CONSTRUCT callback is defined then the DESTRUCT callback must also be provided and
vice-versato ensure that memory allocated in the constructor callbacks is properly freed in the destructor
callback.
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e |fthe STATIC_CONSTRUCT callback is defined then the STAT IC_DESTRUCT callback must aso be

provided and vice-versato ensure that memory allocated in the static constructor callbacksis properly
freed in the static destructor callback.

Table 9-5: Keyword table by inverse type for the structor callbacks.

Structor Callbacks
Inverse Types - -
1%} © %] ©
€3 % 9 = %5
sink CONSTRUCT STATIC_CONSTRUCT | DESTRUCT | STATIC_DESTRUCT
integrator CONSTRUCT STATIC_CONSTRUCT | DESTRUCT | STATIC_DESTRUCT
explicit form CONSTRUCT STATIC_CONSTRUCT | DESTRUCT | STATIC_DESTRUCT
®
=]
<
q?) residual form CONSTRUCT STATIC_CONSTRUCT | DESTRUCT | STATIC_DESTRUCT
=)
£
%]
- default residual CONSTRUCT STATIC_CONSTRUCT | DESTRUCT | STATIC_DESTRUCT
2
I5]
©
= explicit form CONSTRUCT STATIC_CONSTRUCT | DESTRUCT | STATIC_DESTRUCT
E
®©
3
5
= residual form CONSTRUCT STATIC_CONSTRUCT | DESTRUCT | STATIC_DESTRUCT

9.5 MODIFIER CALLBACKS

Modifier callbacks are used to compute the value(s) of the target port(s) assigned to the inverse. Modifiers are
the only callback functions that can return solution values for the target ports. They are called by the SPARK
solver at each time step, possibly many times in order to obtain convergence.

There are two types of modifier callbacks: the EVALUATE callback and the PREDICT callback. The
EVALUATE callback “evaluates’ the object to produce the values for the target ports. The PREDICT callback
isonly invoked if the associated port(s) is connected to a break variable in a strongly-connected component.
Then the PREDICT callback produces the predicted values for the target ports before starting the iterative
solution process.

There can be no static modifier callbacks because static callbacks are not assigned to any target portsin
particular but refer to all instances of the same inverse.

9.5.1 Syntax

The evaluate callback can be implemented in two different forms:
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e Theexplicit form specified with the optional keyword EVALUATE returns the solution value(s) of the
inverse equation(s) for the associated target port(s) asadouble.

e Theresidual form specified with the keyword RES IDUAL returns the value(s) of the residua equation(s)
for the associated target port(s) asadouble.

The values returned by the modifier callback functions are copied to the list of target ports implemented with
typeResList.

Table 9-6: Modifier callbacks.

Callback | Callback

Type |[Keyword C++ Function Prototype

A EVALUATE| void F(TObject* object, ArgList args, ResList results)
evaluate

RESIDUAL| void F(TObject* object, ArgList args, ResList residuals)

predict | PREDICT | void F(TObject* object, ArgList args, ResList predictors)

9.5.2 Rules

e Theinversefor asink atomic class defines neither an evaluate callback nor a predict callback sinceit
cannot return any solution values.

e All other atomic classes must define an evaluate callback. The predict callback is optional.

e To enforce the proper data dependency in the graph-theoretic processing, aresidual evaluate callback
(i.e., defined with the keyword RES IDUAL) must also declare in its argument list the target port(s) it is
associated with.

In the next example we show a FUNCTION {..} statement for aresidual inverse where the target ports
01 and 02 are correctly specified in the argument list.

PORT o1;
PORT o02;
PORT 11;
PORT i2;
FUNCTIONS {
0l,02 = RESIDUAL residual fn(il,12,01,02 ) ;

e Thedefault residual callback (i.e., the evaluate callback defined with a default inverse) must be asingle-
valued inverse. Also, it cannot define a predict callback and all the class ports must appear in the
argument list.

In the next example we show a FUNCTION {..} statement for a default residual inverse where all class
ports are correctly specified in the argument list.

PORT o1;
PORT o02;
PORT 11;
PORT 12;
FUNCTIONS {
DEFAULT_RESIDUAL = default_residual_fn(il,i2,01,02 ) ;

}
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Table 9-7 shows the list of keywords by inverse type for the modifier callbacks. Keywords within parenthesis
indicate that the keywords are implied if not explicitly specified inthe FUNCTION {..} statement. The only
such keyword is the EVALUATE keyword that declares an evaluate callback function in explicit form. Thisis
the default callback that is always specified for the DEFAULT classes.

Table 9-7: Keyword table by inverse type for the modifier callbacks.

Modifier Callbacks
Inverse Types © 88
g5 cs
S5 8=
o O 2 g
S a £
sink no no
integrator PREDICT (EVALUATE)
explicit PREDICT (EVALUATE)
form
g | residual PREDICT RESIDUAL
3 form
[
>
S | default
- = elau no DEFAULT_RESIDUAL
= G residual
o
o .
explicit PREDICT (EVALUATE)
form
e}
]
3 .
c?d residual PREDICT RESIDUAL
= form
>
IS

9.6 NON-MODIFIER CALLBACKS

The non-moadifier callbacks deal with private data management at different phases of each time step. They are
invoked in the stepping method of the problem simulator.

Non-modifier callback functions can be specified for each inverse type (static callbacks) or for each inverse
instance (instance callbacks).

e The prepare step callback isinvoked before starting the evaluation of each step, therefore allowing the
user to prepare the private data for the current step.

e The commit callback isinvoked when the current step has been accepted, therefore allowing the user to
update the private data of the inverse for the next step.

e Therollback callback isinvoked when the current step has been rejected, therefore allowing the user to
reset the private data like it was at the beginning of the current step, thus allowing for a fresh step.

9.6.1 Syntax

Non-modifier callbacks cannot modify the solution values of the target ports associated with them. Hence
their name.
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Table 9-8: Non-modifier callbacks.

_?allback Callback Keyword C++ Function Prototype
ype
PREPARE_STEP void F(TObject* object, ArgList args)
prepare step n "
STATIC_PREPARE_STEP void F(TInverse* inverse)
" COMMIT void Ff(TObject* object, ArgList args)
commi
STATIC_COMMIT void F(TInverse* inverse)
Iback ROLLBACK void F(TObject* object, ArgList args)
rollbac
STATIC_ROLLBACK void F(TInverse* inverse)
9.6.2 Rules

None of the non-modifier callbacks are required. No specific rules need to be enforced.

Table 9-9: Keyword table by inverse type for the non-modifier callbacks.

Non-modifier Callbacks

Inverse types & &
(2] )
8o o 8 = = 8 x =
S o @ < E o E S o ®
T a =g T =R= o &5 = 45|
25 5 28 33 2% 7o
sink PREPARE_STEP | STATIC_PREPARE_STEP COMMIT | STATIC_COMMIT | ROLLBACK | STATIC_ROLLBACK
integrator PREPARE_STEP | STATIC_PREPARE_STEP COMMIT | STATIC_COMMIT | ROLLBACK | STATIC_ROLLBACK
S ]?(;(r[ir)’rl]icit PREPARE_STEP | STATIC_PREPARE_STEP COMMIT | STATIC_COMMIT | ROLLBACK | STATIC_ROLLBACK
E
(B .
7 ][gfr'ﬁ“a' PREPARE_STEP | STATIC_PREPARE_STEP | COMMIT | STATIC_COMMIT | ROLLBACK | STATIC_ROLLBACK
g
(2]
= ?eesfﬁjlijltal PREPARE_STEP | STATIC_PREPARE_STEP COMMIT | STATIC_COMMIT | ROLLBACK | STATIC_ROLLBACK
©
©
U . e
3 ?(;(r?rl:c't PREPARE_STEP | STATIC_PREPARE_STEP COMMIT | STATIC_COMMIT | ROLLBACK | STATIC_ROLLBACK
3
<
E ;grsri:ual PREPARE_STEP | STATIC_PREPARE_STEP COMMIT | STATIC_COMMIT | ROLLBACK | STATIC_ROLLBACK
9.7 PREDICATE CALLBACKS

The predicate callbacks return a boolean value to the solver that isinterpreted to decide whether to accept the
current step or regject it.

In the current version, only INTEGRATOR classes can specify predicate callbacks, namely the callback used
to check the integration step. Returning false means that the current step must be rejected, whereas returning
the value true means that the current step should be accepted.
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The check integration step callback is invoked after the current step has been successfully computed,
therefore allowing the user to accept or reject the current solution using solver requests. If the step is accepted
then the commit callbacks will be invoked next before going to the next step. If the step is rejected then the
rollback callbacks will be invoked before re-trying the same step (probably with a different time step
thought).

9.7.1 Syntax
Predicate callbacks cannot modify the solution values of the target ports.

Table 9-10: Predicate callbacks.

_IC_aIIback Callback Keyword C++ Function Prototype
ype

check CHECK_INTEGRATION_STEP | bool f(TObject* object, ArgList args)
integration

step ?g?gégK.CrTgﬁKgTEpy bool T(TIlnverse* inverse)
9.7.2 Rules

Only integrator classes (i.e., classes define with CLASSTYPE INTEGRATOR) can define the check
integration step callbacks.

The only predicate callback function is the check integration step callback. It can be defined only for
INTEGRATOR classes.

Table 9-11: Keyword table by inverse type for the predicate callbacks.

Predicate Callbacks
= =
g o
In § §
verse types s S
g g
L =
2 < ”;
I o a =% a
neg 8cQ
o wn n o n
sink no no
integrator CHECK_INTEGRATION_STEP STATIC_CHECK_INTEGRATION_STEP
explicit no o
3 form
=]
g residual o o
@ | form
D
£
= a default
=} . no no
8 residual
(]
©
o explicit
@ no no
=] form
<
<
= residual
E form no no

37 Unlike the way if showsin the table the callback keyword STATIC_CHECK_INTEGRAT ION_STEP isone word.
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9.8 DEFINING PRIVATE DATA FOR AN INVERSE

This section explains how to define private data for an inverse using the callback mechanism. Private data
attached to an inverse instance, also referred to as an object, is caled instance private data as it is unique to
each instance of an inverse. Private data attached to an inverse type is called static private data asit is shared
by al instances of the same inverse type.

Instance static datais alocated in the CONSTRUCT callback and is deallocated in the DESTRUCT callback.
Static private datais allocated in the STATI1C_CONSTRUCT callback and is deallocated in the
STATIC_DESTRUCT callback.

9.8.1 Private Data Mechanism

The atomic classes in SPARK are not implemented as C++ classes, thereforeit is not possible to rely on the
C++ language to support the private data mechanism as a built-in feature. The rationale behind this design
decision was to avoid the performance penalty incurred by the virtual function call mechanism that would be
needed to provide the desired polymorphic behavior for each atomic class.

Instead, the atomic class “methods” are implemented as C++ free functions, the callback functions, specified
for each inverse. The private data mechanism is then enabled by passing pointers to the SPARK classes, which
describe each inverse type and itsinstances, to the callback functions. Internally to the SPARK solver, an
inverse type is described with the TInverse class, whereas an inverse instance is defined with the
TObject class. Each inverse type is uniquely identified at runtime through the instance of the TInverse
class attached to the static callbacks. Similarly, each inverse instance is uniquely identified at runtime through
the instance of the TOb ject class attached to the instance callbacks.

The htm/chm tutorial SPARK Atomic Class APl should be consulted for more information on the TInverse
and TObject classes.

Instance Private Data

In order to encapsulate private data with each inverse instance, SPARK definesavoid pointer in the
TObject classthat describes an inverse instance in the solver. Thisvoid pointer can be used to store the
address of any data® that is used to implement the instance callbacks defined for thisinverse. The pointer to
the TOb ject class describing each inverse instance is then passed as the first argument to each instance
callback function. See the instance callback prototypesin Table 9-4, Table 9-6, Table 9-8 and Table 9-10.

Static Private Data

Similarly, SPARK definesavoid pointer in the TInverse class that describes an inverse type in the solver.
Thisvoid pointer can be used to store the address of any datathat is used to implement the static callbacks
defined for thisinverse. The pointer to the TInverse class describing each inverse is then passed as the first
argument to each static callback function. See the static callback prototypesin Table 9-4, Table 9-6, Table 9-8
and Table 9-10.

8 By datawe refer here to an instance of any C++ type, such as a class, a struct, afunction, or any fundamental type.
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[ Instance Callback J [ Static Callback ]

/ TObject / / TInverse /

TComponent* Component

TProblem* Problem

TlInverse* Inverse

/ void* Data

void* StaticData

\ 4 \ 4

Instance Private Data Static Private Data

Figure 9-2: Schematic representation of the relationships between callbacks and private data.

Figure 9-2 shows the void pointers defined in the TObject and TInverse classes that point to the areas
in memory where the instance private data and static private data are stored. The blue arrows indicate the data
flow from the instance callbacks, whereas the red arrows indicate the data flow from the static callbacks.

The pointer to the TInverse classis also available from the TOb ject classes that represent the instances
of thisinverse. This makesit possible to access the void pointer to the static private data from each instance
callback.

The “this” Pointer

The void pointers stored in the TObject and TInverse classes essentially model the this pointer
paradigm inherent to the concept of classesin the C++ language. The TObject and TInverse classes
merely serve to distinguish between the instance of an inverse and the type of an inverse. Thus, instance
private data corresponds to the member data of a C++ class, whereas static private data corresponds to the
member data defined asstatic inaC++ class.

The TObject and T Inverse classes define get/set methods to operate on the void pointers they each
define as member data. The set method is used to store the address of the newly allocated private data. The
get method is used to retrieve the address of the private data that was stored previously with the set method.
Table 9-12 and Table 9-13 show the prototypes of the get/set methods defined in the TObject and
TInverse classes.
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Table 9-12: Get/set methods of the TObject class.

Method Description

Stores the address to the instance private datain the

oid TObject::SetData(void* data - .
vor . (voi ) void pointer member data.

Retrieves the address of the instance private dataas a

id* TObject: :GetDat z ;
voi jec etbata() void pointer.

Table 9-13: Get/set methods of the TInverse class.

Method Description

Stores the address to the static private datain the

void TlInverse::SetStaticData(void* data) _ :
void pointer member data.

Retrieves the address of the static private dataas a

void* Tlnverse::GetStaticData() _ .
void pointer.

Note that the names of the get/set methods differ between the TObject and TInverse classesin order to
distinguish at compile time between operations intended on instance private data or on static private data. This
naming convention avoids possible confusions due to the lack of available type information implied by the
use of the void pointer. Indeed, the C++ compiler will complain if you try to retrieve instance private data
with the GetData() method from a static callback that carries the pointer toa T Inverse class.

The address of the private dataisimplemented as avoid pointer in the SPARK classes in order to achieve
maximum generality in terms of what type of C++ objects can be used to represent private data. This results
in the get method returning the address of an un-typed C++ object. Therefore, the retrieved address must be
cast to a pointer to the original type of the C++ object used to implement this specific private data. It isthe
user’ sresponsibility to perform this type cast in the body of the callback functions whenever the void
pointer is retrieved.

If Object represents apointer to a TOb ject class, the void pointer is cast to the original type TData
using the C++ construct static_cast< > asshown in the following code snippet.

TData* MyData = static_cast<TData*>( Object->GetData() );

If Inverse representsapointer toaTInverse class, the void pointer is cast to the original type
TStaticData using the C++ construct static_cast< > asshown in the following code snippet.

TStaticData* MyData = static_cast<TStaticData*>( Inverse->GetStaticData() );
Note that no type casting is required when using the set methods.
Preprocessor Macros

Preprocessor macros are used to hide the implementation details pertaining to the callback function prototypes
in the SPARK atomic classes. Compatible preprocessor macros are defined in the spark.h file to operate on
static private data and instance private data from within the body of the callback functions.

Table 9-14: List of preprocessor macros operating on static private data.

Macro Description
THIS Returns the pointer to the TInverse class this static callback is defined for.
ACTIVE_PROBLEM Returns the pointer to the TProb I em class the current inverse belongs to.
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Table 9-15: List of preprocessor macros operating on instance private data.

Macro Description

THIS Returns the pointer to the TOb ject class this instance callback is defined for.

ACTIVE_PROBLEM Returns the pointer to the TProblem class the current inverse instance belongs
to.

ACTIVE_INVERSE Returns the pointer to the TInverse class this instance callback belongs to.

ACTIVE_COMPONENT | Returns the pointer to the TComponent class the current inverse instance
belongsto.

Using the ACTIVE_INVERSE macro in an instance callback returns the pointer to the TInverse class
describing thisinverse type. This pointer can then be used to operate on the void pointer that stores the static
private data, thus granting access to static private data from the instance callbacks.

The htm/chm tutorial SPARK Atomic Class APl should be consulted for more information on the TProblem
and TComponent classes.

9.8.2 Example of an Inverse with Private Data

The atomic class analytical_frst_ord uses an instance of the class TData to compute the analytical solution
of afirst order homogenous ODE with constant, linear coefficients. Since the ODE coefficients are assumed
to remain constant for the simulation run, it is possible to derive the equations for the analytical solution of
the dynamic variable and its time derivative at the onset of the simulation, when the coefficient values are first
known at runtime.

The analytical_frst_ord class defines a multi-valued inverse that returns the values of both the dynamic
variable, assigned to the port x, and its time-derivative, assigned to the port xdot, as a function of the current
time, assigned to the port time. Along with the multi-valued EVALUATE callback, the inverse defines a
CONSTRUCT callback and aDESTRUCT callback where the private data management is performed.

The values for the analytical solution are actually computed by the instance of the class TData that is
attached as instance private data to the multi-valued inverse in the CONSTRUCT callback. The methods
TData: :x() and TData: :xdot() arecaled in the EVALUATE callback to return the values of the
analytical solution at the current time for the dynamic variable and its time-derivative. Finadly, the instance
private data that was allocated in the CONSTRUCT callback is deallocated in the DESTRUCT callback.

The class also defines two ports A and B for the ODE coefficients, as well as another port x_I C for the initial
value of the dynamic variable. These ports are used only in the CONSTRUCT callback to initialize the TData
instance. Note that the port timeis also mentioned in the CONSTRUCT callback to obtain the value of the
initial time.

/// analytical_frst_ord.cc

/// Atomic class that computes the analytical solution (a.k.a. closed-form solution)
/// of the first-order, constant coefficient, linear, homogeneous ODE.

///

/// ODE:

/// xdot = B - A*x

///

/// Initial conditions:

//7/x(t_1C) = x_IC

///

/// Analytical solution: (can be used to compute the true integration error)
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/// For more details consult

/// http://oregonstate.edu/dept/math/CalculusQuestStudyGuides/ode/first/linear/linear.html
///

///x(t) = C * exp(-A*(t-t_IC)) + B/A

/// where:

/// C + b/a = x_IC

/// b/a = lim x (t->inf)

///

/// where :

/// X : dynamic variable

/// xdot : first derivative of x
///

/// A : constant coefficient
/// B : constant coefficient
///

1/1/1777777777777777777777777777777777/77/77/7/7/7//7/7//7///////////////////////7/7/7/7/777
#ifdef SPARK_PARSER

PORT time "time" [s];

PORT A A
PORT B "'B";
PORT X X"

PORT xdot "xdét";
PORT x_IC ™"initial condition for x";
EQUATIONS {
X, xdot = analytical_frst _ord( time, x_IC, A, B );
}

FUNCTIONS {
X, xdot = analytical_frst_ord__evaluate( time )
CONSTRUCT = analytical_frst_ord__construct( time, x _IC, A, B )
DESTRUCT = analytical_frst _ord__destruct( )

}
#endif /*SPARK_PARSER*/

#include <strstream>
using std::ostrstream;
using std::ends;

#include "spark.h"

// Class that calculates the analytical solution of a 1lst-order ODE with constant,
// linear coefficients. The equations describing the analytical solution are constructed
// in the class constructor.
class TDhata {
public:

// Structors

TData(double t_IC, double x_IC, double a, double b)

> T_ICCE_IC), C(x_IC - B/A), A(a), B(b)

{4
~TData()

// Main methods
double x(double time) { return C * exp(-A*(time-T_IC)) + B/A; }
double xdot(double time) { return -A * C * exp(-A*(time-T_IC)); }

double GetA() const { return A; }
double GetB() const { return B; }
double GetC() const { return C; }
double GetT_IC() const { return T_IC; }
private:

// Private data
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¥

double T
double A ;
double B
double C

EVALUATE( analytical_frst_ord__evaluate )

}

ARGUMENT( O, time );
TARGET( O, X )3
TARGET( 1, xdot );

// Cast void* to private data type
TData* MyData = static_cast<TData*>( THIS->GetData() );

// Set target values
X = MyData->x( time );
xdot = MyData->xdot( time );

CONSTRUCT( analytical_frst_ord__construct )

{

}

ARGUMENT( 0, time );
ARGUMENT( 1, x_IC );
ARGUMENT( 2, A ):
ARGUMENT( 3, B ):

// Allocate instance private data
TData* MyData = new TData( time, x_IC, A, B );

// Check whether memory was allocated correctly or not
if ( MyData == 0 ) {

REQUEST __ ABORT( "Could not allocate instance private data!" );
}

// Store pointer to private data within this object
THIS->SetData( MyData );

// Report equation string for analytical solution to error log file
ostrstream Text;
Text << "x(t) = " << MyData->GetC() << " * exp("" << MyData->GetA()
<< "*( time - " << MyData->GetT_IC() << ") ) + "
<< MyData->GetB()/MyData->GetA() << ends;

ERROR_LOG( Text.str() );

DESTRUCT( analytical_frst_ord__destruct )

{

}

// Cast void* to private data type
TData* MyData = static_cast<TData*>( THIS->GetData() );

// Release allocated memory
if ( MyData ) {

delete MyData;
}

Allocate and Attach Private Data in CONSTRUCT Callback

The following code snippet from the CONSTRUCT callback shows how the instance private data, described by
the C++ class TData, isfirst alocated on the heap using the C++ operator new and then attached to the
pointer to the TOb ject class by invoking the SetData() method.

// Allocate instance private data
TData* MyData = new TData( time, x IC, A, B );
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// Check whether memory was allocated correctly or not
it ( MyData ==

REQUEST__ ABORT( ""Could not allocate instance private datal!" );
}

// Store pointer to private data within this object
TH1S->SetData( MyData );

Before storing the instance private data within this object, we verify that the allocation operation succeeded
by checking the returned address MyData of the allocated instance private data. If it failed, we send a request
to abort the simulation (See Section 10.2). Thisis good practice as it prevents memory access problems when
the pointer is dereferenced | ater.

Deallocate and Detach Private Data in DESTRUCT Callback

The following code snippet from the DESTRUCT callback shows how the instance private data, described by
the C++ class TData, isfirst retrieved from the TOb ject class by invoking the GetData() method and
then deallocated using the C++ operator delete.

