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1 Abstract
GenOpt is an optimization program for the minimization of a cost function

that is evaluated by an external simulation program. It has been developed for
optimization problems where the cost function is computationally expensive
and its derivatives are not available or may not even exist. GenOpt can be
coupled to any simulation program that reads its input from t ext �les and writes
its output to text �les. The independent variables can be continuous variables
(possibly with lower and upper bounds), discrete variables, or both, continuous
and discrete variables. Constraints on dependent variables can be implemented
using penalty or barrier functions. GenOpt uses parallel computing to evaluate
the simulations.

GenOpt has a library with local and global multi-dimensional and one-
dimensional optimization algorithms, and algorithms for doing parametric runs.
An algorithm interface allows adding new minimization algorithms without
knowing the details of the program structure.

GenOpt is written in Java so that it is platform independent. The platform
independence and the general interface make GenOpt applicable to a wide range
of optimization problems.

GenOpt has not been designed for linear programming problems, quadratic
programming problems, and problems where the gradient of the cost function
is available. For such problems, as well as for other problems, special tailored
software exists that is more e�cient.
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2 Notation
1. We use the notation a , b to denote that a is equal to b by de�nition.

We use the notation a← b to denote that a is assigned the value ofb.

2. Rn denotes the Euclidean space ofn-tuplets of real numbers. Vectors
x ∈ Rn are always column vectors, and their elements are denoted by
superscripts. The inner product in Rn is denoted by 〈·, ·〉 and for x, y ∈
Rn de�ned by 〈x, y〉 ,

∑n
i =1 x

i yi . The norm in Rn is denoted by ‖ · ‖
and for x ∈ Rn de�ned by ‖x‖ , 〈x, x〉1=2.

3. We denote byZ the set of integers, byQ the set of rational numbers, and
by N , {0, 1, . . .} the set of natural numbers. The setN+ is de�ned as
N+ , {1, 2, . . .}. Similarly, vectors in Rn with strictly positive elements
are denoted byRn

+ , {x ∈ Rn | xi > 0, i ∈ {1, . . . , n} } and the set Q+

is de�ned as Q+ , {q ∈ Q | q > 0}.

4. Let W be a set containing a sequence{wi }k
i =0. Then, we denote bywk

the sequence{wi }k
i =0 and by Wk the set of all k + 1 element sequences

in W.

5. If A and B are sets, we denote byA ∪B the union of A and B and by
A ∩B the intersection of A and B.

6. If S is a set, we denote byS the closure of S and by 2S the set of all
nonempty subsets ofS.

7. If D̂ ∈ Qn ×q is a matrix, we will use the notation d̂ ∈ D̂ to denote
the fact that d̂ ∈ Qn is a column vector of the matrix D̂. Similarly, by
D ⊂ D̂ we mean thatD ∈ Qn ×p (1 ≤ p ≤ q) is a matrix containing only
columns of D̂. Further, card(D) denotes the number of columns ofD.

8. f (·) denotes a function where (·) stands for the undesignated variables.
f (x) denotes the value off (·) at the point x. f : A → B indicates that
the domain of f (·) is in the spaceA and its range in the spaceB.

9. We say that a function f : Rn → R is once continuously di�erentiable
if f (·) is de�ned on Rn , and if f (·) has continuous derivatives onRn .

10. For x∗ ∈ Rn and f : Rn → R continuously di�erentiable, we say that x∗

is stationary if ∇f (x∗) = 0.

11. We denote by{ei }n
i =1 the unit vectors in Rn .

12. We denote byρ ∼ U (0, 1) that ρ ∈ R is a uniformly distributed random
number, with 0 ≤ ρ ≤ 1.
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3 Introduction
The use of system simulation for analyzing complex engineering problems is

increasing. Such problems typically involve many independent variables1, and
can only be optimized by means of numerical optimization. Many designers use
parametric studies to achieve better performance of such systems, even though
such studies typically yield only partial improvement whil e requiring high la-
bor time. In such parametric studies, one usually �xes all but one variable and
tries to optimize a cost function2 with respect to the non-�xed variable. The
procedure is repeated iteratively by varying another variable. However, every
time a variable is varied, all other variables typically become non-optimal and
hence need also to be adjusted. It is clear that such a manual procedure is very
time-consuming and often impractical for more than two or three independent
variables.