// Cast void* to private data type
TData* MyData = static_cast<TData*>( THIS->GetData() );

// Release allocated memory
if ( MyData ) {

delete MyData;
}

Before calling the de 1 ete operator, the void pointer returned by the method GetData()is cast to thea
pointer to the original type TData. This prevents memory leaks as the de I ete operator frees the memory
occupied by the original C++ type.

Retrieve Private Data in EVALUATE Callback

The following code snippet from the EVALUATE callback shows how the instance private dataisretrieved
from the TObject class by invoking the GetData() method. Like in the DESTRUCT callback the returned
pointer is cast to its original type before being used. Then, the TData: :x() and TData: : xdot () methods
are invoked to calculate the analytical solution for both target ports using the private data stored with this
inverse instance.

// Cast void* to private data type
TData* MyData = static_cast<TData*>( THIS->GetData() );

// Set target values
X MyData->x( time );
xdot = MyData->xdot( time );
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10 THE REQUEST MECHANISM

10.1 CONCEPT

Requests can be sent from the callback functions to influence the behavior of the problem simulator at
runtime. The SPARK solver pools all requests received from the callbacks over the current step. Then, the
requests are processed to identify whether they are valid or not depending on the current context of the
simulator. Finally, the valid requests are dispatched to the solver managers that will perform the associated
operations. Thus, the execution of the actionsimplied by arequest is deferred to the appropriate moments of
the simulation.

Some requests hold data that is used to perform the associated task in the solver. Thus, the request mechanism
can be viewed as another way to transferring data from the callbacks back to the solver. The other main data
exchange between the callbacks and the solver happens through the target values returned from the modifier
callbacks and the boolean values returned by the predicate callbacks.

Requests can be classified in four categories:
o Utility requests
e Regueststhat trigger the state transitions of the simulator
e Reqguests that support the time event mechanism
e Reguests that support the integration process

The request mechanism is also used internally in the solver to perform the associated tasks, such as restarting
or aborting the simulation, generating a snapshot or areport, ... . This design approach alows to conveniently
implement the problem simulator as a finite-state machine, whereby the state transitions are triggered by the
execution of the corresponding requests.

Requests sent from callbacks are called external requests, whereas requests sent from the solver are called
internal requests. The operation of the request mechanism can be traced at runtime in the run log file using the
SPARK diagnostic mechanism (See Section 12.5).

Reguests are sent from the body of the callback functions using the preprocessor macros specified in the file
spark.h. All request macros are prefixed with the string REQUEST___. Also, all request macros expect a
const char™ string asthe first argument used to identify the calling context. The context string is then
used by the diagnostic mechanism.

Note that the graph-theoretic analysis is unaware of which classes send requests since the requests are
specified only in the callback functions and not in the class definition. Indeed, requests do not modify the
computational graph but only the behavior of the solver at runtime.

10.2 UTILITY REQUESTS

Utility requests trigger actions that do not directly influence the operation of the solver. They are executed
only after a successful step following the call to the commit callbacks (See Figure 9-1).
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Table 10-1: List of utility requests.

Request name | Preprocessor macro Description

report REQUEST__REPORT( context ) Generates areport in the output file at
the end of the current step. If thereisno
output file used in this simulation run,
then no action istaken.

snapshot REQUEST__ SNAPSHOT( context, filename ) Generates a new snapshot file at the end
of the current step from the path
filename specified asconst
char*.If filename isnot avalidfile
name, then no snapshot is generated.

10.3 STATE TRANSITION REQUESTS

The state transition requests interact with the finite-state machine that performs the tasks needed to solve the
problem under study from the initia time to the final time. Simulating a problem consists in executing the
finite-state machine until the end state is reached, whereby successive static and dynamic steps are taken
according to the transitions triggered at runtime either by external requests or by the solver’s built-in rules.
Table 10-2 describes the state transition requests and the actions triggered by them.

Table 10-2: List of state transition requests.

Request name Preprocessor macro Description

abort REQUEST__ABORT( context ) Forces to abort the simulation first by terminating
the problem and then by exiting the process. Itis
executed regardless of whether the current step is
accepted or not.

stop REQUEST__STOP( context ) Executed only after a successful step. Stops the
simulation and returns from the solver normally,
albeit before the specified final time.

restart REQUEST__RESTART( context ) | Forcesthe simulator to restart the simulation by
solving asingle static step (i.e., the global timeis
not advanced). It is executed only after a successful
step.

Figure 10-1 shows the state-machine implementing the solution process. The arrows indicate the state
transitions. The dotted, red arrows refer to the state transitions triggered by the requests, whereas the plain,
black arrows represent the built-in state transitions enforced by the solver. The rounded boxes designate the
different states of the simulator. The lozenge boxes designate conditional rules which trigger different state
transitions depending on the boolean value produced by the evaluation of therule. In particular, the
conditional rule labeled IC? refers to whether or not to perform an initial consistent calculation as specified in
the run-control file (See Section 18). The other conditional rule deals with detecting whether the simulation
final time has been reached. Finally, the state |abeled set time step implements the task of estimating the
time step to use for the next dynamic step.
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Figure 10-1: State-machine and transitions implementing the simulation process.

10.4 TiME EVENT REQUESTS

The time event requests deal with synchronizing the time-stepping operation in solver with user-specified
meeting points. The meeting points are then taken into account when deriving the time step for the next
dynamic step.

Table 10-3: List of time event requests.

Request name | Preprocessor macro Description
point global time with the meeting point

time specified asdouble. If the
meeting point does not lie ahead of
the current time, then the request
will not be processed.

points requested so far in solver.
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The meeting points can only be synchronized with in the solver if variable time stepping is alowed. If the
variable time step mode is not selected in the run-control file (See Section 18), then the time event requests
are discarded because the time step cannot be adapted.

Future versions of SPARK will define new requests to support the state event mechanism that will add a
discrete solving capability to the continuous solver.

10.5 INTEGRATION REQUESTS

The integration events can be requested by INTEGRATOR classes only. They provide support for the
integration process by interacting with the solver’ s stepping operation and the time step selection process. The
only integration request implemented so far is the request to set the global time step. More requests will be
defined in future versions to support integration schemes such as the Runge-K utta schemes, which require
changing the way adynamic step is performed.

Table 10-4: List of integration requests.

Request name | Preprocessor macro Description

set time step REQUEST__SET_TIME_STEP( context, h ) | |f executed following arejected step,
indicates to the solver which time step to
use to retry the current dynamic step. If
executed after an accepted step, indicates
to the solver which time step to use for the
next dynamic step. The candidate time
step h is specified asdouble.

The time step selected by the solver takes into account the smallest candidate time step obtained from
processing al the time step requests sent over the current step. Note that the time step requests can only be
sent from the commit and rollback callbacks. Due to other constraints, such as synchronizing with meeting
points, the actual time step used for the next step could be smaller than the candidate time step, but never
larger.

Finally, we note that thanks to the time step request, integrator classes can monitor the integration error and
adapt the time step accordingly in order to satisfy the integration error prescribed by the user. The classes
integrator_euler and integrator_trapezoidal located in the globalclass directory are examples of predictor-
corrector integration schemes that provide error control through adaptive time step operation.
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11 SoOLUTION METHOD CONTROLS

While the fundamental, graph-theoretic methodology in SPARK is always the same, there are some options
you can set to control the actual numerical methods employed. The Visual SPARK and WinSPARK graphical
user interfaces provide menus for setting these options. If you are working at the command line, you can set
these options by editing the probName.prf file. However, to explain these options we must first review the
fundamental SPARK methodol ogy.

11.1 SoLUTION METHODOLOGY

As noted previously, SPARK generates a C++ program to solve the problem expressed in your probName.pr
file. To generate this program, graph-theoretic methods are used to decompose the problem into a series of
smaller problems, called components, that can be solved independently. A component might be a sequence
of atomic inverse functions® that need to be executed in order; thisisthe caseif noiterationisrequiredin
that particular component. On the other hand, iteration may be required, in which case the component, in
graph theoretic terms, isa strongly connected component. While all equations in a strongly connected
component are involved in the iterative solution, usually not all variables need be iterates. Therefore SPARK
uses graph algorithms to determine a small set of so called break variablesthat break all cyclesin the
component; these variables constitute a cut set.

By default, SPARK will attempt to solve each strongly connected component using the Newton-Raphson
method, treating the cut set as the vector of independent variables (see Section 2.5). If your problem solves
correctly with the default method for the tolerance specified in the global settings, it is probably best not to
changeit. However, if it failsto solve, it will probably be due to either non-convergence of the
Newton-Raphson iteration, or numerical exceptions (i.e., values of problem variables that exceed the
capabilities of the computer). In either case, it is usually possible to determine which component is having
difficulty by looking at the run log file. Y ou may then want to change the solution method for that
component from among the options discussed below.

Solving method options fall into two categories: Component Solving Methods, and Matrix Solving Methods.
Component Solving Methods refer either to modifications of the Newton-Raphson method, or a completely
different method of finding values for the break variables that satisfy the component equations. Matrix
Solving Methods refers to the way in which the next estimates of the break variables are determined from the
current values using the Jacobian matrix.

Full explanation of the advanced methods is beyond the scope of this manual. The cited references were
consulted in the SPARK implementation.

11.2 PREFERENCE SETTINGS

This section describes the preference settings used by SPARK to solve the components at runtime. Preference
settings fall into two categories: global settings specific to all components and component settings specific to
each component. The preference settings are specified in a preference file with extension .prf.

11.2.1 Default Preference File

The program setupcpp produces the solution sequence for the SPARK problem under study (See Figure 1-1).
It also generates the probName.prf file that contains the list of preference settings for each component
comprising the problem. The default settings written out to the probName.prf file come from hard-coded

% The solution sequence is derived by the setupcpp program from the topological information contained in the EVALUATE callback functions defined
for each inverse, except for the SINK inverses that are automatically invoked last.
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values unless a file named default.prf containing customized default values can be located in the current
working directory.

The default.prf file defines the default global settings to be used within a segment starting with the
GlobalSettings key. It also defines the default preference settings to be used for each
strongly-connected component within a segment starting with the Defaul tComponentSettings key.
Note that no default settings need to be specified for component-specific entries such as the names of the trace
files.

The following example shows a default.prf file with modified default values for the keys
ComponentSolvingMethod, Maxlterations and MatrixSolvingMethod.

GlobalSettings (
Tolerance ( 1e-006 ())
MaxTolerance ( 0.001 ()
PredictionSafetyFactor ( 0.01 ()
IterationSafetyFactor ( 0.9 Q)

) // End of GlobalSettings section

DefaultComponentSettings (

// Settings for component solving method
ComponentSolvingMethod (4 )
Minlterations ( 1 ())

Maxlterations ( 1000 )

// Settings for Jacobian evaluation
TrueJacobiankEvalStep ( 0 Q)
JacobianRefreshRatio ( 0.1 ())
Epsilon ( 0 OO)

// Settings for step control method
StepControlMethod ( 1 Q)
RelaxationCoefficient ( 1 ())
MinRelaxationCoefficient ( 1le-006 ())

// Settings for matrix solving method
MatrixSolvingMethod ( 4 )
ScalingMethod ( 0 Q)

PivotingMethod ( 1 )
RefinementMethod ( 0 Q)
) // End of DefaultComponentSettings section

)

If no default.prf file resides in the current working directory, then setupcpp will generate a template default.prf
file with the hard-coded default preferences for possible future modification by the user. Thus, specific
default values for the component preference settings that differ from the hard-coded ones can be chosen for
specific problems.

11.2.2 Global Settings

The global settingsin the preference file are specified within a segment starting with the key
GlobalSettings. They define the parameters used in the convergence check that must be satisfied by all
components, such as the prescribed tolerance and various safety factors.

GlobalSettings (
Tolerance ( 1e-006 ()
MaxTolerance ( 0.001 ())
PredictionSafetyFactor ( 0.01 ()
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IterationSafetyFactor ( 0.9 )
) // End of GlobalSettings section

)
Table 11-1: Global preference settings.
Parameter
[key in preferencefil€] Allowed values Notes
Tolerance A floating point Solution relative tolerance. In iterative
[Tolerance] number>0.0 solution, iteration will continue until no
variable y changes by more than Tolerance*|y|
between two successive iterations. Default =
1E-6.
See Section 11.6 for more details.
Maximum Tolerance A floating point Maximum Tolerance used for a*“relaxed”
[MaxTolerance] number > Tolerance | tolerance check instead of Tolerance in case
of no convergence after maximum iterations
(see Tolerance definition above).
Default = 1.E-3
Safety Factor for Break Unknowns 0 < floating point Saf ety factor applied to the convergence check
[BreakUnknownSafetyFactor] number for the break unknowns. Default = 1.
Safety Factor for Normal Unknowns 0 < floating point Safety factor applied to the convergence check
[NormalUnknownSafetyFactor] | number for the normal unknowns. Default = 1.
Prediction Safety Factor 0 < floating point Safety factor applied during prediction
[PredictionSafetyFactor] number <=1.0 convergence check. Default = 0.01
See Section 11.6 for more details.
Iteration Safety Factor 0 < floating point Safety factor applied during iteration
[IterationSafetyFactor] number <=1.0 convergence check. Defauilt = 0.9
See Section 11.6 for more details.

11.2.3 Default Component Settings

The default component settings are specified within a segment starting with the
DefaultComponentSettings key. They define the default values for the settings that will be used when
solving each component unless some settings are overloaded |ater in the preference file for the component in
guestion. If no other settings are specified, then the default component settings will be used.

(

DefaultComponentSettings (
ComponentSolvingMethod ( 0 )
Minlterations ( 1 ))
Maxlterations ( 50 )

) // End of GlobalSettings section

)

The default component settings define the parameters used by the component solving methods (See Section
11.3), the matrix solving methods (See Section 11.4), and the Jacobian evaluation methods (See Section
11.5).
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11.2.4 Component Settings

The component settings are specified within a segment starting with the ComponentSettings key. Then,
the settings for each component are specified in a separate segment starting with the evaluation order of the
component, zero indicating the first component.

Any of the default component settings can be overloaded for each individual component by specifying a new
value for the key. For example, the following code snippet showing the portion of a preference file overloads
the maximum number of iterations allowed in component 0, i.e., the first component of the solution sequence.
The settings for the component 0 becomes 100, from the default value of 50 in Section 11.2.3.

(

ComponentSettings (

0 (
Maxlterations ( 100 ()

)
) // End of GlobalSettings section

)
11.2.5 Changing the Preference Settings

When the problem is executed the solving method settings and associated parameters are taken from the
problem preference file probName.prf.

If you use WIinSPARK or Visual SPARK graphical user interface, you can use provided menus for setting the
solving methods and parameters, and the settings you specify will be transferred to the problem preference
file.

Y ou can aso edit the problem preference file generated by setupcpp with any text editor. However, you have
to be careful to respect the format of the preference file where an entry ENTRY for akey KEY is specified
with the following syntax (See Appendix C):

KEY ( ENTRY () )

If for any reason the preference file does not define a particular method or parameter, default settings built
into the source code are used. These default settings are given in the tables below. These are “safe” but not
necessarily recommended settings, so you should normally provide appropriate settings for your problem.

11.3 COMPONENT SOLVING METHODS

The available methods for solving the component are listed in Table 11-2. The code numbers are needed only
if you want to set the option by editing the probName.prf file. To set the component solving method in the
preference file, the ComponentSolvingMethod key must be set to the desired code number under the
ComponentSettings key for the component in question. When using a graphical user interface the
available choices are on a selection menu. Note that the solving method chosen will depend on the
component. For example, non-iterative components do not need any solution method. Y ou can examine the
probName.egs file to see how many break variables there are for each component.
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Table 11-2: Component Solving Methods

Method Code | Notes Reference
Newton-Raphson 0 | With or without relaxation (default). (Conte and de Boor 1985)
Perturbed Newton 1 Solves a perturbed nonlinear model with | (Dennis and Schnabel 1996)

Newton-Raphson. Very computationally
expensive but effective with badly-

conditioned systems.

Fixed point iteration 2

Successive substitution

Secant 4

Multidimensional secant (using
Broyden's update formula).

(Press, Flannery et al. 1988)
(Dennis and Schnabel 1996)

In addition to the basic solution method for a component, there may be parameters that control how the
method behaves. Available control parameters as shown in Table 11-3. For example, with Newton-Raphson
method you may want to use relaxation, whereby the calculated corrections to the break variables are only
partialy applied. Thisisachieved by using afractional relaxation coefficient. Additionally, in some casesit
may be beneficial to scale the Jacobian matrix.

The default valuesin the table are used only if the parameter in question is not defined in the probName.prf

file.

Parameter
[key in preferencefile]

Table 11-3: Component Solution Parameters

Allowed values

Notes

Minimum lterations An integer >=0 Minimum number of iterations to perform when
[MinlIterations] iterative solution is used. Default = 1

M aximum lterations An integer >0 Maximum allowed iterations when iterative
[MaxIterations] solution is used. Default = 50

Jacobian Evaluation Step Integer >= 0 The Jacobian will be re-evaluated only after this

[TrueJacobianEvalStep]

number of iterations. Default = 0 (Automatic
Jacobian evaluation). See Section 11.5.

Epsilon
[Epsilon]

A floating point
number >= 0.0

Change in independent variable used to evaluate
the partial derivatives for Jacobian calculation.
Default = O (see Section 11.5.1).

Step Control Method
[StepControlMethod]

Integer >=0

Controls the length of the step computed by the
component solving method to achieve “global”
convergence.

0 = (Default) Fixed relaxation;

1 = Backtracking, with basic halving strategy,
attempting to decrease the scaled Euclidean norm
of residuas,

2 = Backtracking with line search.®

3 = Affine invariant backtracking strategy.

4 (Dennis and Schnabel 1996) should be consulted for more details on the backtracking step control agorithm with line search.
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Relaxation Coefficient 0 < Floating point | Thisisamultiplier applied to the Newton-
[RelaxationCoefficient] number <= 1.0 Raphson calculated change to get the actual
change during the iteration.

o Fixed relaxation coefficient used with the step
control method 0.

¢ With the other step control strategies, thisisthe
initial relaxation coefficient used to start the
backtracking method.

Default =1.0
Minimum Relaxation Coefficient 0 < floating point Minimum relaxation allowed with the
[MinRelaxationCoefficient] | number<1.0 backtracking step control methods.

Default = 10°®
Scaling Method Integer >=0 Scales the Jacobian before using it. Default = 0.
[Scal ingMethod] 0= No scaing;

1 = full affine invariant scaling (row and column
scaling). See Section 11.7.3 for more details.

11.4 MATRIX SOLVING METHODS

In Newton-Raphson and related component solving methods a linear set of equations must be solved at each
iteration (see Section 2.5), yielding a correction to the current estimate of the cut set variables. By default,
SPARK will use Gaussian elimination to effect this solution. However, other options are avail able as shown
in Table 11-4. The code numbers are needed only if you want to set the option by editing the probName.prf
file. To set the matrix solving method in the preference file, the MatrixSolvingMethod key must be set
to the desired code number under the ComponentSettings key for the component in question.

Table 11-4: Matrix Solving Methods

Method Code | Notes Reference

Gaussian Elimination 0 Default (Conte and de Boor 1985)

Singular VValue Decomposition (SVD) 1 Poorly conditioned matrix. | (Press, Flannery et al. 1988)

Lower-Upper Factorization (LU) 2 (Conte and de Boor 1985)

Sparse LU 4 Sparse Matrix http://www.cise.ufl.edu/rese
arch/sparse/umfpack/

The sparse linear solution method is selected by specifying the value 4 for the key
MatrixSolvingMethod in the problem.prf file. This solution method uses the C library UMFPACK 4.0
developed by Tim Davis. Thelibrary implements the LU solution technigque with column reordering for
sparse linear systems. The linear solver does not rely on vendor-specific BLAS routines but instead on
vanilla C code, thus ensuring portability of the SPARK program. Gainsin calculation speed by many orders
of magnitude have been observed on large problems for which the Jacobian matrix is typically more than 90%
sparse.
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Table 11-5: Matrix Solving Method Parameters

Parameter Values Notes
[key in preferencefile]
Pivoting Method 0,1,2 Only used with the Gaussian Elimination matrix
[PivotingMethod] solving method.
0 = No pivoting;

1 = (default) Partia pivoting, row pivots;
2 = Total pivoting, rows and columns.*

Refinement Method O<Integer <5 | Only used with the LU solving matrix solving method.
[RefinementMethod] Indicates the number of refinement iterations.

11.5 JAcoBIAN EVALUATION METHODS

The following keys specified in the problem preference file allow you to control the evaluation methods for
the Jacobian matrix required by the various Newton-based iterative solution methods.

11.5.1 Scaled Perturbation for the Numerical Approximation of the Partial Derivatives

In SPARK, Newton-based iterative solution methods (i.e., Newton-Raphson) require the Jacobian matrix to be
computed. This matrix consists of the partial derivatives of the iterated system of equations with respect to
the break variables. These partial derivatives are approximated by forward finite differences.

For example, the partial derivative of the equation f(t, X, y) with respect to the break variabley is
approximated using the following formula:

oAxy)  Flt.xy+Aay,)-f(txy) (11.1)
oy AYep

Here, Ay, iscalled the perturbation value of the variabley. You can specify the value of the perturbation
value for each component using the keyword Epsi lon in the problem preference file (see Section 11.2.2).

The differencing procedure in digital computation is sensitive to roundoff error. The main source of difficulty
in computing the Jacobian matrix by finite differencing is the choice of the perturbation Ay . Consequently,

SPARK provides the option to use a scaled perturbation value to compute the partial derivatives. Thisis
done by specifying a0 value for the Epsi 1on component setting in the preference file for the component in
guestion.

For example, if you wish to use scaled perturbation in Component 0, the preference file should include:

ComponentSettings (
0 (
Epsilon ( 0 )

)

When Epsi lon is specified as zero, SPARK computes the scaled perturbation value for the variabley as:

4 The Gaussian eimination solving method with full pivoting is also referred to as the Gauss-Jordan elimination solving method in (Press, Flannery et
al. 1988).
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AYep =sign(y)-max ( |y|.|y+h-y|, atol (y))-~vURound (11.2)

Here, URound isthe machine unit round-off error. The derivative, Yy, with respect to the independent
variable (usualy time) is approximated using the explicit Euler scheme. Theterm |y +h- y| isincluded to
represent the predicted value for y at the next step. Thisis because even if |y| happens to be near zero, itis
quite possible that a nearby value of y is not so small, and selecting |y+ h- y| will prevent anear zero
perturbation from being used. In the event that |y and |y + h- Y| are both near zero, the absolute error
tolerance atol (y) isused as alower bound in the formulato prevent using too small a perturbation. Indeed,
by setting the error tolerance, you tell the SPARK solver that it is the smallest number which is relevant with
respect to the break variablesy in this component.