GenOpt, a generic optimization program, has been developedto �nd with
less labor time the independent variables that yield betterperformance of such
systems. GenOpt does optimization of a user-supplied cost function, using a
user-selected optimization algorithm.

In the most general form, the optimization problems addressed by GenOpt
can be stated as follows: LetX be a user-speci�ed constraint set, and let
f : X → R be a user-de�ned cost function that is bounded from below. The
constraint set X consists of all possible design options, and the cost function
f (·) measures the system performance. GenOpt tries to �nd a solution to the
problem3

min
x ∈X

f (x). (3.1)

This problem is usually \solved" by iterative methods, which construct in�-
nite sequences, of progressively better approximations toa \solution", i.e., a
point that satis�es an optimality condition. If X ⊂ Rn , with some n ∈ N,
and X or f (·) is not convex, we do not have a test for global optimality, and
the most one can obtain is a point that satis�es a local optimality condition.
Furthermore, for X ⊂ Rn , tests for optimality are based on di�erentiability
assumptions of the cost function. Consequently, optimization algorithms can
fail, possibly far from a solution, if f (·) is not di�erentiable in the continuous
independent variables. Some optimization algorithms are more likely to fail at

1The independent variables are the variables that are varied by the optimization
algorithm from one iteration to the next. They are also called design parameters or
free parameters.

2The cost function is the function being optimized. The cost function measures
a quantity that should be minimized, such as a building’s annual operation cost, a
system’s energy consumption, or a norm between simulated and measured values in
a data fitting process. The cost function is also called objective function.

3If f(·) is discontinuous, it may only have an infimum (i.e., a greatest lower bound)
but no minimum even if the constraint set X is compact. Thus, to be correct, (3.1)
should be replaced by infx∈X f(x). For simplicity, we will not make this distinction.
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discontinuities than others. GenOpt has algorithms that are not very sensi-
tive to (small) discontinuities in the cost function, such as Generalized Pattern
Search algorithms, which can also be used in conjunction with heuristic global
optimization algorithms.

Since one of GenOpt's main application �elds is building energy use or
operation cost optimization, GenOpt has been designed suchthat it addresses
the special properties of optimization problems in this area. In particular,
GenOpt is designed for optimization problems with the following properties:

1. The cost function may have to be de�ned on approximate numerical solu-
tions of di�erential algebraic equations, which may fail to be continuous
(see Section4.1.4).

2. The number of independent variables is small.4

3. Evaluating the cost function requires much more computation time than
determining the values for the next iterate.

4. Analytical properties of the cost function (such as formula for the gradi-
ent) are not available.

GenOpt has the following properties:

1. GenOpt can be coupled to any simulation program that calculates the
cost function without having to modify or recompile either program,
provided that the simulation program reads its input from te xt �les and
writes its output to text �les.

2. The user can select an optimization algorithm from an algorithm library,
or implement a custom algorithm without having to recompile and un-
derstand the whole optimization environment.

3. GenOpt does not require an expression for the gradient of the cost func-
tion.

With GenOpt, it is easy to couple a new simulation program, specify the
optimization variables and minimize the cost function. Therefore, in designing
complex systems, as well as in system analysis, a generic optimization program
like GenOpt o�ers valuable assistance. Note, however, thatoptimization is not
easy: The e�ciency and success of an optimization is strongly a�ected by the
properties and the formulation of the cost function, and by the selection of an
appropriate optimization algorithm.

This manual is structured as follows: In Section4, we classify optimiza-
tion problems and discuss which of GenOpt's algorithms can be used for each
of these problems. Next, we explain the algorithms that are implemented in
GenOpt: In Section 5, we discuss the algorithms for multi-dimensional opti-
mization; in Section 6 the algorithms for one-dimensional optimization; and

4By small, we mean on the order of 10, but the maximum number of independent
variables is not restricted in GenOpt.
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in Section 7 the algorithms for parametric runs. In Section 8, we discuss how
constraints on independent variables are implemented, andhow constraints on
dependent variables can be implemented. In Section9, we explain the struc-
ture of the GenOpt software, the interface for the simulation program and the
interface for the optimization algorithms. How to install a nd start GenOpt is
described in Section10. Section 11 shows how to set up the con�guration and
input �les, and how to use GenOpt's pre- and post-processingcapabilities.
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4 Optimization Problems
4.1 Classification of Optimization Problems

We will now classify some optimization problems that can be solved with
GenOpt's optimization algorithms. The classi�cation will be used in Section4.2
to recommend suitable optimization algorithms.

We distinguish between problems whose design parameters are continuous
variables1, discrete variables2, or both. In addition, we distinguish between
problems with and without inequality constraints on the dependent variables.

4.1.1 Problems with Continuous Variables

To denote box-constraints on independent continuous variables, we will use
the notation

X ,
{
x ∈ Rn | li ≤ xi ≤ ui , i ∈ {1, . . . , n}

}
, (4.1)

where−∞ ≤ li < ui ≤ ∞ for i ∈ {1, . . . , n}.

We will consider optimization problems of the form

Pc min
x ∈X

f (x), (4.2)

where f : Rn → R is a once continuously di�erentiable cost function.
Now, we add inequality constraints on the dependent variables to (4.2) and

obtain

Pcg min
x ∈X

f (x), (4.3a)

g(x) ≤ 0, (4.3b)

where everything is as in (4.2) and, in addition, g : Rn → Rm is a once con-
tinuously di�erentiable constraint function (for some m ∈ N). We will assume
that there exists an x∗ ∈ X that satis�es g(x∗) < 0.

4.1.2 Problems with Discrete Variables

Next, we will discuss the situation where all design parameters can only
take on user-speci�ed discrete values.

Let Xd ⊂ Zn d denote the constraint set with a �nite, non-zero number of
integers for each variable.

1Continuous variables can take on any value on the real line, possibly between
lower and upper bounds.

2Discrete variables can take on only integer values.
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We will consider integer programming problems of the form

Pd min
x ∈Xd

f (x). (4.4)

4.1.3 Problems with Continuous and Discrete Variables

Next, we will allow for continuous and discrete independentvariables.

We will use the notation

X , Xc ×Xd, (4.5a)

Xc ,
{
x ∈ Rn c | li ≤ xi ≤ ui , i ∈ {1, . . . , nc}

}
, (4.5b)

where the bounds on the continuous independent variables satisfy −∞ ≤ li <
ui ≤ ∞ for i ∈ {1, . . . , nc}, and the constraint set Xd ⊂ Zn d for the discrete
variables is a user-speci�ed set with a �nite, non-zero number of integers for
each variable.

We will consider mixed-integer programming problems of theform

Pcd min
x ∈X

f (x), (4.6a)

(4.6b)

wherex , (xc, xd) ∈ Rn c × Zn d , f : Rn c × Zn d → R and X is as in (4.5).
Now, we add inequality constraints on the dependent variables to (4.6) and

obtain

Pcdg min
x ∈X

f (x), (4.7a)

g(x) ≤ 0, (4.7b)

where everything is as in (4.6) and in addition g : Rn c ×Rn d → Rm (for some
m ∈ N). We will assume that there exists anx∗ ∈ X that satis�es g(x∗) < 0.