The formulain Equation (11.2) perturbs about half of the digits of the variable y when y is significantly larger
than atol (y). Finally, note that the sign of the perturbation Ay, computed with Equation (11.2) will be
negative if the solution is decreasing. Unfortunately, this choice is a potentially source of difficulty for
problems where some functions are undefined for y < 0 or not differentiableat y =0.

11.5.2 Jacobian Refresh Strategy
The key TrueJdacobianEvalStep inthe problem preference file specifies the iteration frequency at
which the Jacobian matrix is evaluated. For example, setting

TrueJacobiankEvalStep (1 ())

indicates that the Jacobian matrix for the strongly-connected component in question will be evaluated at each
iteration.

For example, setting the value to 5 indicates that the Jacobian matrix will be refreshed after 5 iterations,
starting at the first iteration of each new time step.

11.5.3 Automatic Jacobian Refresh Strategy

Refreshing the Jacobian matrix is a costly operation that requires firing the system of equations as many times
asthere are break variables in the strongly-connected component. Therefore, an efficient solver should try to
minimize the number of times the Jacobian matrix needs to be refreshed in order to still achieve fast
convergence of the solution methods.

By setting in the problem preference file
TrueJacobiankEvalStep ( 0 ( ))

the Jacobian will be refreshed automatically and “optimally” by the SPARK solver whenever it is needed to
ensure satisfactory convergence.

By default, the SPARK solver uses the automatic Jacobian refresh strategy unless specified otherwisein the
problem preferencefile.

The automatic refresh strategy is based on the convergence behavior of the scaled increment norms between
successive iterations. The Jacobian matrix is refreshed whenever the convergence rate ®“*? becomes
greater than the user-specified Jacobian refresh ratio © 5, pen -
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_ X

B 1 Ay
D ax]

k+1
e >0 e (11.3)

The value of the Jacobian refresh ratio is set by default to 0.5 in the SPARK solver. Thus, we reguest that the
increment norms be at |east halved between successive iterations otherwise the Jacobian matrix is refreshed at
the next iteration.

The value of the Jacobian refresh ratio can be changed by specifying a positive floating-point value less than
or equal to one with the key JacobianRefreshRatio inthe problem preference file. For example,
setting in the problem preference file

JacobianRefreshRatio ( 0.01 ( ))
forces the Jacobian matrix to be refreshed at every iteration for which the increment norm has not been
decreased by at least two orders of magnitude since the previous iteration.

11.6 CONVERGENCE CHECK STRATEGY

11.6.1 Notation
We introduce the notation x® to refer to the values of the vector x at the iteration k.

The notation x™ refersto thei-th element of the vector x at the iteration k.

However, a superscript not enclosed within brackets refers to anormal power applied to the variable, e.g. X
refers to the square of the vector x.

The notation D;; refersto the element in row i and column j of the matrix D.

Finally, the notation ||| refersto the norm of the vector x,

11.6.2 Scaled Stopping Criterion for Iterative Solution

Consider the natural stopping criterion for a Newton method in itsunscaled form. That is, at iteration (k+1),
for the vector x of the unknown variables, the convergence criterion requires that the iteration error err be
smaller than the prescribed tolerance tol . Theiteration error err = X' — x™ is reasonably estimated by the

iteration increment AX® = x** —x® since the Newton method converges quadratically near the solution

X .

o =[x
stop, if err <tol (11.4)
tol : prescribed (required) tolerance (accuracy)

In this unscaled form, err is ameasure of the absolute error of the numerical solution x**?.,

Notethat AX™® isthe true iteration increment that factors in the effect of any relaxation coefficient. Thus, if
we apply arelaxation coefficient 0< 1% <1 at the current iteration (K), the iteration increment used in the
convergence check would be related to the Newton step A\ . through :
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Ax® = 209 Ax®

Newton

=28 3(x¥) " F (x®) (115)

A proper internal scaling procedure plays an important role for the efficiency and robustness of any
algorithm. A desirable property of an algorithmisthe so-called scaling invariance. Thismeans, e.g.,
rescaling of some or all components of the vector of unknowns, x, (say, from mm to km) should not affect the
algorithmic performance, athough the problem formulation may change.

SPARK employs a scaled tolerance test as the stopping criterion used to decide when to terminate the iterative
solution of astrongly connected component. The scaled tolerance test for the problem variable X , at the

iteration (k+1), is

(k+1) (k)

err (x9) = |22 <tol (11.6)
scale(x")

where scale(x™ ) isthe scalefor the variable X based on the value at the iteration (k). In this scaled form,

err(>g("*l)) becomes a measure of therelativeerror in X,

The value of the relative tolerance tol is specified with the key Tolerance in the problem preference file
for each strongly connected component.

It is recommended to use the same value of the relative tolerance for al strongly connected components to
ensure that the global relative tolerance achieved in the solution of the entire problem is consistent. If one
component is solved with alarger relative tolerance then the accuracy achieved in all components
downstream will be limited by this larger value no matter what their individual, possibly stricter, relative
toleranceis.

11.6.3 Prediction Convergence Check

Before the first iteration, the residual function F (x(o) ) is evaluated with the predicted values for the break
variables X' . If the following condition

err(F ()g(o))) - SC';(e)z)g(())))

holds for the residual function associated with the break variables, then the predicted solution X is accepted
as the converged solution without proceeding with any further iteration. Because the convergence test occurs
in the residual space, the tolerance test is typically made stricter by multiplying with Safetypred <1. By

< safety,, o -tol,i=1...n (11.7)

default, safety, ., =0.01 inthe solver.

Thistest isintended to avoid iterating when the predicted state of the underlying system is already very close
to the solution because:

e thepredictionisvery good (e.g. when restarting from a snapshot file), or

e the dynamic problem has almost the same solution as at the previous time step (e.g. steady state solution).

This prediction convergence check has two main disadvantages:
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e thenon-break variables are not checked against their individual scaled tolerance, which can lead to aloss
of accuracy (depending on the requested tolerance on the non-break variables and on the transfer function
from the break variables to the non-break variables); and

e hidden residual inversesof theform x =X +residual(...,X,...) may be scaled improperly with

. |oresidual....x,..)|

scal e( x© ) - ‘ < 1, which in turn might lead to undesirable early convergence
)g

during the prediction.

To avoid these situations, it is possible to set the prediction safety factor gafetypred in the problem preference
fileusing the key PredictionSafetyFactor. For example, setting in the problem preferencefile
PredictionSafetyFactor ( 0 Q)

ensures that the convergence check will never be satisfied during prediction unless the residua function
F(x®) isexactly nul.

11.6.4 Iteration Convergence Check

The solution at the iteration (k+1) in a strongly-connected component is accepted if the following conditions

X _ 0 _
a) er(xY)= perv ey <A™ . safety, -tol,i=1...n

scale(x") (11.8)

YD _ 0 . '
b) err(y}k*l)):ﬁSSafetyy-tol,le...m

scale(y[)

hold for each break variable X and each non-bresk variable 'y, , where A, isthe relaxation coefficient for
the current iteration.
Factoring in the relaxation coefficient in the convergence test a) for the break variables ensures that

convergence will not be wrongly detected due to the application of a small relaxation coefficient when
updating the iterate (k+1).

11.6.5 Safety Factors

The iteration safety factors appearing in Equation (11.8) for the break unknowns x and the normal unknowns
y can be set using the safety factor parameters defined in the problem preference file. The safety factors

safety, and s%stfetyy are computed from the preference parameters with the following equations:

a) safety, = BreakUnknownSafetyFactor - IterationSafetyFactor

: 11.9
b) safety, = Normal UnknownSafetyFactor - IterationSafetyFactor (11.9)
The iteration safety factor IterationSafetyFactor is set to 0.9 by default. It can be changed using the key
I terationSafetyFactor inthe problem preferencefile.

The two other parameters BreakUnknownSafetyFactor and Nor mal UnknownSafetyFactor let you control the
convergence check for each type of unknowns. Default values for these parameters are 1, as by default
SPARK applies the same safety factor in the convergence check for al unknowns. However, if you want to
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relax the convergence check performed on the normal unknowns, you can simply set the entry for the key
NormalUnknownSafetyFactor to avaue bigger than 1. Similarly, the safety factor for the break
unknowns can aso be changed using the key BreakUnknownSafetyFactor in the preferencefile.

11.6.6 Relaxed Convergence Check

If convergenceis not achieved after the maximum number of iterations specified with the key

Max I terations inthe problem preferencefile, then SPARK performs arelaxed convergence check. The
relaxed convergence check consists of using the maximum rel ative tolerance specified with the key
MaxTolerance in the problem preference file in place of the normal relative tolerance specified with the
key Tolerance.

(k+1)

(k)
er ()ﬁ(kﬂ) ) = Xll—()(i)) < ﬂ,(k) . Safety'tOIrdaxed , i=1..n (1110)
scale| X

where tol .., isset to thevalue of MaxTolerance.

The scales scal e( X ) are not re-computed to reflect the new relative tolerance requirement based on

tol s - Thus, the relaxed convergence check also relaxes the accuracy requirement with respect to the
absol ute tolerance for each problem variable.

If tOl, e > Ol , then the number of significant digits achieved in the solution for the variables not too near

to their respective absol ute tolerance specifications will be reduced from —log,, (tol ) to —10g,, (t0l, e ) -

The relaxed convergence test is based on the break variables only as opposed to the iteration convergence
check, which aso enforces the convergence check on the non-break variables.

If the previous condition for the relaxed convergence test holds, then SPARK writes awarning to the error log
file and proceeds with the simulation; otherwise SPARK terminates with a convergence error message. The
relaxed convergence check mechanism lets you carry out a dynamic simulation over multiple time steps until
the final time even though a few time steps might not have been computed with the full desired accuracy.

The relaxed convergence check can be turned off by setting MaxTolerance to avaue smaller or equal to
Tolerance in the problem preferencefile.

11.7 ScALING METHODS

11.7.1 Variable Scaling Procedure

To achieve scaling invariance in the error estimation and to avoid the difficulties arising from near-zero
problem variables the following scaling strategy is applied:

e initial update
typ(x”) =[x (11.11)

e teration update (taking into account two successive iterates)

op(x) -3 w2
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e scaling procedure
scale( ") = max {typ(x(k) ). threshold (x™ )} (11.13)

where the threshold value threshold ()g(k)) for scaling must be strictly positive and is specific to each
variable X .

Note that the actual value of threshold ()g(") ) determines a switch from a pure relative norm to a modified
absolute norm for each problem variable.

Aslong as ‘)g(k)‘ > threshold ()g(") ) , this problem variable contributes

AXY)

to the norm, whereas for ‘)g(k)‘ <threshold (x"') this problem variable contributes

A)g(k)
threshold (")

to the norm.
Defining the Absolute Tolerance for Each Problem Variable with the ATOL Property

The threshold value threshold (X ) is specific to each problem variable and is derived from the absolute

tolerance value atol (x ) specified for each unknown variable with the ATOL keyword in the LINK, PORT or
PROBE statements.

atol (x
threshold (x ) = atol(x) (11.14)
tol
The ATOL property should be set to the absolute value at which the variable in question is essentially
insignificant, i.e. it isno longer necessary to request further accuracy in terms of significant digits for values

smaller than the absolute tolerance. By default, the ATOL property is set to 10° if it is not explicitly specified
for avariable.

For example, the following statement in a SPARK classfile or problem file indicates that the absolute
tolerance for the variablemassFlow isto be set to 107™ :

LINK massFlow ol1l.m 102.m |INIT=0 ATOL=1.0E-10 [kg/s];
Of course the value of the absol ute tolerance depends on the physical units used in the problem formulation.
However, changing the requested rel ative tolerance with which to solve the problem does not impact the

choice of the absolute tolerance since the threshold value is automatically adjusted to reflect the new
prescribed rel ative tolerance.

Achieved Accuracy
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Such a scaled tolerance requirement is necessary to achieve convergence with a consistent number of
significant digits, p, for variables with different orders of magnitude.

For aproblem variable |>§ | > threshold () , the relationship between the relative tolerance and the number

of significant digits, p (indicating the number of correct decimal leading digits in the mantissa of each
problem variable X independent of the actual exponent) achieved in the solution is:

p=—log,(tol) (11.15)

For aproblem variable |)§ | <threshold () , the number of correct digits p in the mantissais:

p =~ 1ogy, (tol )~ [10gy, (% ) ~log,, (scale(x)) | (11.16)

In other words, the absolute error for each problem variable, in both cases, is approximately given by:
abs_err(x ) ~tol - scale(x ) (11.17)

11.7.2 Scaled Norms and Implications for the Solution Methods

In SPARK, we use scaled norms in place of the usual unscaled norm in order to obtain norms that are scaling
invariant. The scaling matrix and norm used in the code are given by:

a) D =diag(scale,...,scaleg, )
. 2 (11.18)
i v,
) M lo - 32
i=1 i
In SPARK all vector norms ||v|| are Euclidean norms (ak.a. 2-norms) unless specified differently.

In the Variable Space

The described scaling procedure yields reasonable values for the scaled norms used in SPARK in the variable
space. For example, when we report the variable increments norm it is assumed that it is the scaled norm of
the increments that is computed:

8¢ 0 =[2. "2 (11.19)

where the scaling matrix D, isthe diagonal matrix with the scales Scale(x ) for each problem variable X
(See Equation (11.13)).

In the Residual Space

However, norms computed in the residual space tend to be more difficult to make scaling invariant. An
unscaled termination criterion in the space of the residuals

|F (x)|<tol (11.20)

neither controls the error in the computed solution nor shows any invariance property. In order to realize
invariance against arescaling of the residuals, one may use a scaled check, e.g.
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[F ()] = H D *-F (X)H <tol (11.21)

scaled

where
D, = diag(typ(Fl(x)),...,type(Fn(x))) with Dy, >0,i=1...n (11.22)

However, the selection of the typical values typ( F (x)) for the residualsis arbitrary. Furthermore, it is not

obvious how to develop an adaptive selection of further scaling matrices when the residual function F (x)
evolves over successive iterations.

To avoid such a situation, SPARK checks for convergence in the variable space after the prediction step (see
Section 11.6.4).

11.7.3 Total Internal Scaling of Linear Systems

All component solving methods in SPARK except for the fixed point iteration require solving a linear system
of the following general form in order to compute the Newton step:

J-Ax=-F(x) (11.23)
Thisis solved for the increment vector AX using the vector of residuals F (x) and the Jacobian matrix J

that contains the partial derivatives of the residuals with respect to the vector of break variables X.

In order to have scaling invariance for the linear system solution, the associated linear systems can be
internally scaled by setting the scaling method to 1 in the problem preferencefile.

ScalingMethod (1 ())

The scaling method in SPARK implements a fully affine invariant scaling scheme in both the variable space
and the residual space by applying column scaling and row scaling to the linear system. This scaling
approach makes the solver operation less sensitive to changesin the variables’ units and to equation
formulations where the variables show very different orders of magnitude. In particular, a user rescaling of
the dependent variables does not change the performance of the linear solver.

The total internal scaling consistsin solving the following row- and column-scaled linear system:
(D.*-3-D,)-(D,*AX)=-D. *-F (x) (11.24)

Herein, D, isthe diagonal matrix with the scales Scale()g ) of the break variables, updated at each iteration
using the scaling scheme described in Section 11.7.1.

D, = diag(scale(x,)...., scale(x, ) (11.25)
D; isanother diagonal matrix.
D, =diag(d,,...,d,) (11.26)

Let (J -D, )ij denote the elements of the column scaled Jacobian J - D, . Thentheresidual scale d, is
calculated according to
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d; = max
1<j<n

(3-D,),|, i=L..n (11.27)

If you encounter convergence difficulties with the solution of a SPARK problem, the fully affine invariant
scaling scheme should be selected in the problem preference file to improve the operation of the nonlinear
solver.

By default, the SPARK solver does not perform the total internal scaling of the linear systemsin order to
avoid the associated performance penalty.

11.7.4 Detection of an lll-Conditioned Problem

Assume that the nonlinear problem

a) F(x)=0xeR"

o (11.28)
b) x giveninitial guess
iswell-scaled, i.e., unscaled norms yield meaningful numbers. If the situation
|AX| < tol with |F ()| "large" (11.29)

holds, the underlying problem is said to beill-conditioned. That means that alarge value for HF (X)H may

occur even for x= fl oat(x* ) since X can't be represented exactly due to the finite length of the mantissa.

For a badly-scaled problem, a check for the condition of the problem must rely on scaled norms. The
following situation

H D" AXH <tol with H D.F (x)H "large” (11.30)

indicates an ill-conditioned problem, provided that the scaling matrices are properly chosen. 1ll-conditioned
problems are numerically difficult to solve because the achievable precision might be limited.

In the case of anon-converging, ill-conditioned problem, you should consider relaxing the tolerance
requirement (the relative tolerance and the absol ute tolerances for the worst offending variables) in order to
obtain atrustworthy solution albeit with less accuracy.

11.7.5 Implication for the Backtracking Step Control Methods

The step control methods based on the backtracking approach (i.e., the basic halving strategy and the line
search strategy) aim at minimizing a cost function f based on the norm of the residuals by adapting the
relaxation coefficient to be applied at each iteration.

. 1 2
min f (x)= EH F(x) (11.31)
Itisclear that if the units and/or orders of magnitude of two components of the residual function F (x) are

widely different, then the smaller component function will be virtually ignored by not contributing much to
the norm of the residual function.
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For this reason, the backtracking algorithms in SPARK use a positive diagonal matrix D on the dependent
variables F (x) . The diagonal matrix is chosen so that all the components of F (x) will have about the

same typical magnitude at points not too near the root. Thus, the cost function defined in SPARK is

min f (x) = %Hc‘)l F (11.32)

xeR"

The residual functions F, (x) are derived from the directed inverses inverseg (x) assigned to each break

variable X in the atomic classes:

F (x)=inversg(x)-x,i=1..n (11.33)

Because each residual function F (X) depends on the break variable X , the default choice in SPARK for the
matrix D isthe variable scaling matrix D, .

However, if the linear system is scaled using the total internal scaling scheme (see Section 11.7.3), then
SPARK uses the internally computed, row scaling matrix D in place of the matrix D to compute the cost
function. Thisisabetter choice asit takes into account the dependency on all x's and not just on X for each
inverse inverse (x) .

Thus, selecting the total internal scaling scheme impacts the operation of the nonlinear solver by modifying
the cost function used with the backtracking step control methods. Therefore, if aproblem failsto converge

with the scaling method turned off, convergence can sometimes be achieved when re-computing the same step
with the scaling method turned on (and vice versa).
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12 DEBUGGING SPARK PROGRAMS

Often SPARK will find calculation sequences leading to successful problem solution without intervention.
However, solution of nonlinear differential and algebraic equations is not easy, even for SPARK, and in some
cases you may get error messages. These may be during theinitial processing where your input is being
parsed, while executing the setup program that converts it to a solver program, or during execution of the
solver program, i.e., a run time.

12.1 PARSING ERRORS

Parsing errors are usually syntax errors, asin any programming language. These errors are reported in the
parser.log file, normally placed in your project directory. They should be easy to interpret, but if not the
command reference in Section 19 may be helpful.

12.2 SETUP ERRORS

During the setup phase SPARK may have other difficulties due to input errors. For example, you may have
specified a problem for which no matching can be found between equations and variables. This can happen
even if you have an equal number of equations and free variables (i.e., links). Asan example of this, consider
the 4sum problem when x1, X5, x6, and X7 are specified asinputs. Thisis not well-posed because it over-
determines the equation for s3 while under-determining s2. SPARK will report such errors as “ unable to find
amatching”. Subtle errors of this nature can occur in development of complex models. Setup errors are
reported in the setup.log file.

Unfortunately, lack of matching can also arise for well-posed problems if you have not provided enough
inverses for your atomic objects. Complex models involve equations that maybe difficult to invert, even with
symbolic algebratools. Conseguently, it iscommon for SPARK users to omit the difficult inverses for some
equations, providing only those easily come by. Usually, thisis acceptable practice since SPARK explores
many paths to a get a solution sequence and usually finds one.

However, if you are experiencing matching problems and have omitted some inverses you may want to
consider using residual inverses (See Section 8.7) or default residual inver ses (See Section 8.8) to facilitate
the matching process.

12.3 SoOLUTION DIFFICULTIES

Even after SPARK has successfully created a solver program there can be difficulties in finding a solution.
Thisis because of the nature of nonlinear systems of equations, with which numerical analysts have been
struggling for many years. Here we are referring to convergence difficulties; the solver iterates the maximum
allowed number of times (set by default to 50) without bringing the solution into the error tolerance (default

valueis 10°%). If you work with complex systems, resolving these difficulties is the greatest challenge you
will face. Runtime errors are reported to the run log file. More detailed error messages and diagnostic can be
found in the error log file (see Section 16.1).

With SPARK, you attack convergence problems in two basic ways. estimating better values to start the
iteration, and by trying to alter the solution sequence. The importance of good iteration initial valuesiswell
known; in this regard, the only difference between SPARK and other simulation tools is with SPARK, due to
reduction in the number of iteration variables, you do not have to specify as many guess values. We discuss
how to set initial iteration valuesin Section 7.2.

The second strategy, controlling the solution sequence, is based on the observation that iteration can usually
be done many different ways, often differing in the direction in which calculations flow around cyclesin the
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problem graph. Sometimes convergence can be achieved by calculating in the opposite direction.
Consequently, SPARK provides syntax in the definition of problems and classesin order to control, indirectly,
the calculation direction. Y ou can always see the solution sequence chosen by SPARK in the .egs file
produced by the setup program. Open this file with a suitable viewer or editor and use it as guide in
understanding and improving your problem solution sequence.

MATCH_LEVEL isvery effectivein reversing the direction of calculationsin SPARK. By default, matchings
are found based only on order of objects and links found in the problem specification file. By forcing or
encouraging a different matching you can often improve numerical performance, and perhaps achieve
convergence.

The relevant keywords are MATCH_LEVEL and BREAK_LEVEL. Each can be set to avalue between 0 and
10. When left unspecified, these levels default to 5. The MATCH_LEVEL keyword isplaced inaL INK or
PORT statement, and specifies the relative desirability of matching that link variable to a particular object in
the LINK statement. For example,

LINK x a_obj.pl MATCH_LEVEL = 10, b_obj.p3;

tells SPARK that you would prefer that object a_obj should be matched with the x problem variable. You
could say somewhat the same thing by the statement

LINK x a_obj.pl, b_obj.p3 MATCH_LEVEL = O;

which says you would prefer that x not be matched with object b_obj. Provided that you not simply
encourage selection of the matching that would be found by default, the direction of calculationsin the
problem will bereversed. Currently, the second form is stronger that the first due to the implementation of
the matching algorithm used in SPARK.

BREAK LEVEL parallelsthe MATCH_LEVEL idea, but appliesto the discovery of acut set, i.e., selection of
variablesto break cyclesin the problem graph. When thereisacycle, usually many problem variables are
encountered as you work your way around the loop. It is easy to see that any of these variables will break the
loop. By default, SPARK sets break preferenceto 5 for all variables, so the break selected is determined
solely by order in the problem definition. Y et, there are sometimes arguments for preferring one over
another.

A simple example is based on starting value availability. If you have the choice of breaking on enthalpy or
temperature, you may prefer the latter simply because you are likely to be able to better estimate iteration
starting values for temperature. Some analysts also fedl that different break variables |ead to better
convergence. However, the “gain” around the loop is going to be the same regardless, so this may not be a
strong argument. Nonetheless, if you have any reason or hunch that a particular variable would be a better
break, giveit ahigh BREAK _LEVEL. Todo so, includeit inthe LINK statement:

LINK x a_obj.pl BREAK_LEVEL = 7, b_obj.p3 MATCH_LEVEL = 10;

In the current implementation, matching and break levels only encourage SPARK to match or break the way

you wish. Thisis because we wanted to give SPARK maximum opportunity to find solution sequences, and
denying certain matchings and breaks may prevent any solution at all. In later versions we may also provide
forced matchings and breaks.

Finally, it should be noted that these are only indirect tools, sometimes having little or no effect on the
solution sequence. For example, setting BREAK_LEVEL on alink that does not happen to bein acycle will
have no effect, and as aready noted setting aMATCH_LEVEL to force a match that is selected by default is
also ineffective.
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12.4 TRACE FILE MECHANISM

Sometimes it may be helpful to see intermediate results of the iterative solution process. Thisis especially
important when your problem is experiencing convergence difficulties. 'Y ou can get such output by using the
TraceFi les segment under the key ComponentSettings for the component in guestion in the
probName.prf file. Thisisdone for individual components.

As with solution control parameters (see Section 11), setting this flag is done most conveniently with the aid
of a SPARK graphical user interface. Otherwise, you can edit the probName.prf file directly with any text
editor.

The TraceFi les segment has five allowed values as shown in Table 12-1.

Table 12-1: Keysand Valuesfor the TraceFiles Segment
TraceFiles Key and Value Meaning

) No trace output.
Jacobian (FfileName () ) Jacobian of residual functions printed whenever it is recomputed.
Increments (FileName () ) | Incrementsof al variables printed at every iteration.

Residuals (fileName () ) Break residuals printed at every iteration.
Variables (fileName () ) All problem variables printed at every iteration.

Within each component, you can specify up to four trace files entries with the name of each file preceded by
one of the keyslisted in Table 12-1. Each key specifies the type of the trace file that will be written to the file
following the type key. For example, the following segment could be inserted in ComponentSettings 0
of a problem preference file:

ComponentSettings (

0 (
+raceFiIes (
Jacobian ( spring_jac.trc ()
Increments ( spring_inc.trc ())
Residuals ( spring _res.trc ())
Variables ( spring_var.trc ()
)
)

Any file name with the extension .trc can be used, except it cannot be repeated. That is, you cannot use the
same file name for tracing in the same component, or in a different component.

If no trace files are wanted, the TraceF i les segment for the component should be:
TraceFiles ()

Finally, note that only the variable tracing option is available with weak components.
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12.5 PROBLEM-LEVEL DIAGNOSTIC MECHANISM

In addition to the trace facility (see Section 12.4), SPARK has a problem-level diagnostic facility. To usethis
feature, the DiagnosticlLevel keyword must be set to something higher than 0 in the problem run-control
file (see Section 18). The different modes trigger increasing level of diagnostic to the run log file.

The default mode is the silent mode. To combine diagnostic modes, you add the corresponding flag values
and specify the resulting value for the DiagnosticLevel key. For example, to produce diagnostic about
the input mechanism, the report mechanism and the simulation statistics, the value 2+4+16=22 should be
specified for theDiagnosticLevel key.

Table 12-2: Problem-level Diagnostic Flag Vaues

Mode Flag value Description

Silent 0 No diagnostic. Default mode if no diagnostic level is
specified.

Show convergence 1 At each iteration, the convergence progress is reported for

each component. Includes scaled residuals’ norm,
convergence error, requested tolerance, name and val ue of
the worst-offender variable.

Show inputs 2 All variables read from input files or URL are listed
before the beginning of the simulation.

Show reports 4 All variables tagged as REPORT are reported with their
names and values at each step.

Show preference settings 8 Loaded preference settings are written out before the
beginning of the simulation.

Show simulation statistics 16 Simulation statisticsis produced at the end of the
simulation.

Show requests 32 Internal and external requests are traced over the course of

the ssimulation.

12.5.1 Description of the Inputs Diagnostic Mode

When the inputs diagnostic mode is selected, the variables for which values are specified in input files or
through Read URL s are written to the run log file before the start of the simulation, listed with the associated
input information:

e the name of the file where the variable name is referenced; and

e the column number containing the values for the variable, starting with column 1 for the first column
after the time stamp.

12.5.2 Description of the Reports Diagnostic Mode

Similarly, when the reports diagnostic mode is selected, the variables defined with the keyword REPORT in
the problem description and/or the map file (See Section 14.4) are listed with the associated reporting
information:

e the name of the file where the variable name is written to; and

e the column number containing the values of the reported variable, starting with column 1 for the first
column after the time stamp.

Then, at each report time, the values for the REPORT variables are written out to the run log file at the end of
the step.
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12.5.3 Description of the Convergence Diagnostic Mode

When the convergence diagnostic mode to show the convergence process is selected, SPARK writes to the run
log file information about the convergence process for the solution of each strongly connected component.
The next screenshot shows the convergence diagnostic typically displayed for the solution of a strong
component at one time step.

STATIC STEP: Problem(room_fc), StepCount(3), Time(360), TimeStep(180)

—-—-- Component(0) : tol(1e-006), maxtol(0.001), iteration(l...50) ---

# Residuals Increments Relaxation #Break #Normal Error Test Worst-offender variable
P O 6.0074e-002 N/A N/A 2 0 6.0000e-002 8e-009 [break] Ta = 2.500000e+001
1 2.0262e-010 3.0014e-001 1.00e+000 2 4 2.0598e-001 8e-007 Q_fFloor = -2.582216e+002
2 0.0000e+000 9.5479e-010 1.00e+000 O 0 6.5125e-010 8e-007 T_floor_dot = -2.582216e-004
Step Stamp

Thefirst lineis called the step stamp of the diagnostic report:
STATIC STEP: Problem(room_fc), StepCount(3), Time(360), TimeStep(180)

It indicates:
e thetype of step currently being solved, i.e., either a static step or adynamic step;
e following the tag Problem, the name of the problem being solved;

e following the tag StepCount, the step count starting at one for the first computed step (usually the
initial time solution);

e following the tag Time, the current value of the GLOBAL_TIME link; and

e following thetag TimeStep, the current value of the GLOBAL_TIME_STEP link.
Diagnostic reported at a new step always starts with such a step stamp.
Component Stamp

Following the step stamp, diagnostic about the convergence processis reported for each strongly connected
component in the order in which they are solved. It starts with the component stamp

--— Nonlinear solver for Component(0) : tol(1e-006), maxtol(0.001), iteration(l...50) ---

which indicates;

¢ theevaluation order of the component in the solution sequence generated by setupcpp, starting at zero
for the first component;

o followingthetag tol, the value of the prescribed relative tolerance — specified with the key
Tolerance in the problem preference file —;

o following the tag maxtol, the value of the relaxed relative tolerance — specified with the key
MaxTolerance in the problem preference file— and

o following thetag i teration, the minimum number of iterations to be performed and the maximum
number of iterations allowed in the nonlinear solver — specified respectively with the key
Minlterations and Maxlterations in the problem preferencefile.

Prediction Diaghostic

Then, the convergence diagnostic is reported on a different line for each iteration of the nonlinear solver
shown in the column ‘#’.
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The diagnostic begins by reporting the prediction state of the component, identified with the iteration count O
preceded by the letter ‘P’.

P O 6.0074e-002 N/A N/A 2 0 6.0000e-002 8e-009 [break] Ta = 2.500000e+001

The prediction state is computed by firing the system of directed inverses comprising the current component,
using the predicted values for the break variables. For the prediction iteration, the following diagnostic data
is reported:

e showninthecolumn ‘Residuals’, the scaled Euclidean norm of the residual function;

e showninthe column ‘#Break’, the number of break variables that failed the prediction convergence
test;

e showninthe column ‘#Normal’, the number of hon-break variables that failed the prediction
convergence test; and

o theworst-offender variable during the prediction convergence test with:
0 inthecolumn‘Error’, its convergence error;
0 inthecolumn‘Test’, the tolerance test to be satisfied by the convergence error; and finally
0 inthecolumn‘Worst-offender variable’, itsnameand current value.
If the worst-offender variable is a break variable, then the variable name is preceded by the tag ‘ [break]’.

Thetag ‘N/A” in some of the columns indicates diagnostic data that does not apply because it does not make
sense in the present context or cannot be calculated for this iteration.

Iteration Convergence Diagnostic

After the prediction diagnostic, the convergence process is reported for each successive iteration of the
nonlinear solver.

1 2.0262e-010 3.0014e-001 1.00e+000 2 4 2.0598e-001 8e-007 Q_floor
2 0.0000e+000 9.5479e-010 1.00e+000 O 0 6.5125e-010 8e-007 T_floor_dot

The following diagnostic datais displayed:

-2.582216e+002
-2.582216e-004

e theiteration count in the column ‘#’;

¢ inthecolumn ‘Residuals’, the scaled Euclidean norm of the residual function for the current
iteration;

e inthecolumn‘Increments’, the scaed Euclidean norm of the iteration increments for both the
non-break variables and the break variables;

e inthecolumn ‘#Break’, the number of break variables that failed the iteration convergence test;

e inthecolumn ‘#Normal’, the number of non-break variables that failed the iteration convergence
test; and

o theworst-offender variable during the iteration convergence test with:
0 inthecolumn‘Error’, its convergence error;
0 inthecolumn‘Test’, the tolerance test to be satisfied by the convergence error; and finally

o inthecolumn ‘Worst-offender variable’, itsname and current value.

Relaxed Convergence Diagnhostic
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If convergence against the relative tolerance is not achieved after the maximum number of iterations allowed,
SPARK performs a convergence test using the relaxed relative tolerance to decide whether or not to proceed
with the simulation. The diagnostic report for the relaxed convergence test begins with the letter ‘R’ and
shows the iteration diagnostic data again but for the relaxed relative tolerance.

12.5.4 Description of the Statistics Diagnostic Mode

The statistics diagnostic mode provides information at the end of the simulation on:

e the problem topology (i.e., decomposition of the solution sequence in weak and strong components,
number of unknowns and break variables, etc.);

e thenumerical performance of the nonlinear solver called by each strong component;
e thenumerical performance of the linear solver used by each nonlinear solver; and

e the preference settings used for the solution of each strongly-connected component.

Information such as the number of function evaluations and the average solution times can be used to
compare the computational efficiency of the solver. This can be useful to assess the best numerical
formulation for a physical model (e.g., generated with different MATCH_LEVEL and BREAK_LEVEL
specifications) or the best preference settings to solve a problem.

The number of function evaluations required for the solution of a problem isindependent of the hardware
configuration and therefore offers a good basis for comparison across multiple platforms, unlike the statistics
about the average solution times. However, it should be noted that the computational |oad associated with a
function evaluation depends on the implementation of the inverse function in question. Thus, the statistics
about the number of function evaluations do not always reflect the overall solution time. This explains why
the statistics log file reports both data to produce an accurate picture of the numerical performance.
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13 THE NATIVE INPUT FILE MECHANISM

Values for problem variables can be provided in SPARK input files for discrete time stamps specified in
strictly increasing order. This mechanism is referred to as the native input file mechanism because it provides
supports for reading from SPARK input files (See Section 13.3).

To read values from filesin a different format, you should use the Read URL mechanism (See Section 14).
By default, input values required at runtime will be obtained with the native input file mechanism. However,
if avalid Read URL string is specified for avariable, the URL mechanism supercedes the native mechanism
for this variable.

It is sometimes more convenient to use multiple input files, thus allowing different time stamp sequences for
different set of variables. See Section 7.6 for examples of when this might be useful. Theinput files are
specified in the InputFi les segment of the probName.run file. See Section 18 for more details on the
format of the run-control file.

At runtime, the SPARK input manager opens each of the listed input files and identifies where to search for
valuesfor each variable. Then, at every time step the input values are read from the input files and assigned
to the variables at the discrete time stamps.

13.1 PRECEDENCE RULE

The input manager does not distinguish between constant and time-varying values. All variableswill be
sought from the input files specified for the problem.

If avariable does not appear in any input files, then its default value as specified in the problem description
will be used instead.

If avariable appears in more than one input file, then the value for the variable will be read from the last
occurrence in thelist of input files. Therefore, the order in which you specify the input filesin the run-control
fileisimportant.

13.2 EVALUATION RULE

The input manager always interpolates linearly between the values corresponding to the time stamps specified
in the input file around the desired time.

If the desired time is past the last time stamp specified in the input file, then the input manager returns the last
specified value without extrapolating.

If the desired time is prior to the first time stamp specified in the input file, then the input manager returns the
first specified value without extrapolating.

13.3 FILE FORMAT

To accommodate time-varying inputs, an input file has the tabular form :

N varl var?2 var3 varN

t0 vall O val2_0 val3 0 valN_O
tl vall 1 val2_1 val3_ 1 valN_1
t2 vall 2 val2_2 val3 2 valN_2

*
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Herevari arethevariable namesand vali_j aretheir values at timestj, where i indicates the column
number where to read the value (starting at O for the first column containing the time stamps) and j indicates
the position of the time stamp in strictly increasing order. The entry N in the first column of the first row
indicates the number of variables for which values are specified in each following row of the input file.

Thefina linewith only **’ init isoptiona and indicates that all values remain fixed from that point forward.
This means that the last values defined in the file will be read at each time step past the last time stamp.
However, if thereisno final line with **’ in the input file, then the input manager will not read the valuesin
the file after the last time stamp.

Constant values have the same value repeated at each time stamp.

13.4 PROPERTY READER

The input manager also allows reading in the propertiesMIN, MAX, INIT and ATOL from input filesfor
each problem variable, at specified time stamps.

It is recommended to write the values for the different property typesin multiple files, where each file
contains values only for one property type. Writing the values for the properties in an input file prevents you
from having to rebuild the problem when changing the values of an INIT property or of an ATOL property
for some variables between successive simulation runs of the same problem.

13.4.1 How to Specify a Property in an Input File

In an input file, the syntax required to indicate a property consists in the name of the variable followed by * -’
and the name of the property in question. For example, X - ATOL refersto the property ATOL of the problem
variable named X.

Following is an example of an inpuit file that specifies the absolute tolerance values of three variables for the
time stamp O.

3 X:ATOL Y:atol Z:Atol
0 1.0E-6 1.0E-12 1.0E-4

The name of the variable is case sensitive whereas the name of the property is not case sensitive. The
property qualified variable names that cannot be parsed for avalid property name by the input manager are
reported to the file error.log aswarnings. Thisfile should be consulted by the user to identify possible typing
mistakes.

13.4.2 When Properties Are Read from Input Files

The input manager reads in the values for the INIT properties for all problem variables only once at the
initial time.

The input manager attempts to read in the values for the other properties (i.e., the propertiesMIN, MAX and
ATOL) at the beginning of each time step until the final simulation time is reached.

For example, if the simulation cannot converge because the absol ute tolerances specified for some unknown
variables appear to be too strict, then it is possible to relax these ATOL values for the time interval in question
in order to allow the simulation to proceed past this numerically sensitive phase. The following input file
illustrates how to relax the absolute tolerance for the variable X from 10° to 10 between the time stamps 10
and 20.
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1 X:ATOL
0.0 1.0E-6
9.9999 1.0E-6
10.0 1.0E-4
20.0 1.0E-4
20.0001 1.0E-6

In order to produce step-like profiles we specify two successive entries for very near time stamps for each
changein ATOL values. Note that the difference between the time stamps around the occurrence of the step
profile should be smaller than the time increment indicated in the run-control file.
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14 THE READ URL MECHANISM

14.1 OVERVIEW AND TERMINOLOGY

The native SPARK input file mechanism presented in Section 13 islimited because it only supports reading
files with a predetermined format, namely the SPARK file format, which places the burden on the user to
specify the values using this file format. Sometimes, you want to be able to read values from afile defined
using adifferent format. This situation occursiif thefile is readily available from another application and you
don’t want to or cannot transate it. For example, some application fields might define standard file formats
that you need to use in your SPARK simulation runs, e.g. such as the weather filesin the field of building
simulation.

To address these limitations, the native SPARK input file mechanism has been extended with the Read URL
mechanism. The Universal Resource Locator mechanism is a generalized way of specifying where and how
input values are to be obtained at runtime. It is string-based and easily extensible to support more URL
handlers that implement new data exchange mechanisms.

Both input mechanisms can be used in the same simulation run, but each variable will seek itsinput values
from either one. If avalid Read URL is specified for avariable then it has priority over the native input file
mechanism. Conversely, if no Read URL is specified for avariable, input values will be seeked from SPARK
input files by default.

Static Read URLS, i.e. URLs specified as part of the problem definition, are specified in the L INK statement
following the INPUT keyword. They can only define for input variables. E.g.,

LINK X .. INPUT="a valid Read URL string";
It isalso possible to specify URLs at runtime using a URL map file (See Section 14.4).

There are two main read URL types, file and string. The subcategories for file are DOE-2, TMY and
EnergyPlus weather files, columnar file, named column file and formatted file. For the string type the
subcategories are schedule and algebraic expression.

All types may be followed with the keyword i nt er pol at e preceded by the separator *: ’ to force the
solver to linearly interpolate between the previous and current values.

In al types, options and specifiers are separated by colons, and with the exception of file names, are case
insensitive.
It isthe user’s responsibility to verify that the units of the data are consistent with their model.

The URL mechanism will be extended in future versions to support Write URL s that will allow reporting
valuesin adifferent format than with the native SPARK output file mechanism (See Section 15.1).

14.2 Reap URL FILE TYPE

Following the literal "file" in thefirst field are the subspecifiers for the file URL type. In the following table,
italicized values would be replaced by the desired value, e.g. the actua file name would replace filename, and
text notinitalicsisliteral, e.g. doe2bin.
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Table 14-1: Subspecifiers and associated fields for the Read URL file type.

Field 2 (type) Field 3 Field 4 Field 5 Field 6 Field 7
doe2bin filename | varnamel
tmyascii filename | varnamel
eplusweather | filename | varnamel
column filename | #headers2 | columnsep.3 | column #5
namedcolumn | filename | #headers2 | columnsep.3 | #nameline6 | varnamel
format filename | #headers2 | format string4|

Notes:

1. Name of variable desired

2. Number of header linesin file

3. Column separator character

4., String describing output format

5. Desired column number from file

6. Header line containing names of variables

14.2.1 DOE-2 Weather file (doe2bin)

Thistype will read the DOE-2 binary weather file format. Following the literal doe2bin are the file name
and the variable name desired, e.g. dbt for the dry bulb temperature. The following example would read the
air density, rho from the DOE-2 weather file for Chicago and interpolate the values from one point to the

next:

INPUT=""doe2bin:chicagotry.bin:rho:interpolate"

Table 14-2: Variable names for DOE-2 weather file.

Name Description Units
wbt wet bulb temperature C
dbt dry bulb temperature C
barom barometric pressure Pa
wdir wind direction degrees
hum humidity ratio -

rho density of air kg/m®
enth specific enthal py Jkg
horzrad | total horizontal radiation W/m?
dirnrad | direct normal radiation W/m?
wspd wind speed m/s
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14.2.2 TMY Weather file (tmyascii)

Thistype will read the TMY (Typical Meteorological Y ear) ASCII weather file format. Following the literal
tmyasci i arethefile name and the variable name desired, e.g. di Ffrad for the diffuse radiation. The
following example would read the dry bulb temperature, dbt from the ASCII TMY weather file for Boston:

INPUT=""tmyasci i :boston.tmy:dbt"

Table 14-3: Variable names for TMY weather file.

Name Description Unitsin file Unitsreturned
extrrad extraterrestrial radiation kJm? Jm?
dirnrad direct normal radiation kJm? Jm?
diffrad diffuse radiation kJ/m? Jn?
netrad net radiation kJ/m? Jm?
globradtlt| global radiation on tilted surface kJ/m? Jm?
globradhor | global radiation on horizontal surface | kJ/m’ Jm?
sunshine seconds of sunshine min S
barom barometric pressure at sealevel kPa Pa
stabarom barometric pressure at station kPa Pa
dbt dry bulb temperature degrees C x 10 C
dewpt dew point temperature degreesC x 10 C
wdir wind direction degrees degrees
wspd wind speed m/sx 10 m/s

14.2.3 EnergyPlus Weather File (eplusweather)

This type will read the EnergyPlus weather file format. Following the literal eplusweather are thefile
name and the variable name desired, e.g. zenithlum for the zenith illumination. The following example
would read the dew point temperature, dewpt from the Energy Plus weather file for Los Angeles:

INPUT="eplusweather:CA Los Angeles TMY2.epw:dewpt"

Table 14-4: Variable names for EnergyPlus weather file.

Name Description Unitsin file | Unitsreturned
year year _ _

month month - -

day day - -

hour hour - -

minute minute - -

dbt dry bulb temperature C C

dewpt dew point temperature C C

rh relative humidity % %

barom barometric pressure at station Pa Pa
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Name Description Unitsin file| Unitsreturned
exthorrad | extraterrestrial horizontal radiation Wh/m? Jm?
extdirrad | extraterrestrial direct normal radiation Wh/m? Jm?
horinfrad | horizonta infrared radiation from sky Wh/m? Jm?
glohorrad | global horizontal radiation Wh/m? Jm?
dirnorrad | direct normal radiation Wh/m? Jm?
difhorrad | diffuse horizonta radiation Wh/m? Jm?
glohorill global horizontal illuminance lux lux
dirnorill direct normal illuminance lux lux
difhorill diffuse horizontal illuminance lux lux
zenithlum | zenith luminance Cd/m? Cd/m?
wdir wind direction degrees degrees
wspd wind speed m/s m/s
totalsky total sky cover - -
opaquesky | opague sky cover - -
visibility | visiility km m
celheight ceiling height m m
precwater precipitable water mm m
opticdepth | aerosol optical depth thousandths | thousandths
snowdepth | snow depth cm m
lastsnow days since |ast snowfall days s

14.2.4 Column File

Following the literal column are the file name, the number of linesin the header, the column separator and
the column number of the data for the variable. For example the following would read column 3 from the file
named mydata. txt that has 2 header lines with all data separated by commas:

INPUT="File:column:mydata.txt:2:,:3"

14.2.5 Named Column File

The difference between the column and named column file types is that the "#nameline" (from field 6 in the
URL) line of the header names the variables in each column. In the following example, thefirst 2 isthe
number of header lines in the file and the second 2 says that the 2™ header line contains the variable names.
So this URL would read the 3 column (because insolar isthe 3 variable in the file) from the datafile
mydata. txt with all columns separated by commas:

INPUT="File:namedcolumn:mydata.txt:2:,:2:insolar"

with the first few lines of the file containing:

The second header line in this file names the variables
time, dbt, insolar, wdir
3:00, 3.4, 33.1, 320
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14.2.6 Format File

The format file type uses aformat string with the same syntax asthe scanf format string in the C computer
language to describe the layout of the datafile. In the following example the 3" column is read by skipping
over thefirst two columns (in this case separated with one or more blanks) by using the %*s directive and
reading the 3" column with %I F (long or double precision floating point):

INPUT="Fi1le:format:mydata.txt:0:%*s %*s %If"

The percent % signals that a formatting character follows. The only format characters that should be used are
s for string and 1 ¥ for double precision. The asterisk * saysto skip that field.