4.1.4 Problems whose Cost Function is Evaluated by a
Building Simulation Program

Next, we will discuss problemPc de�ned in ( 4.2) for the situation where
the cost function f : Rn → R cannot be evaluated, but can be approximated
numerically by approximating cost functions f∗ : Rp

+×Rn → R, where the �rst
argument is the precision parameter of the numerical solvers. This is typically
the case when the cost is computed by a thermal building simulation program,
such as EnergyPlus [CLW +01], TRNSYS [KDB76], or DOE-2 [WBB +93]. In
such programs, computing the cost involves solving a systemof partial and
ordinary di�erential equations that are coupled to algebraic equations. In gen-
eral, one cannot obtain an exact solution, but one can obtainan approximate
numerical solution. Hence, the cost functionf (x) can only be approximated by
an approximating cost function f∗(ǫ, x), where ǫ ∈ Rq

+ is a vector that contains
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precision parameters of the numerical solvers. Consequently, the optimization
algorithm can only be applied to f∗(ǫ, x) and not to f (x).

In such thermal building simulation programs it is common that the ter-
mination criteria of the solvers that are used to solve the partial di�erential
equations, ordinary di�erential equations, and algebraic equations depend on
the independent variablex. Therefore, a perturbation ofx can cause a change in
the sequence of solver iterations, which causes the approximating cost functions
f∗(ǫ, x) to be discontinuous in x. Furthermore, if variable step size integration
methods are used, then the integration mesh can change from one simulation
to the next. Therefore, part of the change in function valuesbetween di�er-
ent points is caused by a change of the number of solver iterations, and by a
change of the integration mesh. Consequently,f∗(ǫ, ·) is discontinuous, and a
descent direction forf∗(ǫ, ·) may not be a descent direction forf (·). Therefore,
optimization algorithms can terminate at points that are no n-optimal.

The best one can do in trying to solve optimization problems where the cost
and constraint functions are evaluated by a thermal building simulation pro-
gram that does not allow controlling the approximation error is to �nd points
that are close to a local minimizer off (·). Numerical experiments show that
by using tight enough precision and starting the optimization algorithm with
coarse initial values, one often comes close to a minimizer of f (·). Furthermore,
by selecting di�erent initial iterates for the optimizatio n, or by using di�erent
optimization algorithms, one can increase the chance of �nding a point that is
close to a minimizer off (·). However, even if the optimization terminates at
a point that is non-optimal for f (·), one may have obtained a better system
performance compared to not doing any optimization.

See [WP03, WW03] for a further discussion of optimization problems in
which the cost function value is computed by a building simulation program.

4.2 Algorithm Selection

In this section, we will discuss which of GenOpt's algorithms can be se-
lected for the optimization problems that we introduced in Section 4.1.

4.2.1 Problem Pc with n > 1
To solve Pc with n > 1, the hybrid algorithm (Section 5.5, page42) or the

GPS implementation of the Hooke-Jeeves algorithm (Section5.2.2, page 24)
can be used, possibly with multiple starting points (Section 5.2.3, page26). If
f (·) is once continuously di�erentiable and has bounded level sets (or if the
constraint set X de�ned in ( 4.1) is compact) then these algorithms construct
for problem (4.2) a sequence of iterates with stationary accumulation points
(see Theorem5.1.13).

Alternatively, the Discrete Armijo Gradient algorithm (Se ction 5.3, page28)
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can be used. Every accumulation point of the Discrete ArmijoGradient algo-
rithm is a feasible stationary point.

If f (·) is not continuously di�erentiable, or if f (·) must be approximated by
an approximating cost function f∗(ǫ, ·) where the approximation error cannot
be controlled, as described in Section4.1.4, then Pc can only be solved heuris-
tically. We recommend using the hybrid algorithm (Section 5.5, page42), the
GPS implementation of the Hooke-Jeeves algorithm (Section5.2.2, page 24),
possibly with multiple starting points (Section 5.2.3, page 26), or a Particle
Swarm Optimization algorithm (Section 5.4, page32).

We do not recommend using the Nelder-Mead Simplex algorithm(Sec-
tion 5.6, page 45) or the Discrete Armijo Gradient algorithm (Section 5.3,
page28).