14.3 REaAD URL STRING TYPE

The two read URL string types are schedules and algebraic expression. They are called string types because
the dataisin the URL string and not read from afile. For thisimplementation only the DOE-2 type
(doe2sch) isavailable for schedule types.

14.3.1 DOE-2 Schedule Type (doe2sch)

The DOE-2 schedule type allows the user to specify different values for avariable in aschedule. For example
you may want the lighting level to be a certain value on Monday through Friday from 8am to 5pm and
another value the rest of the time and on holidays.

Syntax examples:
THRU monl dayl (dowl) (h1,h2) (vi,v2,v3) (h3) (v4)

(dow2) (h4,h5) (Vv5)
THRU mon2 day2 (dow3) (h6,h7) (v6)
Where:
mon = Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
dow =ALL HOL WD WE WEH Mon Tue Wed Thu Fri Sat Sun
HOL = Holiday
WD = WeekDay
WE = WeekEnd
WEH = WeekEnd + Holiday
(h1,h2) meansall the hours between h1 and h2. eg. (1,3) meanshours 1, 2, 3.

(vl, v2, v3) arethevaluesthat correspond tothe (hl, h2) hourslist. If the (v...) listisshorter
than the number of hours given by the (h1, h2) list, thelast value of the (v. . .) list fills the missing hour
dots.

Table 14-5: Holidaysin DOE-2 schedule type.

Date Holiday

January 1 New Y ear

The third Monday in January Martin Luther King Jr.
The third Monday in February President's day
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Date Holiday

Thelast Monday in May Memoria Day

July 4 Independence Day

The first Monday in September Labor Day

The second Monday on October Columbus Day

November 11 Veteran's Day

The last Thursday in November Thanksgiving

December 25 Christmas
Example:

INPUT=""string:schedule:doe2sch:
thru dec 31 (all) (1,24) (0.1)
thru jun 30 (wd) (8,17) (0.3)
thru dec 31 (hol)(1,24)(0.05)"

Thiswill givethe value of 0.05 for the holidays in the whole year, 0.3 for the hours between 8:00 and 17:00
on weekdays, and 0.1 for the rest of thetime. Note the order of the specification isimportant. The first
specification saysto use 0.1 for the whole year, but that is overridden for weekdays between 8:00 and 17:00
with 0.3 then any holidays are overridden with 0.05.

The whole URL should be on one linein the .pr, .cc or .cm file. Hereit is shown on four lines for visual
clarity.
14.3.2 Algebraic Expression Type (expr)

The last string type is the algebraic expression. This provides afairly versatile way of specifying values that
change with time using functions and/or mathematical operators. Here is atable of available mathematical
constants, operators and functions. They are al case sensitive.

Table 14-6: Functionsin Read URL algebraic expression type.

Name | Description

acos arc cosine

asin | arcsine

atan | arctangent

atan2 | arctangent of y/x

log log base e
10910 | |og base 10
sin sine

tan tangent

Table 14-7: Operatorsin Read URL algebraic expression type.

Name | Description

+ addition

- subtraction

* multiplication
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Name | Description

/ division

) subexpression grouping

n power

% modulus or remainder (e.g. 37 % 7 =5)

Table 14-8: Constants in Read URL algebraic expression type.

Name Value Units Description

ABS_ZERO -273.16 C absolute zero

BOLTZ 5.67x10° W/(m?*K*| Stefan-Boltzmann's
constant

CP_AIR 1006.0 J(kg*K) | specific heat capacity of
dry air

CP_VAPOR 1805.0 J(kg*K) | specific heat capacity of
water vapor

CP_WATER 4186.0 J(kg*K) | specific heat capacity of
liquid water

M_G 9.8 m/s’ gravitational constant

KELV_ZERO 273.16 K 0 degreesCin Kelvin

M_E 2.7182818284590452354 - e

M_LN10 2.30258509299404568402 - loge(10)

M_LN2 0.69314718055994530942 - loge(2)

M_PI 3.14159265358979323846 - I1

MW_AIR 0.0289645 kg/mol molar weight of dry air

MW_WATER 0.01801528 kg/mol molar weight of liquid
water

MW_RATIO 0.62197 - ratio of molar weights of
liquid water over dry air

P_ATM 101325 Pa atmospheric pressure at
sealevel

RHO_AIR 1.2 kg/m? density of air

RHO_WATER | 998.0 kg/m® density of water

VISC_WATER | 0.001 kg/(m*s) | viscosity of liquid water
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Table 14-9: Special variablesin Read URL algebraic expression type.

Name | Value ’ Units ‘ Description
GLOBAL_TIME | - ‘ seconds ‘ current relative SPARK time
Example:

INPUT=""string:expr:sin(3*(GLOBAL_TIME* M_P1/180)+5)"

The above will multiply the current relative time in seconds by IT, divide by 180, multiply that by 3, add 5
and take the sine of that.

14.4 URL MAP FILE

The map fileis used to translate URL s that are defined in the SPARK model to new URLS. This processis
referred to as URL string substitution, whereby the URL string specified in the SPARK model is substituted
with the mapped URL string.

The map file is also used to specify URL strings for the prolem variables at runtime. Thisis achieved by
assigning anew URL string to the name of the variable in question. Conversely, it can be used to clear a URL
specification for avariable in order to revert back to the native mechanism for input/report processing (i.e.,
using the SPARK input/report file format). Thisis done by specifying the empty string **** after the variable
name.

The map file has the name probName.map where probName is the name of the problem being solved. It is read
and processed at run time before the simulation phase starts. If no map file existsin the current working
directory, then SPARK does not perform URL mapping.

14.4.1 The Map File Syntax

The map file contains lines of the form:

// Comments
model _url = new_url
variable_identifier = new_url

Heremodel _url, variable identifier and new_url are quoted strings, or non-quoted strings
without spacesin them. If the line startswith a//, it isignored.

URL String Substitution

Thefiedld model _url containsavalid URL that is specified in the model. It will be substituted with the
URL string on the right-hand side, namely new_url.

URL String Specification

Thefield variable_identifier containsavariable name prefixed with r: or w: to indicate read or
write context. The field new_url contains avalid URL specification or an empty string **** or the tag
"REPORT". The URL specified here becomes the new URL for the variable with the corresponding read/write
context. When the new_url contains an empty string, it removes the URL that was specified in the model,
and reverts the read/write processing to native input/report file format.

The following code snippet shows the possible content of a map file. The first entry specifies a string
substitution rule for the model URL "'string:expr:sin(3*(GLOBAL_TIME*M_P1/180)+5)"" that
will be replaced with the new URL string "'string:expr:cos(2*(GLOBAL_TIME/180))"".
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Next are two URL string specifications, one for the write context, one for the read context. The variable
mass_ Flow will be reported to the output file and the variable ob j 1~T in will get its value from the field
dbt in the EnergyPlus weather file named USA NV _Las.Vegas TMY2.epw.

// comment line

"string:expr:sin(3*(GLOBAL_TIME*M_P1/180)+5)" = "'string:expr:cos(2*(GLOBAL_TIME/180))"
"w:mass_flow" = "REPORT"

"r:objl~Tin" = "file:energyplusweather:USA_NV_Las.Vegas TMY2_epw:dbt:interpolate™

// end

14.4.2 Loading Rules

In the map file processing, the following rules are applied:

1. If thevariable hasamodel URL (i.e.,, aURL string is specified for this variable in the *.pr or *.cm files):
e Themap fileis searched for model_url.
e |If amatchisfound the replacement new_url is substituted.
e If new_url isanempty string, therule 2 isalso tried.

e Otherwise, new_url becomes effective.

2. The variable name together with its read or write context is searched in the map file entries for
variable_ identifier withr: orw: prefixes. If amatch isfound, the replacement new_url is
substituted.

The current version of SPARK does not implement any Write URL handlers yet. Therefore, the only reporting
mechanism that is available is the native reporting mechanism described in Section 15.1. However, the map
file can be used to tag the problem variables that need to be reported by specifying the string **REPORT"" for
the new_ur 1 string in the write context.
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15 OUTPUT AND POST PROCESSING

15.1 THE OUTPUT FILE

When SPARK runsthere is output to the screen and to an output file with extension .out. The screen output is
primarily for visual feedback, letting you know where SPARK isin processing your problem. The output file
contains results of the numerical solution process at each time step. The format of the output file is exactly
like that of input files, i.e.,

n label label label
t0 value value value
tl value value value
etc.

where n is the number of reported variables, each label is a problem variable with the REPORT keyword
expressed in the problem file, and each vallue is the value for the corresponding variable at the time stamp
ti.

It is possible to use the URL map file (See Section 14.4) to tag problem variables with the REPORT keyword

so that they will be reported to the output file. This mechanism lets you specify which variables need to be
reported without having to re-build the problem.

15.2 PLOTTING THE OUTPUT FILE

The output of SPARK can be read by conventional spreadsheet and plotting programs. If you use Microsoft
Excel or asimilar program, simply open the SPARK output file into a worksheet and use space as the
delimiting character between fields. Thiswill place your output neatly into rows and columns, from which
you can construct plots (charts) in the usual Excel manner.

Visual SPARK provides options that auto-make the graphing process (see Visual SPARK Users Guide). If you
use gnuplot, a program called makegnu is provided with WinSPARK that will generate an input file for that
program.® To use makegnu, type:

makegnu room_fc.out room fc.plt <enter>
The outpuit file, room_fc.gnu, will contain the gnuplot commands, e.g.:

set data style linesset xlabel ""time"
set ylabel "mcp"

plot "room fc.out™ wusing 1:2 notitle
pause -1 "Press <enter>"

set ylabel "Q_ flow"

plot "room fc.out"™ wusing 1:3 notitle
pause -1 "Press <enter>"

set ylabel "Ta"

plot “room_ fc.out”™ wusing 1:4 notitle
pause -1 "Press <enter>"

set ylabel "T_floor"

plot "room_fc.out™ wusing 1:5 notitle
pause -1 "Press <enter>"

a2 Although not provided in the Visual SPARK release, makegnu is available free from Ayres Sowell Associates, Inc. and will run on UNIX aswell as
Windows platforms.
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Then to plot with gnuplot, type

gnuplot room_fc.plt <enter>

This assumes you have gnuplot in your command path. More elaborate plots, combining several resultson
the same plot, for example, can be done by editing the gnuplot input file, or by running gnuplot interactively.
The gnuplot documentation should be consulted for more information.

15.3 PosT PROCESSING IN MATLAB

The SPARK distribution comes with MATLAB script files that help loading the SPARK data filesinto arraysin
the MATLAB environment. These files are located in the utils/matlab subdirectory where SPARK isinstalled.

Table 15-1: MATLAB script files for post-processing of SPARK files.

Script Name Description

LoadSPARKFile.m Loads afilein SPARK format (i.e., input, output, trace, or snapshot file) into
MATLAB arrays with the time stamps (first column), the values at each time
stamp in each column and the names of the variablesin each column.

DiffSPARKFiles.m Compares the numerical values contained in two files with the same format
against the prescribed precision and detects the offending entries.

FindName.m Returns the position in the variable names array of the entry matching the
target variable name. If not found returns 0. Convenient to identify in which
column of a SPARK file a particular variable can be found.

LoadOneJacobian.m L oads the Jacobian matrix contained in a Jacobian trace file at a specific
iteration into a MATLAB array.

ComputeJacobianCondition.m L oads the Jacobian matrix contained in a Jacobian trace file at each iteration
and computes its condition number.

133 Output and Post Processing



SPARK 2.0 Reference Manual

16 LOG FILES

SPARK generates various log files over the course of the simulation that contain specific information about
the solver operation. These files should be consulted by users to gain deeper knowledge about the internal
operations and the numerical behavior.

16.1 RUN LOG FILE

If the diagnostic level (See Section 12.5) specified in the run-control file is not silent, then SPARK generates a
file named run.log in the current working directory. This file contains the desired diagnostic information about
the smulation run.

16.2 ERROR LOG FILE

If any errors and/or warnings occur during the simulation, SPARK generates a file named error.log in the
current working directory. Thisfile contains detailed explanations for the error/warning, starting with the
corresponding time stamp. The cause of an error/warning can be either numerical (e.g., detection of no
convergence or of asingular linear system) or internal (e.g., cannot open an input file or create an outpuit file,
cannot parse a variable name in an input file, cannot allocate memory on the heap, etc.).

A warning indicates a situation that might result in an error and that therefore needs to be brought to the
attention of the user. A warning message starts with the tag * [WARNING]’.

An error results in the abnormal termination of the solver. An error message starts with the tag ‘ [ERROR]’.

If no error occurred, then no error log fileis generated. If an error log file has been generated and the
simulation run has been successful, then you should consult it and make sure that the reported warning
messages do not have any impact on the solution. If the simulation run has not been successful, then the
messages in the error log file should help you identify the cause of the error.

16.3 FACTORY LOG FILE

When the SPARK problem isloaded at runtime from afile, the runtime loader generates a file named
probName.factory.log in the current working directory, where probName stands for the name of the problem
being loaded. Thisfile contains information about the problem description and the loading times for each
section of the description.

If the runtime problem loader fails, this file should be consulted to identify the possible cause.

16.4 DEeBUG LOG FILE

The SPARK solver can be used in debug mode by linking the problem driver to the solver library compiled
with the preprocessor macro SPARK_DEBUG being defined.

The SPARK makefile produces a build with debugger information when:
e the environment variable DEBUG=Yyes is defined; or
e the gmake program isrun with DEBUG=yes at the command line,

gmake <target> DEBUG=yes <enter>
where <target> standsfor any valid target defined in the SPARK makefile.
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When running in the debug mode, SPARK generates afile called debug.log in the current working directory.
Thisfile contains detailed information about every phase of the simulation process:

e |oading the problem description,

e initiaizing the problem with the specified runtime controls,

e |oading the past values for all problem variables from the input files,

e solving the problem at the initial time, and

e solving the problem until the final time.

In particular, you can trace the operation of the input manager to identify:

e from which input file and column the problem variables get their values, and

e which new values and properties are read at each time step for which variables.

The debug log file should be consulted in case of abnormal termination of the solver operation asit may help
you find the cause of the error. Therefore, if asimulation fails, it is recommended to run the simulation again
in the debug mode to generate the debug log file.

By default, SPARK does not run in debug mode in order to avoid the performance penalty incurred from the
extensive output to the log file.

16.5 BACKTRACKING LOG FILE

When a strongly-connected component in the SPARK problem is solved using a backtracking method, the
nonlinear solver generates afile named probName.id.backtracking.log in the current working directory, where
probName stands for the name of the problem being loaded and id for the evaluation number of the component
in question (starting at O for the first component in the solution sequence). Thisfile contains self-describing
information in tabular form about the backtracking process at each step for each iteration.

If the component in question fails to converge, this file should be consulted to analyze the convergence
process and possibly identify the cause of the non-convergence.

Note that the backtracking log fileis only generated in the debug mode.
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17 SNAPSHOT FILES

17.1 WHY SNAPSHOT FILES ARE USEFUL

There are occasions on which you may want to stop a simulation, then restart it from the same point at alater
time. This need can arise when the problem experiences along run time, or adifficult solution. Or, you may
want to repeat a simulation using precisely the same initializations of dynamic and break variables. These
techniques are supported in SPARK with the notion of snapshot files. Y ou can request that snapshot files be
generated at InitialTime and/or Final Time (see Section 18) as discussed below. It is also possible to
generate snapshot file at any other point of the simulation by sending a snapshot request from a callback
function (See Section 10.2).

A snapshot file contains the values of al problem variables for the last four time stamps in aformat identical
to that of anormal output report. And, because SPARK input files and output files have the same format, you
can specify asnapshot file as an input file in a subsequent run of the same problem to restart the problem.

Since a snapshot file contains the values for all the problem variables (not just those that were tagged with the
REPORT keyword in the problem definition file), it isavery powerful reporting and diagnostic mechanism
aswell as serving asinitialization files for restarting.

17.2 GENERATING SNAPSHOT FILES

Y ou request generation of snapshot files by specifying corresponding keys in the run-control file (see Section
18), dlong with the desired name for the snapshot file. Two keysare available, InitialSnapshotFile
and FinalSnapshotFile. Thevalues of these keys should be the paths to the files where you want the
results saved. For example, if you want both initial and final snapshot files, your run-control file
probName.run must contain the following two entries:

InitialSnapshotFile ( probName.init () )
FinalSnapshotFile ( probName.snap ) )

Thekey InitialSnapshotFile generatesasnapshot file with theinitial time solution in probName.init,
whereas the key FinalSnapshotFile generates asnapshot file with the solution at the final timein
probName.snap.

Note that the file names, including the extensions, are arbitrary, i.e., you can use whatever extension you
wish.

Normally, you will want to include the file path to specify whereit isto be saved. Inthe example, it is saved
in the current working directory.

17.3 USING SNAPSHOT FILES TO INITIALIZE A SIMULATION RUN

17.3.1 Specifying Snapshot Files as Input Files

To use asnapshot file for initializing a subsequent run you simply specify it in the InputFi les segment in
the run-control file, with the other input files.

For example, to restart your problem initialized from the final solution of the previous run, captured in thefile
probName.snap, in the file probName.run modify the InputFi les segment to read :

InputFiles (
probName.snap ()
probName.inp O
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)

Also, you will need to set the Initial Time key in the run-control file to the value at which you want to
restart the simulation, usually the last time stamp appearing in the snapshot file.

The order in which the input files are specified in the InputFi les segment isimportant. Specifying the
snapshot file first ensures that the values specified in the file probName.inp correctly overwrite the values
(specified for the same variables) that appear in the previously declared snapshot file probName.snap.

To satisfy the precedence rule of the input manager (see Section 13.1) and to follow the categorization of the
different types of inputs proposed in Section 7.6.1, the order in which the different types of input files are be
specified under the InputFi les segment in the run-control fileis:

1. fileswiththe predicted initial valuesfor the break variables;
2. fileswiththeinitial valuesfor the dynamic variables;

3. snapshot files with values to restart the simulation;
4,

files with the values for the input variables (constant and time-varying).

17.3.2 Restarting after a Numerical Error

If the key Final SnapshotFi e was specified, in the event of a non-convergence or other solution failure
such as bad numerics, the snapshot file will be generated automatically at the time when the failure occurred
(instead of the fina time) along with the values for the last four time stamps.

This provides values of all variables at the point of non-convergence, which might be helpful in discovering
the reasons for the non-convergence. Also, the snapshot file can be used to restart the simulation with values
at the last valid time stamp and with modified problem preference settings and/or new predicted values for the
break variables in an attempt to fix the numerical problem.

17.3.3 Enforcing Initial Conditions from a Different Problem Definition

Another way to use a snapshot file to initialize a problem is to first solve a static problem (no integrators)
derived from the dynamic problem and with initial conditions for some of the unknowns of the dynamic
problem (specified as inputs to the static problem). The resulting snapshot file of the solution of the static
problem can then be used to start the dynamic problem with the desired initial conditions enforced.
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18 RUN-CONTROL FILE

We introduced the SPARK run-control file, probName.run, in the examplesin Section 2. There, we were
concerned with only the basic, required elements of this file needed to run simple problems. In this Section
we will examine the run-control file further, showing the format as well as all aspects of a SPARK run that can

be controlled fromiit.

The run-control information needed for a SPARK problem comprises the keys and values as shown in Table

18-1. Items shown in boldface are required.

Table 18-1: Run Controls

[Key] in run-control file Definition Typical value
[InitialTime] The time at which the simulation 0.0
begins.
[FinalTime] The time at which the simulation 0.0
ends.
[InitialTimeStep The initia time span between 1.0
solution points.
[VariableTimeStep] ] If setto 1, thenthetimestepwill | O
be adapted during the course of the
simulation if necessary. Otherwise,
the time step remains constant.
[MinTimeStep] Minimum allowed time step. Only | 1.0E-6
used if VariableTimeStep is
setto L.
[MaxTimeStep] Maximum allowed time step. Only | +1.0E-6
used if VariableTimeStep is
setto L.
[ConsistentInitialCalculation] | |f setto 1, then SPARK solvesa 1
static step at the initial timeto
ensure consistent initial values.
[FirstReport] The time at which the first output | 0.0
is desired.
[ReportCycle] Thetimeinterval between output | O (= report all solution
reports. points)
[DiagnosticLevel] Level of diagnostic output desired | 0 = silent
(see Section 12.5).
[InputFiles] List of input fileswith paths (see | probName.inp

Section 7.6).

c:\Phoenix\weather.inp

[OutputFile]

Output file with path (see Section
14).

probName.out

[InitialSnapshotFile]

Initial time snapshot file with path
(see Section 17).

probName.init

[FinalSnapshotFile]

Final time snapshot file with path
(see Section 17).

probName.snap
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In the current SPARK release, the time step remains constant by default during the course of the simulation.
Therefore, the value of the key Initial TimeStep reflects the constant time step. If the key
VariableTimeStep isset to 1, then the time step will be adapted whenever it is necessary during the
course of the simulation. In this case, the key Initial TimeStep specifiesthe time step to useinitialy.

Also, when the key ConsistentinitialCalculationissetto 1, then the SPARK solver starts the
simulation with a static step as explained in Section 10.3. Setting this key is equivalent to sending arestart
request before the first ssmulation step.

The run-control information is stored in the file probName.run using the preference file format, described in
Appendix C. A typica run-control fileis then:

(

InitialTime
FinalTime
InitialTimeStep
FirstReport
ReportCycle
DiagnosticLevel
InputFiles

OutputFile
InitialSnapshotFile
FinalSnapshotFile

(0.0 )

(5.0 O)

(0.1.0)

(0.0 O)

(0.1 O)

(3 0) ]

( frst ord.inp O
frst_ord_ic.inp O

)

( frst ord.out )

( frst ord dyn.init ()

( frst_ord_dyn.snap ()
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19 SPARK LANGUAGE REFERENCE

19.1 NOTATION USED IN THIS SECTION

1. KEYWORDS are shown uppercase, adthough they are case insensitive in the language.
2. & meansrequired entry.

3. name_or_par meansahname or parameter name. The parameter name must have a substitution-
valuethat isavalid name.