The following approach reduces the risk of failing at a pointwhich is non-
optimal and far from a minimizer of f (·):

1. Selecting large values for the parameterStep in the optimization com-
mand �le (see page85).

2. Selecting di�erent initial iterates.

3. Using the hybrid algorithm of Section 5.5, the GPS implementation of
the Hooke-Jeeves algorithm, possibly with multiple starting points (Sec-
tion 5.2.3, page 26), and/or a Particle Swarm Optimization algorithm
and select the best of the solutions.

4. Doing a parametric study around the solution that has beenobtained
by any of the above optimization algorithms. The parametric study can
be done using the algorithmsParametric (Section 7.1, page62) and/or
EquMesh (Section 7.2, page63). If the parametric study yields a further
reduction in cost, then the optimization failed at a non-optimal point.
In this situation, one may want to try another optimization a lgorithm.

If f (·) is continuously di�erentiable but must be approximated by approxi-
mating cost functions f∗(ǫ, ·) where the approximation error can be controlled
as described in Section4.1.4, then Pc can be solved using the hybrid algorithm
(Section 5.5, page 42) or the GPS implementation of the Hooke-Jeeves algo-
rithm (Section 5.2.2, page 24), both with the error control scheme described
in the Model GPS Algorithm 5.1.8 (page 19). The GPS implementation of
the Hooke-Jeeves algorithm can be used with multiple starting points (Sec-
tion 5.2.3, page26). The error control scheme can be implemented using the
value of GenOpt's variablestepNumber (page68) and GenOpt's pre-processing
capabilities (Section 11.3, page90). A more detailed description of how to use
the error control scheme can be found in [PW03, WP03].

4.2.2 Problem Pcg with n > 1
To solvePcg, the hybrid algorithm (Section 5.5, page42) or the GPS imple-

mentation of the Hooke-Jeeves algorithm (Section5.2.2, page24) can be used,
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possibly with multiple starting points (Section 5.2.3, page 26). Constraints
g(·) ≤ 0 can be implemented using barrier and penalty functions (Section 8,
page65).

If f (·) or g(·) are not continuously di�erentiable, we recommend using the
hybrid algorithm (Section 5.5, page 42) or the GPS implementation of the
Hooke-Jeeves algorithm (Section5.2.2, page24), possibly with multiple start-
ing points (Section 5.2.3, page 26), and implement the constraints g(·) ≤ 0
using barrier and penalty functions (Section8, page65). To reduce the risk of
terminating far from a minimum point of f (·), we recommend the same mea-
sures as for solvingPc.

4.2.3 Problem Pc with n = 1
To solve Pc with n = 1, any of the interval division algorithms can be

used (Section6.1, page56). Since only a few function evaluations are required
for parametric studies in one dimension, the algorithmParametric can also be
used for this problem (Section7.1, page62). We recommend doing a parametric
study if f (·) is expected to have several local minima.

4.2.4 Problem Pcg with n = 1
To solvePcg with n = 1, the same applies as forPc with n = 1. Constraints

g(·) ≤ 0 can be implemented by setting the penalty weighting factorµ in (8.8)
to a large value. This may still cause small constraint violations, but it is easy
to check whether the violation is acceptable.

4.2.5 Problem Pd

To solve Pd, a Particle Swarm Optimization algorithm can be used (Sec-
tion 5.4, page32).

4.2.6 Problem Pcd and Pcdg

To solve Pcd , or Pcdg , the hybrid algorithm (Section 5.5, page 42) or a
Particle Swarm Optimization algorithm can be used (Section5.4, page32).

4.2.7 Functions with Several Local Minima

If the problem has several local minima, we recommend using the GPS
implementation of the Hooke-Jeeves algorithm with multiple starting points
(Section 5.2.3, page 26), the hybrid algorithm (Section 5.5, page 42), or a
Particle Swarm Optimization algorithm (Section 5.4, page32).
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5 Algorithms for
Multi-Dimensional
Optimization

5.1 Generalized Pattern Search Methods
(Analysis)

Generalized Pattern Search (GPS) algorithms are derivative free optimiza-
tion algorithms for the minimization of problem Pc and Pcg , de�ned in ( 4.2)
and (4.3), respectively. We will present the GPS algorithms for the case where
the function f (·) cannot be evaluated exactly, but can be approximated by
functions f∗ : Rq

+ × Rn → R, where the �rst argument ǫ ∈ Rq
+ is the precision

parameter of PDE, ODE, and algebraic equation solvers. Obviously, the ex-
planations are similar for problems wheref (·) can be evaluated exactly, except
that the scheme to control ǫ is not applicable, and that the approximate func-
tions f∗(ǫ, ·) are replaced byf (·).

Under the assumption that the cost function is continuously di�erentiable,
all the accumulation points constructed by the GPS algorithms are stationary.

What GPS algorithms have in common is that they de�ne the construction
of a meshMk in Rn , which is then explored according to some rules that di�er
among the various members of the family of GPS algorithms. Ifno decrease in
cost is obtained on mesh points around the current iterate, then the distance
between the mesh points is reduced, and the process is repeated.

We will now explain the framework of GPS algorithms that will be used to
implement di�erent instances of GPS algorithms in GenOpt. The discussion
follows the more detailed description of [PW03].
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5.1.1 Assumptions

We will assume that f (·) and its approximating functions {f∗(ǫ, ·)}� ∈Rq
+

have the following properties.

Assumption 5.1.1
1. There exists an error bound function ϕ : Rq

+ → R+ such that for any
bounded set S ⊂ X, there exists an ǫS ∈ Rq

+ and a scalar KS ∈ (0, ∞)
such that for all x ∈ S and for all ǫ ∈ Rq

+, with ǫ ≤ ǫS,1

| f∗(ǫ, x) − f (x)| ≤ KS ϕ(ǫ). (5.1)

Furthermore,
lim

‖� ‖→0
ϕ(ǫ) = 0 . (5.2)

2. The function f : Rn → R is once continuously differentiable.

Remark 5.1.2
1. The functions {f∗(ǫ, ·)}� ∈Rq

+
may be discontinuous.

2. See [PW03] for the situation where f (·) is only locally Lipschitz contin-
uous.

Next, we state an assumption on the level sets of the family ofapproximate
functions. To do so, we �rst de�ne the notion of a level set.

Definition 5.1.3 (Level Set) Given a function f : Rn → R and an α ∈ R,
such that α > inf x ∈Rn f (x), we will say that the set L� (f ) ⊂ Rn , defined as

L� (f ) , {x ∈ Rn | f (x) ≤ α}, (5.3)

is a level set of f (·), parametrized by α.

Assumption 5.1.4 (Compactness of Level Sets) Let {f∗(ǫ, ·)}� ∈Rq
+

be as
in Assumption 5.1.1 and let X ⊂ Rn be the constraint set. Let x0 ∈ X be
the initial iterate and ǫ0 ∈ Rq

+ be the initial precision setting of the numerical
solvers. Then, we assume that there exists a compact set C ⊂ Rn such that

Lf ∗(� 0;x 0)(f∗(ǫ, ·)) ∩X ⊂ C, ∀ ǫ ≤ ǫ0. (5.4)

1For ǫ ∈ Rq
+, by ǫ ≤ ǫS, we mean that 0 < ǫi ≤ ǫi

S, for all i ∈ {1, . . . , q}.
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5.1.2 Characterization of GPS Algorithms

There exist di�erent geometrical explanations for pattern search algorithms,
and a generalization is given in the review [KLT03 ]. We will use a simple im-
plementation of the pattern search algorithms in [PW03] where we restrict the
search directions to be the positive and negative coordinate directions. Thus,
the search directions are the columns of the matrix

D , [−e1, + e1, . . . ,−en , + en ] ∈ Zn ×2n , (5.5)

which su�ces for box-constrained problems. Furthermore, we construct the
sequence of mesh size parameters that parametrizes the minimum distance
between iterates such that it satis�es the following assumption.