4. val_or_par meansvalue or parameter name. The parameter name must have a substitution-value
that isavalid numeric value.

Items separated by | means choose one of the items; for example, <x]y|]z> meansx ory or z.

6. Aniteminside question marks, e.g., ?connectionsl1?, isdefined later in the construct in which it
appears.
7. <item> meanstheitem isoptional.

8. Definition of higher level and lower level: Problem level isthe highest, any object declared inside the
problem fileis the next lower level, etc. When referring to hierarchy, the problem is the highest level
and the atomic classisthe lowest.

19.2 SpPeEcCIAL CHARACTERS

Special characters are those used by the SPARK parser to identify parts of the language. They should not be
part of user names.

1. Usedin SPARK syntax: "#(),.;=[]1"'""{} ~ SPACE TAB NL (newline) /* /I
2. Déimiters: SPACE TAB NL. More than one of these characters or combination are ignored.
3. The statement terminator isthe semicolon ( ;).

19.3 NAMES AND OTHER STRINGS

19.3.1 Reserved Names

#endif DECLARE KEYWORDS PORT

#ifdef DEFAULT LIKE PREDICT_FROM_LINK
ABSTRACT EQUATIONS LINK PROBE

ABSTRACT END  FUNCTIONS MATCH_LEVEL  REPORT

ATOL GLOBAL_TIME MAX UPDATE_FROM_LINK
BAD_INVERSES  GLOBAL_TIME_STEP  MIN (sameas INPUT_FROM_LINK)
BREAK_LEVEL INIT NOERR VAL

CLASSTYPE INPUT PARAMETER

CONNECT_HINT  INPUT_FROM_LINK PAST VALUE_ONLY* (not yet implemented)

Note: Reserved names are case insensitive, except for #i fdef and #endif.

140 SPARK Language Reference



SPARK 2.0 Reference Manual

19.3.2 Rules for User-Specified Names

1. They must not contain any reserved characters.
They must not begin with adigit (0—9).

They are case sensitive.

They may not be the same as reserved names.
They can be of any length.

a b~ D

19.3.3 Literals

User-specified literal strings are enclosed inside double quotes, e.g., “This 1s a literal.” They can

contain any character except the double quote (**).

19.4 COMMENTS
There are two kinds of comments:

1. /*comment.._.*/ C-likecomment
2. //comment. .. C++ style comment to end of line

19.5 STATEMENT TERMINATOR

Statement terminator is the semicolon (;).

19.6 COMPOUND STATEMENT

A compound statement is delimited by curly braces. { .. }. Examplesof compound statements are

FUNCTIONS (Section 19.17) and EQUATIONS (Section 19.16).
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19.7 ATowmic CLASS FILE

The SPARK atomic classis the smallest modeling element. Atomic classes may be used directly in problem
files or combined into macro classes to form larger modeling elements.

File name convention: class_name.cc

Format:

—————————————————— file class_name.cc begin---—---—c--e o

/* CLASS class name "description..." KEYWORDS=keywordl, ...;
ABSTRACT

>/

#ifdef SPARK TEXT e
CLASSTYPE statements
PARAMETER statements

PORT statements ¢
EQUATIONS { equation statements }

FUNCTIONS { function statements } o
#endif /*SPARK_TEXT*/ e
#include "'spark.h™ e
callback c++ functions go here
—————————————————— file class_name.cc end-—-————————————

1. PARAMETER statements must appear before they are referenced.
2. PORT statements must appear before EQUAT I0ONS and FUNCT IONS statements.

3. Whilethe material inthe /*. . .*/ header isignored by the parser, it may be used by browsers
and/or utility programs.
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19.8 MACRO CLASS FILE
A SPARK macro class connects atomic and other macro classes to form larger modeling elements.

File name convention: class_name.cm

Format:

—————————————————— file class_name.cm begin------—--—————————
/* CLASS_MACRO class_name  "description..." KEYWORDS=keyword1, .. .;
ABSTRACT

*/

PARAMETER statements

PORT statements ¢

PROBE statements

DECLARE statements ¢

LINK statements ¢

—————————————————— file class _name.cc end--—-——————————
Notes:

1. PARAMETER statements must appear before they are referenced.
2. PORT statements must appear before any DECLARE or L INK statements.

3. DECLARE statements must appear before any L INK statements that refer to the objects defined by
DECLAREs.

4. While the material inthe /*. . .*/ header isignored by the parser, it may be used by browsers
and/or utility programs.
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19.9 PROBLEM FILE
The SPARK prablem file combines macro and/or atomic classes to form the largest modeling element.

File name convention: problem_name.pr.

Format:

—————————————————— file problem_name.pr begin-----—————-——————————
/* PROBLEM class name "description..." KEYWORDS=keywordl, . . .;
ABSTRACT

*/

PARAMETER statements

PROBE statements

DECLARE statements ¢

LINK statements ¢

—————————————————— file class name.cc end-——————————————————————
Notes:

1. PARAMETER statements must appear before they are referenced.

2. DECLARE statements must appear before any L INK statements that refer to the objects defined by
DECLAREs.

3. Whilethe material inthe /* . . .*/ header isignored by the parser, it may be used by browsers
and/or utility programs.
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19.10 PORT STATEMENT

The PORT statement describes an externally visible connection point (interface variable) of aclass. When an
object isinstantiated from a class by a DECLARE statement, connections can only be made to its ports.

The PORT statement has two forms :

1. Atomic port does not have subports.
2. Macro port has subports.

19.10.1 Atomic port
An atomic port hasthe form:

PORT port_name *
[unit]
"“"description..."
ATOL=val or_par
BREAK LEVEL=val or_ par
CONNECT_HINT="-classl.portx,class2._porty"
DEFAULT=val_or_par
INIT=val _or_par
L1KE=anotherPortName
MATCH_LEVEL=val or_par ;
MAX=val or_par
MIN=val _or_par

NOERR
Here:
port_name : Name of the port; must not contain any special characters (see Section
_19.2).
L | ]
[units] : Units of the port. Used to give awarning if avariable with different units

islinked to this port.
. [ |

_
"description..." :_Short d@crietion of the Eort. Thisfield is used bz browsers.
. |

BREAK_LEVEL . The default break level values for connections to this port.
. _ ' ______________________________________________________________________________________|]
CONNECT_HINT : Used by browsers to determine acceptable connections.

"—classl.portx, class2.porty'"meansthat connectingthis
port to portx of any instance of classl is not permitted, but connecting
this port to porty of any instance of class2 is encouraged. For
acceptability of aconnection, first units, then CONNECT_HINTsis
checked.

. [ |
DEFAULT . If this subport is not connected, it behaves asif its valueis fixed at

val_or_par.
' ' ___________________________________________________________________________________|]
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LIKE=anotherPortName : All of the properties (except the description fields) from the previously
defined port named anotherPortName are copied to the current port.
The copied properties include the subports.
Note that any other input specified in the current port statement overrides
the copied information. The example below shows port statements using

the L1KE keyword:

port aa “description of aa” [deg C] MIN=-5
MAX=20 ;

port bb “description of bb” [deg C] LIKE=aa
MIN=0 ;

produce the same specifications as:
port aa “description of aa” [deg C] MIN=-5

MAX=20 ;
port bb “description of bb” [deg C] MIN=0
MAX=20 ;

' ' _______________________________________________________________________________________|]
ATOL, INIT, MIN, MAX : Absolute tolerance, initial, minimum, and maximum values assigned to
variable created by connectionsto this port. Higher-level settings will

take precedence.
[

. _____ |
MATCH_LEVEL . The default match level values for connections to this port.

|
NOERR . Do not give error message if this port is not connected when thisclassis
used (instantiated). Allows ports that can be optionally used.
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19.10.2 Macro port
A macro port iscomposed of two or more subports (see Section 8.1); it has the form:

PORT port_name *
[unitl]
"port description..."
CONNECT_HINT="-classl.portx,class2.porty"
LIKE=anotherPortName
NOERR
[unitOfPort]

, -Subport_namel .
[unit2]
"subport description..."
ATOL=val_or_par
BREAK LEVEL=val _or_par
DEFAULT=val_or_par
INIT=val_or_par
MATCH_LEVEL=val _or_par
MAX=val_or_par
MIN=val_or_par

, -Subport_name2

...etc ...
Here:
port_name - Name of the port; must not contain any special characters (see Section
19.2).
. ______________________________________________________________________________________________________|]
[units] . Units of the port. Used to give awarning if a variable with different
unitsislinked to this port.

escription..."” . Short description of the port. Thisfield is used by browsers.

CONNECT_HINT . Used by browsers to determine acceptable connections.
"-classl.portx, class2.porty' meansthat connecting this
port to portx of any instance of classl is not permitted, but connecting
this port to porty of any instance of class2 is encouraged. For
acceptability of aconnection, first units, then CONNECT_HINTsis
checked.

NOERR . Do not give error message if this port is not connected when this class
is used (instantiated). Allows ports that can be optionally used.
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. _____________________________________________________________________________________________________________________|]
LIKE = anotherPortName : All of the properties (except the description field) from the port named
anotherPortName are copied to the current port. The copied
properties include the subports. Any other input that is specified in the
current port statement overrides the copied information.

For example, the following two macro port statements:

PORT AirEntl "Inlet air stream 1" [airflow]
-m "air mass Flow" [kg dryAir/s]
, -W "hum. ratio" [kg_water/kg_dryAir]
, -h "enthalpy" NOERR [J/kg_dryAir] ;
PORT AIrEnt2 "Inlet air stream 2" LIKE=AIrEntl ;

are equivalent to:

PORT AirEntl "Inlet air stream 1" [airflow]
-m "air mass Flow" [kg _dryAir/s]
, -W "hum. ratio" [kg_water/kg_dryAir]
, -h "enthalpy" NOERR [J/kg_dryAir] ;
PORT AirEnt2 "Inlet air stream 2" [airflow] ;
-m "air mass Flow" [kg _dryAir/s]
, -W "hum. ratio" [kg_water/kg_dryAir]
, -h "enthalpy" NOERR [J/kg_dryAir] ;

Name of the subport. Note the leading period. If the subport contains
other subports, thisis specified as
-subport_name.subport_of_subport_name.

The subport_of_subport_name is specified for each
subport_of_subport.

For example, if we have port x with subports a, b and subport a has
its subportsal , a2 then we write:

-Subport_name

PORT x ...etc...
.a.al ...etc...
.a.a2 ...etc...
b ...etc...

-subport_name : Name of the subport. Note the leading period. If subport contains
other subports, this specified as
.Subport_name.subport_of subport_name. Note that
subport_of _subport_name isspecified for each
subport_of_subport; eg. If we have port x with subportsa, b
and subport a hasits subportsal , a2 we write:

PORT x ...etc...
.a.al ...etc...
, -a.a2 ...etc
, -b ...etc... ;
- |
BREAK_LEVEL : The default break-level values for connections to this subport.
DEFAULT . If this subport is not connected, it behaves asiif its value s fixed at

val_or_par.

ATOL, INIT, MIN, MAX . Default absolute tolerance, initial, minimum, and maximum vaues
assigned to variables created by connections to this port.
. _______________________________________________________________________________________________________________|
MATCH_LEVEL . Thedefault match level values for connections to this subport.
See Section 12.3.
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19.11 PARAMETER STATEMENT

The PARAMETER statement is used to assign a numeric or symbolic value to a name. When this nameis used
in any place that can take the parameter name, the value of the parameter is substituted in place of the name.
For example the following two statements:

PARAMETER abc = 12.3 ;
PORT x INIT=abc ;

Are equivaent to:
PORT x INIT=12.3 ;

The parameter statement has the form:
PARAMETER namel = substitution valuel, name2 = substitution value2, ...;
If aproblem and one of its classes have parameters of the same name, the value of the problem's parameter is

used. Similarly, if amacro and one of its classes have parameters of the same name, the value of the macro's
parameter isused. That is, higher level PARAMETER definitions take precedence.
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19.12 PROBE STATEMENT

Without the PROBE statement, lower level links (e.g., those in a macro object) are not visible at higher levels

(e.g., inthe problem file) unless they are connected through ports. The PROBE statement is provided to allow
higher-level assignment of valuesto certain keywords of lower-level links. It can also be used to report such

links. See Section 8.5 for examples.

The PROBE statement has the form:

PROBE name <?port_resolution? | ?link resolution?> e
ATOL=val_or_par
BREAK LEVEL=val_or_par
INIT=val _or_par
INPUT
MATCH_LEVEL=val_or_par
MAX=val _or_par
MIN=val _or_par
PREDICT _FROM_LINK=<?port_resolution? | ?link _resolution?>
REPORT
INPUT_FROM_LINK=<?port_resolution? | ?link_resolution?>
VAL=val or_par ;

Here:
I

name . Name of probe.

?port_resolution? : Concatenated object name followed by port.subport. . . name that

uniquely identifies the connection. It has the form:
objl obj2...port.subport.subport _of subport...

?link_resolution? : concatenated object name followed by ~ . followed by link name followed by
subport. .. of link that uniquely identifiesthe link. It has the form:
objl obj2...~link5.subport.subport of subport...

For problem level links, it has the form:
~1ink5.subport.subport_of_subport...

ATOL, INIT, MIN, MAX, : Sameasfor LINK statement (see Section 19.14).
BREAK_LEVEL,

MATCH_LEVEL, INPUT,

REPORT,

INPUT_FROM_LINK,

PREDICT_FROM_LINK,
VAL
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19.13 DECLARE STATEMENT

The DECLARE statement is used to instantiate a class, creating one or more objects. It has the form:
DECLARE name_or_par obj namel

, Obj name2

Here obj__name can be either avalid name or aPARAMETER name that defines avalid name.
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19.14 LINK STATEMENT

The LINK statement is used to make connections between ports of objects instantiated in this class and/or
ports of this class. It has the form:

LINK name ™"link description™ ?entriesl? , ?entries2? , ...
, (-sublinkl...){ ?entries3? , ?entries4? , ... }
, (.sublinkN...){ ?entriesM? , ... } ;
Theoptional (-sublinkl...){ ... }formmeansthat the entriesinside {} apply to the .sublinkl...

component of the macro-link. Here, .sublink... isavalid .portal... name for thislink.

The ?entriesX? containsitemsfrom the following: (if the ?connection? item is not present, the
L INK statement must have one of INPUT, INPUT_FROM_LINK, GLOBAL_TIME,
GLOBAL_TIME_STEP attributes) where at least the ?connection? item must be present:

< ATOL = val_or_par >
< INIT = val_or_par >
< INPUT >
< INPUT_FROM_LINK = linkFrom | linkFrom.sublink... >
< GLOBAL_TIME | GLOBAL_TIME_STEP >
< MAX = val _or_par >
< MIN = val _or_par >
< PREDICT_FROM_LINK = linkFrom | linkFrom.sublink... >
< REPORT >
< VAL = val _or _par >
< ?connection? >

val_or_par >
val_or_par >

< BREAK_LEVEL
< MATCH_LEVEL

Note that: INPUT, PREDICT_FROM_LINK, INPUT_FROM_L INK, GLOBAL_TIME,
GLOBAL_TIME_STEP qualifiers are mutually exclusive; only one of them may be specified in aL INK
Statement.

Here:

name : Link name.

"link_description” D@crietion , used bz browsers.
ATOL = val_or_par : Tneabsolute tolerance value specified for the variable created by this link (see
Section 11.7.1).
- ______________________________________________________________________________________________________________________|
INIT = val_or_par : Givesinitial valueto the variable. If the variable referenced by thislink isa
break variable the value is used only once, in the first Newton-Raphson

iteration.
INPUT . Input the variable created by thislink, using link name as input variable name.

INPUT_FROM_L INK : Makesthe variable that is created by a current link statement a Previous-Vaue
Variable, see Section 8.3. The value of the variable remains the same during
Newton-Raphson iterations (i.e., it istreated as if input. At the beginning of the
time step, before solving the problem equations, the saved previous value of
l1inkFrom isassigned to a variable defined by the current link statement.

GLOBAL_TIME . Connects the variable that is referenced by thislink to the cal culation time value
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that is specified by run control data.

GLOBAL_TIME_STEP . Connects the variable that is referenced by thislink to the calculation time step
valuethat is ﬁecified bx run control data
MIN, MAX : Givemin, max values to the variable created by thislink.
|
PREDICT_FROM_LINK=: |f the variable referenced by thislink isabreak variable, giveinitial valueto it
IinkFrom from the current value of 1inkFrom. Unlikethe INIT keyword,

PREDICT_FROM_LINK suppliestheinitial value that is copied from
1 inkFrom for Newton-Raphson for every time step.

REPORT : Output the variable referenced by thislink, using link name as report variable
name.

VAL = val_or_par . Set the value of the variable defined by this link to a constant value
val_or_par. It assignsthe constant value, asif it isinput, to the variable
defined by the LINK statement. If, in the same L INK statement, there are
connections to the ports of this class then this value can propagate to outside of
this class. This value can be overridden later by the INPUT,

GLOBAL_TIME. . . keywords referencing the same variable at higher levels.

?connection? : This specifieseither .port_of_this_class including the resolution of the
subport if necessary e.g.,
-port_of _this_class
-port_of_this_class.subport. ..
or connection to a port of an object declared in this class including the
resolution of the subport, e.g.

object.port
object._port.subport

BREAK_LEVEL . Break level given to this connection.
MATCH_LEVEL : Match level given to this connection.
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19.15 INPUT STATEMENT
The INPUT statement is exactly like a L INK statement for which the INPUT keyword has been specified.

19.16 EQUATIONS STATEMENT

The EQUAT IONS statement within an atomic class (see Section 19.7) specifies the equations that are used to
generate the C++ functions of the class. This statement is currently used by browsers and symbolic
processors only. It isacompound statement (see Section 19.5). An exampleis:

EQUATIONS {
pl.a X
pl.b =y
p2 z
X =y"2 *z7"2 , x>0 ;
BAD_INVERSES =y, z ;

Notes:

1. Inthe above example, X,y and z are “helper” symbolsthat simplify the equation. The notation
pl.a meansthe a subport of port pl. The example shows the equation relating X, y and z (i.e.,

X =y*-7°) and indicates that x is restricted to positive values.

2. Anatomic class can only have one equation that shows the relationship between the ports of the class.
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19.17 FUNCTIONS STATEMENT

The FUNCT IONS statement without an atomic class (see Section 19.7) specifiesthe C++ inverse functions
associated with the ports of the class. It isacompound statement (see Section 19.5) of the form:

FUNCTIONS {
DEFAULT RESIDUAL=default residual fun( portl,....,portN ) ;

portl <,port2,port3,....> = explicit_funl( port2,.... )
<methodl = method_funl(port2,... )
method2 = method_fun2( ... )

>

}
Heremethodl,method2. . . are keywordsfrom the following list that specify the callback points during a

SPARK run.

CHECK_INTEGRATION_STEP | PREDICT STATIC_COMMIT
COMMIT PREPARE_STEP STATIC_CONSTRUCT
CONSTRUCT RESIDUAL STATIC_DESTRUCT
DESTRUCT ROLLBACK STATIC_PREPARE_STEP
EVALUATE STATIC_CHECK_INTEGRATION_STEP | STATIC_ROLLBACK

Some of the methods are as follows:

EVALUATE, PREDICT methods:
FUNCTIONS { ol = fn_ol1(il,i2), PREDICT=Fn_ol predict( il,i2 );}
FUNCTIONS { ol,02 = fn_olo02(il,i2), PREDICT =Ffn_olo2 predict(il,i2);}

RES IDUAL method:
FUNCTIONS { ol = RESIDUAL residual _fn ol( il,i2,01 ) ; }
FUNCTIONS { 01,02 = RESIDUAL residual_fn_olo2(il1,i12,01,02 ) ; }

Note that residual methods must specify the target ports (Ieft-hand side) as arguments to the callback to ensure
correct dependency during the graph-theoretical analysisin setupcpp. Also, you can specify either an
EVALUATE method or aRES IDUAL method, but not both.

DEFAULT _RESIDUAL method:
FUNCTIONS { ol = fn_ol( il1,i2 ) ;
DEFAULT_RESIDUAL = fn_default_residual(ol,il,i2) ; }

The default residual method lets you specify an inverse that will be used if ho matching can be obtained with
the explicit inverses. Also, a default residual method must list al the ports defined in the atomic class as
arguments.

CONSTRUCT method:

DESTRUCT method:

PREPARE_STEP method:
CHECK_INTEGRATION_STEP method:
COMMIT method:

ROLLBACK method:
STATIC_CONSTRUCT method:
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STATIC_DESTRUCT method:
STATIC_PREPARE_STEP method:
STATIC_CHECK_INTEGRATION_STEP method:
STATIC_COMMIT method:

STATIC_ROLLBACK method:

Example of static methods:

FUNCTIONS {
X = fn_x( X, y )
STATIC_PREPARE_STEP = fn_static_prepare_step()
STATIC_CONSTRUCT =fn_static_construct()
STATIC_DESTRUCT = fn_static_destruct();

}

Note that static methods have no arguments.

Example of an atomic class with multiple single-valued inverses:
FUNCTIONS {
portl = explicit funl( port2,port3,... ) ;

port2 = explicit fun2( port2,port3,... )
PREDICT = predictor_fun2( portl,port2,port3,...)
CONSTRUCT = construct_fun2( portl,...) ;

port3 ;
}

Example of an atomic class with a multi-valued inverse:
FUNCTIONS {
port5,port6 = explicit multiOutFunl( portl,port2,port3,portd ) ;

Note that there can only one multi-valued inverse per atomic class, thus making such a class a directed class.

Here is the example explained in detail :

FUNCTIONS {
portl = explicit funl( port2,port3,... ) ;

Hereexplicit funl isthe C++ function that calculates the value of portl using the values of
port2, port3,....

port2 = explicit_fun2( port2,port3,... )
PREDICT= predictor_fun2( portl,port2,port3,...)
CONSTRUCT= construct_fun2( portl,...) ;

Hereexplicit_fun2 isthe c++ function that calculates the value of port2 using the values of
port2, port3,.... ThePREDICT=isused to specify the predictor C++function
(i.e.predictor_fun2( portl,port2,port3,...) ) that caculatesthe predictor value of
theintegrators. The CONSTRUCT= is used to specify the constructor method function (i.e. portl for
construct_fun2( portl,...))thatisusedif 'port2'ismatched with the explicit function (i.e.
explicit _fun2( port2,port3,... ) )forthisclasshy the setupcpp program.
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port3 ;
If thereis no explicit C++function available for a port, either that port is not mentioned, or only the name
of the port specified with the terminating semicolon in the FUNCT IONS statement. Note that if thereis no
explicit C++specified for a port, the method functions should not be specified.

port5,port6, ... = explicit_multiOutFunl( portl,port2,... ) ;

Here, the function explicit _multiOutFunl(..) hasthearguments portl,port2, ... and
computes the values of port5,port6, ... .
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APPENDIX A: CLASSES IN THE GLOBALCLASS DIRECTORY

Classes in the SPARK globalclass directory represent general objects that can be applied to a wide range of
problems. Each class has internal documentation in the form of a commented header. Y ou should consult the
header before using one of these classes. The classesarelisted in Table A..