Assumption 5.1.5 (k-th Mesh Size Parameter) Let r, s0, k ∈ N, with r >
1, and {ti }k−1

i =0 ⊂ N. We will assume that the sequence of mesh size parameters
satisfies

� k ,
1
rsk

, (5.6a)

where for k > 0

sk , s0 +
k−1∑

i =0

ti . (5.6b)

With this construction, all iterates lie on a rational mesh of the form

Mk , {x0 + � k Dm | m ∈ N2n }. (5.7)

We will now characterize the set-valued maps that determinethe mesh
points for the \global" and \local" searches. Note that the i mages of these
maps may depend on the entire history of the computation.

Definition 5.1.6 Let Xk ⊂ Rn and ∆k ⊂ Q+ be the sets of all sequences
containing k + 1 elements, let Mk be the current mesh, and let ǫ ∈ Rq

+ be the
solver tolerance.

1. We define the global search set mapto be any set-valued map

γk : Xk ×∆k × Rq
+ →

(
2Mk ∩X

)
∪ ∅ (5.8a)

whose image γk (xk , � k , ǫ) contains only a finite number of mesh points.

2. We will call Gk , γk (xk , � k , ǫ) the global search set.

3. We define the directions for the local search as

D , [−e1, + e1, . . . ,−en , + en ]. (5.8b)

4. We will call

Lk ,
{
xk + � k D ei | i ∈ {1, . . . , 2n}

}
∩X (5.8c)

the local search set.
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Remark 5.1.7
1. The mapγk (·, ·, ·) can be dynamic in the sense that if{xki}I

i =0 , γk (xk , � k , ǫ),
then the rule for selecting xkbi

, 1 ≤ î ≤ I, can depend on{xki}
bi −1
i =0 and

{f∗(ǫ, xki )}
bi −1
i =0. It is only important that the global search terminates

after a �nite number of computations, and that Gk ⊂ (2Mk ∩X) ∪ ∅.

2. As we shall see, the global search a�ects only the e�ciencyof the algo-
rithm but not its convergence properties. Any heuristic procedure that
leads to a �nite number of function evaluations can be used for γk (·, ·, ·).

3. The empty set is included in the range ofγk (·, ·, ·) to allow omitting the
global search.

5.1.3 Model Adaptive Precision GPS Algorithm

We will now present our model GPS algorithm with adaptive precision cost
function evaluations.

Algorithm 5.1.8 (Model GPS Algorithm)

Data: Initial iterate x0 ∈ X;
Mesh size dividerr ∈ N, with r > 1;
Initial mesh size exponents0 ∈ N.

Maps: Global search set mapγk : Xk ×∆k × Rq
+ →

(
2Mk ∩X

)
∪ ∅;

Function ρ : R+ → Rq
+ (to assign ǫ), such that the composition

ϕ ◦ ρ : R+ → R+ is strictly monotone decreasing and satis�es
ϕ(ρ(�)) /� → 0, as � → 0.

Step 0: Initialize k = 0, � 0 = 1/rs0 , and ǫ = ρ(1).
Step 1: Global Search

Construct the global search setGk = γk (xk , � k , ǫ).
If f∗(ǫ, x′) − f∗(ǫ, xk ) < 0 for any x′ ∈ Gk , go to Step 3;
else, go to Step 2.

Step 2: Local Search
Evaluate f∗(ǫ, ·) for any x′ ∈ Lk until some x′ ∈ Lk

satisfying f∗(ǫ, x′) − f∗(ǫ, xk ) < 0 is obtained, or until all points
in Lk are evaluated.

Step 3: Parameter Update
If there exists an x′ ∈ Gk ∪ Lk satisfying f∗(ǫ, x′) − f∗(ǫ, xk ) < 0,
set xk+1 = x′, sk+1 = sk , � k+1 = � k , and do not changeǫ;
else, setxk+1 = xk , sk+1 = sk + tk , with tk ∈ N+ arbitrary,
� k+1 = 1/rsk+1 , ǫ = ρ(� k+1/� 0).