Table A.1: SPARK Global Classes

Class Description

abm4 Adams-Bashforth-Moulton integration scheme of order 4
absl Absolute value

bd4 Backward Differences formula of order 4

bfd Backward-Forward Difference formula of order 2
bound Bound avalue

clipnorm Bound a value between O and 1

diff Difference

equal Equality

euler Explicit Euler integration scheme of order 1
implicit_euler Implicit Euler integration scheme of order 1

integrator _euler

Euler PC integration scheme of order 1 with error control.

integrator _trapezoidal

Trapezoidal PC integration scheme of order 2 with error control.

lin Linear relation A-x +B-X,-C-x,=0
lintrp Linear interpolation

lintrpl Linear interpolation to 1

log Natural log

logl0 Log base-10

max2 Larger of 2 values

min2 Smaller of 2 values

neg Negation

polyn3 3" degree polynomial

poslim Force to be positive

pow Exponentiation operator

propdiff Point-slope equation of straight line
safprod Safe product

safquot Safe quotient
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safrecip Safe reciproca

select Logical if-then-else construct
square Square of avalue

sum Sum of 2 values
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APPENDIX B: USING THE HVAC TOOLKIT

THE SPARK HVAC TooLKIT

The SPARK HVAC Toolkit is based on the ASHRAE Secondary Systems Toolkit (Brandemuehl 1993),
supplemented with primary equipment models from the DOE-2 building energy simulation program (LBL
1984). Thislibrary of HYAC componentsislimited to steady state models. The modelsincluded arelisted in
Table B.1.

These classes are located in the SPARK hvactk/class directory. ach class hasinternal documentation in the
form of acommented header. Y ou should consult this header before using one of these classes.

Many of these classes are lower-level macro or atomic classes from which the user-level classes are built.
These are automatically introduced into your problem as needed when you declare an object of the higher
level class.

EXAMPLE USAGE

Some examples of using these classes have aready been seen in examplesin this manual. For example, we
used the cond classin the room fc problem in Section 6.5. In addition, every class has atest driver .pr file
and associated .inp file in compressed form in pr.exe in the SPARK bin directory. Y ou can access one of these
test drivers by executing pr.exe with the class name as an argument, e.g.,

pr cond.pr <enter>
pr cond.inp <enter>

Thiswill place the driver problem and input files for cond.cc in the working directory. Alternatively, you can
execute the provided command file called testhvac to extract, build, and execute the driver. First, you should
go to the SPARK hvactk directory. Then type:

testhvac cond <enter>

Results can be found in cond.out.

Note that the system models provided with the library show relatively complex macro classes that have been
constructed from other Toolkit classes. These also have test driversin the pr.exe compressed file.
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Table B.1 SPARK HVAC Toolkit Classes

Class Description

acdx Direct expansion air-conditioning unit

airhx Air to air heat exchanger

balance Transport balance equation

bf Coail bypass ratio relationship

bf _adp Bypass factor/apparatus dew point cail

bf _ntu Coail bypass factor vs. an Ntu-like parameter

boiler Boiler

cap_rate Moist air capacitance rate

capratel Capacitance rate for water

cchiller DOE-2 single-stage compression chiller

cclogic Dry vs. wet-coil decision logic

ccsim Simple cooling cail

cond Generic conductance relation

cpair Specific heat of air

ctfunc Cooling tower model correlation

ctrl Cooling tower Fr vs. range dependency

ctr2 Cooling tower Fr vs. approach dependency

cvrhsys Constant volume reheat system

ddhtbal Dual-duct zone convergence enhancer

ddsys Dual-duct system

dewp_hw Dew point using Hyland & Wexler saturation correlation

dewpt Dew point relationship for moist air using Walton's saturation
correlation

diveim Diverter (splits aflow stream into two streams)

drcclu Dry-cail, cross flow, stream one unmixed

drccbm Dry-cail, cross flow, both streams mixed

drccbu Dry-cail, cross flow, both streams unmixed

drcctr Dry-cail, counter flow

dreprl Dry-cail, parallel flow

drywet Dry/wet cooling coil

dxcap_m Capacity variation with mass for DX AC unit

dxcap_t DX AC unit capacity variation with outside dry and inside wet-bulb
temperatures

dxeir_m EIR variation with mass flow rate

dxeir_t DX AC unit EIR variation with TWb
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econ Economizer

effclu Ntu-effectiveness, stream 1 unmixed

effcbm Ntu-effectiveness, cross flow both mixed

effcbu Ntu-effectiveness, cross flow both unmixed

effctr Ntu-effectiveness for counter flow

effncy Forces two inputs to sumto 1.0

effntul Exponential effectivenessvs. Ntu

effprl Ntu-effectiveness for parallel flow

eintrpl Exponential interpolation

eirl oc Curvefit for eirl in open centrifugal compressor

er2 _oc Curvefit for eir2 in DOE-2 open centrifugal compressor
enthalpy Enthalpy, dry-bulb, humidity relation.

enthsat Dry-bulb vs. enthalpy at saturation

enthvap Enthalpy of water vapor

enthwat Enthalpy of water

enthxclu Enthal py exchanger, cross flow, one stream unmixed
enthxcbm Enthalpy exchanger, cross flow, both streams mixed
enthxcbu Enthal py exchanger, cross flow, both streams unmixed
enthxctr Enthalpy exchanger, counter flow

enthxprl Enthalpy exchanger, paralel flow

eq3l Equation 31 of 1993 ASHRAE Handbook of Fundamentals, Ch. 6
evaphum Evaporative humidifier/cooler

fan_dd Discharge damper fan, volume flow-temperature interface
fan_iv Inlet-vane-controlled fan, volume flow-temperature interface
fan_vsd V ariable-speed-drive fan, volume flow-temperature interface
fann_dd Discharge damper fan, mass flow-enthal py interface

fann_iv Inlet-vane-controlled fan, mass flow-enthal py interface
fann_vsd V ariable-speed-drive fan, mass flow-enthal py interface
fansm Simple fan with part-load coefficients in the interface
fansm_n Simple fan with part-load coefficient and enthal py/mass interface
fflp_blr Boiler part-load curve fit

fflp_dd Fraction of full-load power for discharge damper fan

fflp_iv Fraction of full-load power for inlet vane fan

fflp_vsd Fraction of full-load power for variable speed drive fan
gendiv Generic diverter

htxclu Cross flow, stream one unmixed heat exchanger
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htxcbm Cross flow, both streams mixed heat exchanger
htxcbu Cross flow, both streams unmixed heat exchanger
htxctr Counter flow heat exchanger

htxeff Heat exchanger effectiveness

htxprl Parallel flow heat exchanger

htxtemp Temperature vs. capacity flow vs. effectiveness
humeff Humidity exchanger effectiveness

humex Humidity exchanger

humratio Humidity ratio vs. partial pressure of vapor

idealgas Ideal gaslaw

indep_fr Independent fractions

indevap Indirect evaporative cooler

lat_rate Latent heat rate

mixer Mixing box model for moist air

propcont Proportional controller

pumpsim Simple pump

rcap_oc Curvefit for capacity in open centrifugal compressor
relh_hw Relative humidity (Hyland & Wexler)

relhum Relative humidity

rho Moist air density vs. specific volume and humidity ratio
rhomoist Moist air density vs. dry-bulb and humidity ratio
room Simple room with heat loss and air mass

satp_hw Saturated Pressure (Hyland & Wexler)

satp_r Saturated pressure of water vapor, residual method
satpress Saturated pressure relationship for water

sercond Conductorsin Series

specvol Specific volume of air

tower Cooling tower

tstdhb Test driver for ddhtbal

var mix Variable mixing box

vavsys VAV System

vlvcirc Flow circuit with non-linear valve and series flow resistance
wecoilout Wet-coil leaving conditions

wetb_hw Wet-bulb temperature (Hyland & Wexler)

wetbulb Wet-bulb temperature

wtcclu Wet cooling/dehumidification coil, cross flow, one stream unmixed
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wtccbm Wet cooling/dehumidification coil, cross flow, both streams mixed
wtccbu Wet cooling/dehumidification coil, cross flow, both streams unmixed
wtcctr Wet cooling/dehumidification coil, counter flow

wtcprl Wet cooling/dehumidification coil, parallel flow

zone Simple steady-state thermal zone

zone_dd Dual-duct controlled zone
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APPENDIX C: PREFERENCE FILE FORMAT

WHAT ARE PREFERENCE FILES?

Preferencesfile are external representations of objects of class TPrefList. This C++ classisdesigned to
allow storage and retrieval of (key, value) pairs, somewhat like a mapping. However, this class differs
from atypical mapping in that it allows an hierarchical description of information. The example below will
allow you to better understand the structure and format of SPARK preference files.

USES OF PREFERENCE FILES IN SPARK

Preference files are used several placesin SPARK to store information about important aspects of the problem
and how it isto be solved. For example, every SPARK problem has a probName.prf file that gives information
about the problem component structure, and how each component is to be solved (see Section 11). Also, each
problem has a run-control file probName.run (see Section 18) with information about the simulation interval
and other control issues. In some environments, a global spark.prf stores critical information about the SPARK
installation. Here we explain the general format of all preference files.

HIERARCHICAL DATA: THE STRUCTURE OF THE PREFERENCE FILE

As an analogue of the way SPARK preference files are structured, consider how the description of abuilding
might be stored. The building is to have a Name, a Roof, a Floor, and an arbitrary number of Walls.
Although the Name has a simple string value, e.g., “MyBIdg”, Roof, Floor and every Wall isto have two
attributes, U and W.

Figure C. shows thisinformation as a general tree. It can also be thought of as an object called theBuilding.
Every node in thistree can be viewed as a key, and the list of child nodes can be viewed as the value of that
key. ThustheBuilding has avaue which isthelist (Name, Roof, Walls, Floor), each of which is another tree.
In turn, the root of each of these trees can be thought of as another key with its own value. The key Name has
asingle value, myBldg, and the key Roof has the value which isthelist (U, W), each of whichisatree. TheU
and W keys at the roots of these trees each have asingle value, (1.2 ) and (1.0) respectively. Note that nodes
in the tree like myBldg, 1.2, and 1.0 are distinctly different from nodes like Name or Root in that they have no
children, i.e, they areleaves. Another way of saying thisisthat the “value” of anode like myBldg or U
consist of an empty list (). These are the actual data stored in the structure. Note aso that the path from the
root to any leaf isaunique identifier of the datain the leaf. For example, theBuilding.Roof.U identifies the
value 1.2.
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theBuilding

Name Roof

Walls

1.2

5.0

1.2 0.5 12

0.5

1.2

0.5

1.2

0.5

Figure C.1: Simple Building Represented asa Tree

PREFERENCE FILE FOR THE BUILDING DESCRIPTION EXAMPLE

The preference file expresses this tree structure as text. The preference file code example for the tree in

Figure C. is shown below.

The format follows the convention that a key is followed by alist representing its value, enclosed in
parentheses. If thelist is empty, indicated by empty parentheses, the implication is that the key isin fact
actual data. Note that the key representing the file itself, in this case theBuilding, is not part of the stored
data. Thisis because externally the operating system will know it by the assigned file name, and programs
that read preference files assign the file contents, i.e., its value, to an instance of prefltem class.
Consequently, it is not useful to store the name in the file itself, and the file content begins with an opening
parenthesis, and ends with a closing parenthesis. With these conventions, here is the file for theBuilding:

¢ Name (myBldg ( )

%oof (
u@a.z )

)
W (@.o ()
)

\%Ialls (
North (
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N

Uu@.2 ()

)
W (.5 ()

)]

)
South (
U (1.

N

)

W (0.5 ()

o1

East (
U (1.

N

)

)
W (.5 ()

)]

West (
U (1.

N

)

W (0.5 ()

o1

Floor (
Uu @.2 ()

)
W (G0 ()
)

)
)

Since theBuilding tree has four first-level nodes, between file opening and closing parenthesis there are four
main clauses, each consisting of a key followed by a parenthetic expression representing the value of the key.
The first-level keys are the nodesin the tree, Name, Roof, Walls, and Floor. The Name key has asimple
value, the building name string “myBIdg”, so it is followed by aempty parentheses. Note that the format is
delimited entirely by the parentheses so spaces in strings are allowed, and no quoting is necessary. The Roof
and Floor keys have values that are trees with nodes representing U and W. The U and W keys have simple
values, so they are followed by empty parentheses. The Wallsidentifier has a more complex structure,
namely four trees, each with a structure like Roof and Floor.

EDITING THE PREFERENCE FILE

Each SPARK problem has an associated preference file that sets important information needed by the solver.
Thisfile describes the settings for the numerical solution of each component of the problem . In addition, this
preference file includes alist of the C++ source files that are specific to the problem. As explained earlier, the
problem-preference file, probName.prf, is generated by the SPARK setupcpp program at the same time that it
generates probName.cpp. The following preference file is for the example.pr problem:

(

GlobalSettings (
Tolerance (1.E-6 ())
MaxTolerance (1.E-3 ())

ComponentSettings (
0 (

168 Appendix C



SPARK 2.0 Reference Manual

ComponentSolvingMethod ( 0 Q)
TrueJacobianEvalStep ( 1 )
Epsilon (1.E-6 ()
RelaxationCoefficient ( 1.0 ())
ScalingMethod ( 0 Q)
Maxlterations (50 ()
MatrixSolvingMethod ( 0 Q)
PivotingMethod ( 1 )
RefinementMethod ( 0 ))

)

)

Sources (
./example.cpp O
../class/rl.cc O
../class/r2.cc ()
../class/r3.cc ()
../class/rd.cc O

)

)

Since probName.prf is atext file, any text editor can be used to edit it. Alternatively, you can use tools
provided with SPARK. One of these toolsis a command line program called repref. In general, execution of
repref isasfollows:

repref file.prf [pref 0] [pref n-1] action key <enter>
This modifiesthe branches [pref 0] ... [pref n-1] accordingto action:

= key replaces value at the branch by key
- key removes vaue key value at the branch
+ key add value key at the branch
As an example, to change Epsi 1on for Component 0 in example.prf:

repref example.prf ComponentSettings O Epsilon = 1.e-8 <enter>
Repref is handy for writing script files for preference file modifications.
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APPENDIX D: SPARK PROBLEM DRIVER

The SPARK problem driver Application Programming Interface (API) allows an advanced user to implement
a customized driver function in order to:

e customize the sequence of operations to re-solve the same problem,
e manage and solve multiple problems,
e retrieve solution values and specify new input values, and

e change run-control parameters between successive simulation runs.

The sparksolver.cpp file that implements the default SPARK driver function uses this set of API functions to
carry out the simulation task.

Users can write a customized problem driver to retrieve the solution value from any problem variable and to
modify the values of the input variables, so that multiple runs of the same problem can be carried out with
different boundary conditions. Variables comprised in each problem can be looked up by names and by
handle from the methods of the TProblem class. A variable handleisits unique identifier specified as an
unsigned integer in the problem description files probName.cpp. and probName.xml (See Figure 1-1).

The problem driver API enables:
e the management of multiple problemsin the same driver function aswell as

e theintegration of a SPARK problem within another program.

Comprehensive documentation on how to write a problem driver function can be found in the htm/chm tutorial
SPARK Build Process and Problem Driver API that can be found in the SPARK doc directory and at
http://SimulationResearch.lbl.gov in the SPARK area.
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GLOSSARY OF TERMS

absolute tolerance (ATOL)
Absolute tolerance value.

algorithmic programming
A sequence of operations and assignments leading from prescribed inputs to prescribed outputs.

assignment
In computer languages, assignment is the action whereby avalue is associated with an identifier representing
avariable. Although the symbol “=" is often used for assignment, e.g., X = 2*y, assignment is different from

mathematical equality because the latter implies that the expressions at the left and right of the “=" symbol are
aways equal. In particular, a sequence of assignments are order dependent, while a set of mathematical
equations are not. See “agorithmic programming.”

atomic class
A model comprising a single equation with used variables linked to its ports. Acts as atemplate for
instantiation of atomic objects.

break level
An integer from 0O to 10 expressing the desirability of using the associated link to break cyclesin the
computation graph.

class

A general description of an equation (atomic class) or group of related equations (macro class). A class acts as
atemplate for instantiation of objects.

command file
A file containing MSDOS commands. Also called a*“batch” file.

continuous variable
Variable that can take on any real value between a minimum and maximum value.

cut set

A set of variables (links) that will break all cyclesin the computation graph. SPARK attempts to minimize the
size of the cut set. The variablesin the cut set are called “break variables’ and are used for iterative solution.

cyclic
In graph theory, the property of having closed paths, or circuits.

differential algebraic equation system
A system of differential and algebraic equations for simultaneous solution.

discrete state variable
A variable that can take on only specific values rather than any real value within arange.

dynamic variable
A variable for which the derivative appearsin a differential equation.
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environment variable

A symbol whose value is assigned in your computing environment, as opposed to within the SPARK program
system. See documentation for Microsoft Windows for more information and to learn how environment
variables are set. See also sparkenv.

GNU
GNU isnot UNIX; GNU is asystem of free software programs devel oped through the Free Software
Foundation.

graph
See “mathematical graphs.”

HVAC
Heating, ventilation, and air-conditioning.

ill-posed
A problem that is not well-posed is said to beill-posed. See “Well-posed.”

implicit inverse
A form of an equation in which a particular variable occurs on both the left and right sides of the equation.
Used when explicit inverses cannot be obtained. Solution requires iteration.

initialization
Specifiesthe value of variableat InitialTime. Required for dynamic variables and break variables.

initial time
The time when the simulation starts. Thisisthetime at which initial conditions for differential equations
apply.

input set
The complete set of information needed to define execution of a SPARK problem. Includes input data files
and run control information.

input/output free

A style of model expression that provides a set of equations rather than an algorithm. Since any set of inputs
that leads to a well-posed problem can be specified in conjunction with these equations, it is sometimes called
“input/output free.”

instantiate
To create an instance of a class. To create an object based on a class definition. The DECLARE statement
performs instantiation in SPARK.

integration formula

A formula used in numerical solution of differential equations to calculate avalue for the integration variable
at the next point in time. The formula can be explicit, in which case the new value appears only on the left
side of the equation, or implicit in which case the new derivative also appears on the right of the equation.

interface variable
A class variable that isto be visible from outside. Interface variables are defined with the PORT statement.
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inverse

A form of an equation in which a particular variable isisolated on one side of the equation; i.e., aformulafor
avariable. Theformulais obtained by symbolic manipulation of an equation for a particular variable in the
equation. An explicit inverse has the wanted variable on the left side only, while an implicit inverse has that
variable in the formula as well.

Jacobian

The square matrix of partial derivatives of residual equations with respect to the break variablesin a
strongly-connected component.

macr o classes

A group of SPARK atomic or other macro classes linked together through their respective portsto form a
subsystem model. A macro class can be used wherever an atomic class can be used.

make

A utility program that creates a program from its composite parts, in response to commands embedded in a
makefile. GNU makeis used for both the UNIX and Windows implementations of SPARK.

makefile

Aninput file for amake program. Contains various targets, their dependencies, and commands for building
them.

match level

Aninteger from 0 to 10 expressing the desirability of matching the associated link variable with the
associated object port, and therefore with the inverse for this object port.

mathematical graphs

A structure comprising a set of vertices (nodes) and edges (arcs) that connect them. Often used to model
systems of interacting entities.

object-oriented
A methodology in which the model behavior and data are encapsulated in a programming entity comparable
to the physical entity that it represents.

panel
A discernible region within a window on your computer screen.

parser

The program that interprets the SPARK files that describe the model as the first step toward solution. Builds
the setup file.

PDF

A portable file format from Adobe Systems that retains page layout and graphics. Y ou need a special
program, called Acrobat Reader, to view afilein PDF format. This program isfreely available on the
Internet.

predictor

Value of abreak variable at beginning of iterative solution. Defaults to value at previous time step if not
specified with PREDICT_FROM_L INK.

prf file
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A file that contains various component settings (also called preferences) needed for aprogramto run. Ina
sense, a generalization of command line options and environment variables.

propagation
Process by which SPARK infers certain LINK or PORT statement settings, e.g., ATOL, INIT, MAX and MIN,
from settings at lower or higher levels.

relaxation coefficient
Multiplier, usually afraction, on calculated correction that is applied in order to get new break variable values
during iterative solution.

retained state

Value that needs to be saved between successive uses of an object. Currently, SPARK objects cannot retain
state internally. However, values of link variables are retained for four previous time steps.

run-control
Data controlling the solution phase for a SPARK problem, e.g., start time, finish time, time increment, and list
of input files and output files.

setupcpp
A program used in the process of building a SPARK problem. Processes the setup file produced by parser.

solver

The executable program that SPARK builds to solve a particular problem. Called probName.exe (Windows) or
probName (UNIX). Thelibrary used by SPARK in constructing this executable is also sometimes referred to
asthe“solver.”

sparkenv
A command file for setting up your environment for running SPARK at the command line.

spawn
To create a computational process in acomputer.

strongly connected component or strong component

In graph theory, amaximal set of vertices and edges that allow any vertex to be reached from any other
vertex. In SPARK, astrong component corresponds to a separately solvable sub-problem that SPARK
automatically determines using graph theory. Sometimes called simply “Component.”

symbolic manipulation

Operations on mathematical expressions in terms of contained symbols, as opposed to numerical evaluation.
The goal is often to solve for a particular variable in terms of all othersin the expression, i.e., to obtain an
inverse. Often done with computer software, i.e., computer algebra.

tar get
A file or other object that can be created with one of the command sequences in a makefile.

tool bar

A row or column of icons, usually at the top of awindow, that can be clicked to perform commonly needed
tasks. Theiconsusualy are pictorial, suggesting what the tool does. For example, the Print icon on many
Visual SPARK windows looks like alaser printer.
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updating
Setting the value of Previous-Value Variable to the value of avariable specified with INPUT_FROM_L INK.
Occurs at beginning of time step, before solving the components.

well-posed

A problemis said to be well-posed if it admits at least one solution. One requirement is an equal number of
equations (objects) and unknowns (links). There also must be a complete matching, i.e., amatching of each
variable to a unique equation inverse. However, problems can meet these requirements and still not be

well-posed. For example, thetwo curves y = f (x) and y = g(x) may not intersect, so there is no value of
X that satisfies both equations.

175 Glossary of Terms



SPARK 2.0 Reference Manual

INDEX

¢ 141 CONLINUOUS SYSEEIM ...t 1
‘request continuous variable..........cccooeiinineienieee e 172
INEEINGAL ....veeceiciecseee e 93 convergence ChECK .......covvveeeveceirese e 105
absolute tolerance (ATOL) .....cooeveerennereeeeseeene 172 CUL SEL ..ot 172
algorithmic programming ..........ccceceveeeeenereseneeenns 172 CYClIC ettt 172
2SS [0 0100 | 172 debug 10g fil...eeeieeeeeeee 135
ATOL e 109, 122, 141 AEDUGGING. ..ttt 114
ALOMIC ClBSS ...ovcveceicece e 1, 143, 172 AECIArE.....ve ettt 6, 33, 152
CIEALE ..ottt ettt aens 16 default_residual..........cccceveveeeeeevieeee e 72,79, 82
INVErse fUNCHION......coviieirie e 18 ENVALIVE ..o 36
atomic port, eXample ........cccceveevcecieceee e 146 diagnostic MechaniSM.........cccccevverniesienesies e 117
backtracking 10g file........occorieiinreireereeene 136 differential @QUALTION ..........cvvereeirireere e 36
DEICH ..ot 172 2 [0 = o] - T oS 172
break variable........cococovvieiiiiii e, 14, 55 OFAINANY ..ot 3
BREAK_LEVELG66, 120, 141, 146, 149, 151, 154, 172 directory, globalclass...........ccoceverenieriiiceee 160
CAlIDACK ... 18, 29 discrete state variable........ccoovveveveccenceeceeece 172
COMMIT..eiiieitectecie et sr et s ere e 78 011 =10 3o 3 159
EVAUALE ... 18, 41, 74, 78 [010] o= 1 ¢ TS 7
eXPlICIt FOrM i 82 Variable ... 52,173
FramMEWOrK .....coceveeiceccece s 75 environment variable ..., 173
FUNCLION .. 76 EPSIHON . 101

INSLANCE. ..o iveeiteecte ettt 76 equation
KEYWOIDS.....ccueeeeeeeie et 79 ClASS ..o 10
FESIAUAL ...ttt 68 differential algebraic..........ccccvvvveivvennnieccriee, 172
residual form .......ccceeeeiieicececeeee e 82 Il 10
FOHDACK. .....ceeceieeeee e 78 ordinary differential .........ccccooeroerinieieri e 3
SIMUIELION 100P......cce e 77 partial differential .........cccooeviiiiiiiiee 3
LS = 1 o 76 SIMPIETINEAN ... 6
ClaSS ...t 1,5,152, 172 EQUATIONS Statement ........cccovveveererieeeiesieeevenes 155
AEOMIC....eviiceieeee e 1,143, 172 error 10g file ..o 135

CIEALE. ...ttt e 16, 23 errors

(=0 LU= o) o USRS 10 7= TS ] o S 114
globalclass.....cooieieeeeee 160 SEEUD ettt 114
INtegrator ODJECE .......ccevvirerireee e 39 Euler method.........cccovviveinincecenee 36, 40, 160
(1170 (0 J 1,144, 174 EXPLICIE oo 173
WEBPPET -...ceeveeeeeeneseeeeseseeeeneseeeeseseesenesaesenesseneneseees 24 eXPlICit FOrMUIAL.....coveeiereere e 36
ClASSEYPE ..ot 66 factory 10g file. ... 135
EfAUIT. ..o e 68 L1 SRRSO 48, 63, 168
(191050 € (o) SO 39, 67, 85 JOG i 10
SINK ottt 67 default problem preference..........ccocecvvvvecienenns 97
coefficient <o |17 o o [ 10
= F= € (10 o ORI 175 4] 11 | OSSR 48
command fil€.....c.ccevevie i 172 PreferenCe .. ..o 167
(000) 111011 0| IR 17, 142 o10] o] 1= o 1O 145
COMPITEN . 17, 159 problem specification .........c.ccoeeveieveneneneneen, 2,7
COMPONENT ...ttt e e seeneeees 10, 97 FINAI TIME et 8
strongly CONNECted ........cccevvveeeeeeierecec e 10 Final SnapshotFile ..o 137,139

component solving methods..........cccocvvvvevieeeenennen. 100 formula
COMPONENE SEAIMP ....cuveeereeierieeeereeee e e eaeas 118 LS 1 36
compouNd SEAEEMENE .......coeeeeriereee e 142 IMPIICIT .t 36
(00] 157 4 0 - v DR 56 101z 2= 1o o FOU USRS 173

CONSLANt VAIUES......c.eeeereeseesiece e 48 function
176 Index



SPARK 2.0 Reference Manual

(1 177< £ T 18
FUNCTIONS statement ........cccceeeveeeereeeereeeeeennens 156
globalclass direCtory .........ooeveieveneneeeeee e 160
0 01U ORI 173
001070 o 133
OraDN e 10, 173

COMPONENT ...ttt 10

MAthemMatiCal ........ccceeveeeiiie e, 174
hierarchy .....ccceecevee s 141
117 o2 173
HVAC TOOIKit..ccuiioviieiiie e 31, 162
ill-posed problem..........cccoceveveviii s, 15, 173
implicit

FOrMUIAL. ... e 36

[1017/= 65 ST SRR 173
INTT oo 38, 48, 122, 141
initial conditions..........cceoeeveeiieieeeeceee e 57
INIIAl TIMB.eeeerii e 8,173
initial time SOlULioN........ccocieeec e 53
Initial ValUES .....covvevieectecreecteeeee e, 36, 38, 42
INITTAlIZALON.....cveecveceiceecreececece e 52,173
InitialSnapshotFile..........cccooveivieneeee, 137, 139
input mechanism

MAP FIlE o 131

NALIVE.....cctiectieciece ettt ettt 121

REA0 URL .....ovviiiieicece e 124
INPUE SEE .. 173
INPUT StAfEMENL ......ccvicviciiecriecteecrecre e 155
INPUL/OULPUL FrE. ..o 173
INPUT_FROM_LINK ..ot 141
INSEANIAEE. ...ttt 173
integration

EITOF CONLIOL.....cvieieiie ettt 40, 96

[ = G 36, 160

formula.......ccooovveeeeeeeeeece e, 36,173

INITATIZALON. ....coeccvecececececec e 42

=5 7 SRS 43
integrator ObjeCt ClasS.........cvevvvereineireee e 39
interface variable.........ccocooeveeeveeceeeeeee e, 5,174
INVEISE ..ottt 3,10, 14, 20, 174

AEfAUIL.....eeveereee e 114

default residudl........covveeeeeieeceeeceeeee, 72,75, 114

FUNCLION L. 18

IMPHCHT et 173

INSLANCE. ..ottt 75

MUItI-VAUE ... 23,75

single-valued ... 16, 75

LS T 0] PSS 73

By P e 75
inversion

SYMBONIC . 14
iteration safety factor........ccovveveieveccsenccc e 99, 107
iterative SolULION ......c.cceevveecrecrecrecreecreerens 13, 37, 101
N 2 ol0] o =1 [ 14, 174
JacobianREfreShRALi O .......ccoevevevveeeree e 105
KEYWOIAS ..o 141
FINK et 5

LINK statement ........cocoveeverenenecneseeeseeneens 153
7= - S 35
Varabl ... 52
[iteral StriNgS......cccovereriiieie e 142
macro
ACTIVE_COMPONENT. ..o, 89
ACTIVE_INVERSE.........ccoooveirireisesesen 89
ACTIVE_PROBLEM........cccoveirieirineirininn 89
ARGDEF ..ottt 19
ARGUMENT ..t 26
ClaSS .. 1,64, 144, 174
EVALUATE ...t 19
REQUEST _ABORT ..ottt 94
REQUEST __ABORT ..ot 28
REQUEST__ CLEAR_MEETING_POINTS............... 95
REQUEST _ REPORT ....oeoiereseseeeeeeeeeeeeeeesesesesees 94
REQUEST__RESTART ..ot se s 94
REQUEST __SET_MEETING_POINT ........cuvuiuinnnnnee 95
REQUEST__SET_TIME_STEP ....cvuvviriveeereerenne 96
REQUEST __ SNAPSHOT ...coiiiiiririiicie v A9
REQUEST__STOP.....cotiieeeeeeseeeee e s s sesesees 94
RETURN ..ot 20,74
TARGET ..ottt 27
THIS s 88
MBKE. ...ttt eene 174
MAKEF €., 174
MBKEFTT ... 174
manipulation, SymboliC..........cccceviveirieevere e, 175

MATCH_LEVEL 12, 66, 115, 120, 141, 147, 149, 151,
154, 174

MEECHING. ...t ceeeeee e 10
mathematical graph.........cccccceeveveie v, 1,174
matrix solving methods.........cccocvivveverceccenereee, 102
MAX ot 122, 141
MAXITEratioNS.......cccveiieceeceeeee e 101
MaXTOlErANCE ..ottt 99
MIN e 122, 141
MinRelaxationCoefficient...........ccooveveveieiennnennnn, 102
001G G 33, 59, 165
MOAElS, ODJECE ......cvveveieie e e 1
NBIMES ...t nnees 141

[INK NAMES.......coeeieciececeeceee e e 35

=SS A= o S 141

TULES ..t 142
Newton-RaphSON ........cccvveeeeere e 13
NOERR........cot ittt 148
numerical supPOrt data..........ccoeerereererenerieeieeie e 57
(o] o= F ST 5

10105 2= (o SO 37

INtErCONNECLEd. ........e e 9

interconnected method............ccoccevveiee e ceeceee, 9

MOTEIS. ...ttt 1
object-oriented .........cceevvevereeeee e 1,174
ordinary differential equation ............ccccoceeeerienns 3,36
(010 11 010 | USSP 133

INPUL/OULPUL FrEe ... 173
PARAMETER statement .........ccocoveevveneeeneneneenne 150

177



SPARK 2.0 Reference Manual

O S S 174 HMEEVENT ..o 95
PArSING EITOIS....ceeueieereeienterieerie s seens 114 ULHTIEY e e 93
partial differential equation ...........ccccoeverereicnenenennen. 3 request MECANISIM........ccceireeerereere s 93
PESt VAIUES ... 36, 52, 65 = o (U1 (=0 = 010 YOS 141
00 | 174 rESErVEd NAIMIES........civeiverieereeee e et see e 141
60 PSRRI 48, 143 (= [0 (U= 68, 82
ATGUMENE. ... e 17 FetaiNed StALE ......ccveeevereeeeie e 175
aAOMIC, EXAMPIE ..o 146 FUNTOG il 135
SEEEEMENT ... 25, 146 FUN-CONEFOl ... 7,175
BAIOEL. e 17 FUN-CONEIOl File....eiviiiiciiec e 139
VaATADI ... 56 ScalingMethod ..........ooeevercireeeee e 102
PORT Stalement.........ccceveerieiineeneeseeseee e 17 SEEUD EITOFS. ...ttt e s 114
POSE-PrOCESSING ...cuvevervierereeereeeeeereeseesressesreseeseeneens 133 (S (U] 003 o o S 175
PrediCtion........ccovereerereese e 14, 54 SIMUIELTON [O0P. ...c.eveeiieerieiere e 77
prediction safety factor ..........cccvveveeeniencieseseeseen 99 SNAPSNOL il 137
0110 [T (o | S 174 SOIULION.....cviceieiecie et 55
preference file.......ocvvvi i 167 SOIVET .o 175
preference settings SPAKENV ... 175
COMPONENT.....cviririri it 100 sparse linear solution method...........ocooeeriiiieenenne. 102
defaUlt...c.oeeeeee e 99 Special CharaCters.......covvveveinineesee s 141
global......ooe 98 statement
Prefix symbols........cciierie e 62 COMPOUNG ...t 142
PrevioUS tIME ......ooiiiie e 36, 42 DECLARE.......eeeeeee e, 6, 152
Previous-Vaue Variable ..........coooovevieinniicnnne 55, 63 EQUATIONS. ...ttt 155
P e 175 FUNCTIONS.....ocoiererieeereeresre e 156
private data........coovveeeeeererere e 75, 77, 86 INPUT ..ot 6, 155
INSLANCE. ...ttt 86, 91 LINK e 153
SEBLIC vt 86 PARAMETER ...t 150
0] 0] 1= TR 66, 151 @ = S 17, 25, 146
problem PROBE ...t 151
AYNAMIC ...t 7 TEIMINGLOT ...ttt 142
I e 145 statement tErmMiNGLor .........ccovvveveririeeereeeeeseseeeeas 142
11-pOSE.....ccoeieeeeecee e 15, 173 (S = 05 =111 o I 118
preference file ... 97, 169 StepControlMethod.........coovveereneirerereeeesee 101
specification fil......ccooevineice 2,7 SEINGS. vttt 141
VAT ... 5 [IEEralS ..ot 142
WEI-POSE ... 176 strongly connected component............cccccevenee. 10, 175
Problem driver ... 171 SUDPOITS. ...ttt 146
ProPagation .......c.ccvevereeerieriee et 55, 175 symbolic
FUIE oot 62 INVEFSION ..ottt 14
range Of VAIUES.........cccceveveciieeeecese e 31 MaNIPUIALTION .......eeeeecece e 175
relaxation CoeffiCient.........covvvevvenecninereee 175 PrOCESSING ..ottt 20
RelaxationCoefficient...........ccooeverereniene e 102 TO0IS e e 3
1< 010 £SO RPR 151 SYMBOIS, PrefiX.. ..o 62
= o] (= S 170 LTSRS (= TS 8, 36, 42
request VaNADIE ... 40, 139
BDOMT . 28,94 HMEUNIT ... 48
clear meeting POINtS.......ccoeveereeese e 95 time-varying
EXEEMNA ..o 93 aEA .o 56
INEEGIELON ... 96 TOIBIANCE ..ot 99
[ o]0 o AT TSP 94 ToOlKit, HVAC ...ttt 162
FESLAM. ....ecveeveeeeeer et 94 tools
Set MEEtiNg POINE .....ccveevereereceeeee e 95 SYMBOLIC .o 3
SELHIME SEEP .. 96 total internal SCaling.......coceevvevervieninee e 111
SNAPSNOL.....cvieciicteee e 94 TraCe Tl e 116
State tranSition .........ccceveverenereeee e 94 TrueJacobianEval SteP........cocovevererireeieeee e 101
LS o] o 94 UNIt CONSISLENCY ...vevveveeeseeeeeeeeneeseesees e sresreseeeeeeneens 31
178 Index



SPARK 2.0 Reference Manual

UNIES ..ottt sttt e r e s sreesbeenbeearesrnesreens 48
([0 1=l 0101 (1= GO 32
UNSPECITIEA ...t 32

(81010 1] 0o FS RS 55, 176

URL
MAP Tl e 131
REA0 ......ooveeeteecteee e 124
WHHEE. ettt e 132

(V2 o G o= | 141

variable
CONMEINUOUS .......vveereeereeeeieeeteeeereeeereeesreeenbeeenseeenns 172

diSCrete Stae .....covevereeeee e 172
AYNAMIC . 52
AYNAIMIC ... 173
L@ XS ITz= o] o 1 oo [ 8
INEEITACE ..o 5,174
FINK e 52
PONT. ettt et 5
Previous-Vaue........ccocooeeveieeennineniens 52, 55, 63
[010] o] 1= o 1 5
well-posed problem..........ccevrincinneinee 15, 176

179

Index



	Table of Contents
	Foreword
	Licenses and Copyrights
	Text Conventions
	Introduction
	What is SPARK?
	Kinds of Problems that SPARK Can Solve
	Describing Problems for SPARK Solution
	Portability and User Interfaces
	The History of SPARK
	Versions of SPARK

	Basic Methodology
	Overview and Terminology
	A Problem with a Single Object
	Running the SPARK Problem
	Arbitrary Input/Output Designation

	Problems with Several Objects
	Problems Requiring Iterative Solution
	Iterative Solution and Break Variables
	Well-Posed Problems

	Creating Single-Valued Atomic Classes
	Class Definition
	The PORT Statement
	The EQUATIONS Statement
	The FUNCTIONS Statement

	Inverse Functions Definition
	Basic Structure of a Single-Valued EVALUATE Callback
	Defining the C++ Callback Function
	Defining the Argument Variables
	Calculating the Result Value
	Returning the Result Value

	Symbolic Processing
	Simple Symbolic Processing
	Generating an Inverse
	Caveats


	Creating Multi-Valued Atomic Classes
	Motivation
	Limitations
	Class Definition
	The PORT Statement
	The EQUATIONS Statement
	The FUNCTIONS Statement

	Inverse Function Definition
	Defining the C++ Callback Function
	Defining the Argument Variables
	Defining the Target Variables
	Calculating the Result Values
	Returning the Result Values
	Basic Structure of a Multi-Valued EVALUATE Callback


	Models of Physical Systems
	Units, Valid Range, and Initial Values
	Macro Classes

	Differential Equations
	Numerical Solution of Differential Equations
	Solving a Simple Differential Equation
	Integrator Classes in the SPARK Library
	Creating SPARK Integrator Object Classes
	Simplified Implementation of the Euler Method
	The Initialization Issue
	The Restart Issue
	The Previous Value Issue

	Solving a Larger Example: The Air-Conditioned Room

	How SPARK Assigns Values to Variables
	Initialization
	What Must be Initialized
	What Might Need Initialization
	How to Specify Initialization
	Initial time solution of a dynamic problem

	Prediction
	Where Prediction is Needed
	How Prediction is Specified

	Updating
	What Needs to Be Updated
	How Updating is Specified

	Solution
	What Needs to Be Solved For
	How Solution Is Specified

	Propagation
	Input Values from Files
	Categorization of Different Types of Input
	Example of Multiple Input Files


	Advanced Language Topics
	Macro Links
	Internal SPARK Names for Variables (Full Names of Links or Ports)
	Previous-Value Variables, or Updating Variables from Links
	Usage of the LIKE Keyword in PORT Statements
	The PROBE Statement
	Usage of the CLASSTYPE Keyword in Atomic Classes
	INTEGRATOR classes
	SINK classes
	DEFAULT classes

	Usage of the RESIDUAL Keyword in EVALUATE Callbacks
	Motivation
	Implications for the Graph-Theoretic Analysis
	Mathematical Example
	Class Definition
	Inverse Function Definition

	Usage of the Default Residual Inverse in the FUNCTIONS Statement

	The Callback Framework
	Overview and Terminology
	Inverse Type
	Single-valued inverse
	Multi-valued inverse
	Default residual inverse

	Inverse Instance
	Callback Function
	Callback classification
	Static and instance callbacks

	Private Data

	Callback Entry Points in Simulation Loop
	Specifying the Callback Functions
	The FUNCTIONS Statement
	Callback Keywords

	Structor Callbacks
	Syntax
	Rules

	Modifier Callbacks
	Syntax
	Rules

	Non-Modifier Callbacks
	Syntax
	Rules

	Predicate Callbacks
	Syntax
	Rules

	Defining Private Data for an Inverse
	Private Data Mechanism
	Instance Private Data
	Static Private Data
	The “this” Pointer
	Preprocessor Macros

	Example of an Inverse with Private Data
	Allocate and Attach Private Data in CONSTRUCT Callback
	Deallocate and Detach Private Data in DESTRUCT Callback
	Retrieve Private Data in EVALUATE Callback



	The Request Mechanism
	Concept
	Utility Requests
	State Transition Requests
	Time Event Requests
	Integration Requests

	Solution Method Controls
	Solution Methodology
	Preference Settings
	Default Preference File
	Global Settings
	Default Component Settings
	Component Settings
	Changing the Preference Settings

	Component Solving Methods
	Matrix Solving Methods
	Jacobian Evaluation Methods
	Scaled Perturbation for the Numerical Approximation of the Partial Derivatives
	Jacobian Refresh Strategy
	Automatic Jacobian Refresh Strategy

	Convergence Check Strategy
	Notation
	Scaled Stopping Criterion for Iterative Solution
	Prediction Convergence Check
	Iteration Convergence Check
	Safety Factors
	Relaxed Convergence Check

	Scaling Methods
	Variable Scaling Procedure
	Defining the Absolute Tolerance for Each Problem Variable with the ATOL Property
	Achieved Accuracy

	Scaled Norms and Implications for the Solution Methods
	In the Variable Space
	In the Residual Space

	Total Internal Scaling of Linear Systems
	Detection of an Ill-Conditioned Problem
	Implication for the Backtracking Step Control Methods


	Debugging SPARK Programs
	Parsing Errors
	Setup Errors
	Solution Difficulties
	Trace File Mechanism
	Problem-Level Diagnostic Mechanism
	Description of the Inputs Diagnostic Mode
	Description of the Reports Diagnostic Mode
	Description of the Convergence Diagnostic Mode
	Step Stamp
	Component Stamp
	Prediction Diagnostic
	Iteration Convergence Diagnostic
	Relaxed Convergence Diagnostic

	Description of the Statistics Diagnostic Mode


	The Native Input File Mechanism
	Precedence Rule
	Evaluation Rule
	File Format
	Property Reader
	How to Specify a Property in an Input File
	When Properties Are Read from Input Files


	The Read URL Mechanism
	Overview and Terminology
	Read URL File Type
	DOE-2 Weather file (doe2bin)
	TMY Weather file (tmyascii)
	EnergyPlus Weather File (eplusweather)
	Column File
	Named Column File
	Format File

	Read URL String Type
	DOE-2 Schedule Type (doe2sch)
	Algebraic Expression Type (expr)

	URL Map File
	The Map File Syntax
	URL String Substitution
	URL String Specification

	Loading Rules


	Output and Post Processing
	The Output File
	Plotting the Output File
	Post Processing in MATLAB

	Log Files
	Run Log File
	Error Log File
	Factory Log File
	Debug Log File
	Backtracking Log File

	Snapshot Files
	Why Snapshot Files Are Useful
	Generating Snapshot Files
	Using Snapshot Files to Initialize a Simulation Run
	Specifying Snapshot Files as Input Files
	Restarting after a Numerical Error
	Enforcing Initial Conditions from a Different Problem Definition


	Run-Control File
	SPARK Language Reference
	Notation Used in this Section
	Special Characters
	Names and Other Strings
	Reserved Names
	Rules for User-Specified Names
	Literals

	Comments
	Statement Terminator
	Compound Statement
	Atomic Class  File
	Macro Class File
	Problem File
	PORT Statement
	Atomic port
	Macro port

	PARAMETER Statement
	PROBE Statement
	DECLARE Statement
	LINK Statement
	INPUT Statement
	EQUATIONS Statement
	FUNCTIONS Statement

	References
	Appendix A: Classes in the globalclass Directory
	Appendix B: Using the HVAC Toolkit
	The SPARK HVAC Toolkit
	Example Usage

	Appendix C: Preference File Format
	What are Preference Files?
	Uses of Preference Files in SPARK
	Hierarchical Data: The Structure of the Preference File
	Preference File for the Building Description Example
	Editing the Preference File

	Appendix D: SPARK Problem Driver
	Glossary of Terms
	Index