Step 4: Replacek by k + 1, and go to Step 1.
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Remark 5.1.9
1. To ensure that ǫ does not depend on the scaling of �0, we normalized the

argument of ρ(·). In particular, we want to decouple ǫ from the user's
choice of the initial mesh parameter.

2. In Step 2, once a decrease of the cost function is obtained,one can
proceed to Step 3. However, one is allowed to evaluatef∗(ǫ, ·) at more
points in Lk in an attempt to obtain a bigger reduction in cost. However,
one is allowed to proceed to Step 3 only after either a cost decrease has
been found, or afterall points in Lk are tested.

3. In Step 3, we are not restricted to accepting thex′ ∈ Gk ∪ Lk that gives
lowest cost value. But the mesh size parameter �k is reduced only if
there exists nox′ ∈ Gk ∪ Lk satisfying f∗(ǫ, x′) − f∗(ǫ, xk ) < 0.

4. To simplify the explanations, we do not increase the mesh size parameter
if the cost has been reduced. However, our global search allows search-
ing on a coarser meshM̂ ⊂ Mk , and hence, our algorithm can easily
be extended to include a rule for increasing �k for a �nite number of
iterations.

5. Audet and Dennis [AD03] update the mesh size parameter using the
formula � k+1 = τm � k , where τ ∈ Q, τ > 1, and m is any element of
Z. Thus, our update rule for � k is a special case of Audet's and Dennis'
construction since we setτ = 1/r, with r ∈ N+, r ≥ 2 (so that τ < 1) and
m ∈ N. We prefer our construction because we do not think it negatively
a�ects the computing performance, but it leads to simpler convergence
proofs.

5.1.4 Convergence Results

We will now present the convergence results for our Model GPSalgorithm.
See [PW03] for a detailed discussion and convergence proofs.

a) Unconstrained Minimization

We will �rst present the convergence properties of the ModelGPS Algo-
rithm 5.1.8 on unconstrained minimization problems, i.e., forX = Rn .

First, we will need the notion of a refining subsequence, which we de�ne as
follows:

Definition 5.1.10 (Refining Subsequence) Consider a sequence {xk}∞
k=0

constructed by Model GPS Algorithm 5.1.8. We will say that the subsequence
{xk}k∈K is the re�ning subsequence, if � k+1 < � k for all k ∈ K, and � k+1 =
� k for all k /∈ K.

We now state that pattern search algorithms with adaptive precision func-
tion evaluations construct sequences with stationary accumulation points.
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Theorem 5.1.11 (Convergence to a Stationary Point) Suppose that As-
sumptions 5.1.1 and 5.1.4 are satisfied and that X = Rn . Let x∗ ∈ Rn be an
accumulation point of the refining subsequence {xk}k∈K, constructed by Model
GPS Algorithm 5.1.8. Then,

∇f (x∗) = 0 . (5.9)

b) Box-Constrained Minimization

We now present the convergence results for the box-constrained prob-
lem (4.2). See [AD03, PW03, KLT03 ] for the more general case of linearly-
constrained problems and for the convergence proofs.

First, we introduce the notion of a tangent cone and a normal cone, which
are de�ned as follows:

Definition 5.1.12 (Tangent and Normal Cone)
1. Let X ⊂ Rn . Then, we define the tangent cone to X at a point x∗ ∈ X

by
TX(x∗) , {µ (x− x∗) | µ ≥ 0, x ∈ X}. (5.10a)

2. Let TX(x∗) be as above. Then, we define the normal coneto X at x∗ ∈ X
by

NX(x∗) , {v ∈ Rn | ∀ t ∈ TX(x∗), 〈v, t〉 ≤ 0}. (5.10b)

We now state that the accumulation points generated by ModelGPS Al-
gorithm 5.1.8 are feasible stationary points of problem (4.2).

Theorem 5.1.13 (Convergence to a Feasible Stationary Point)
Suppose Assumptions 5.1.1 and 5.1.4 are satisfied. Let x∗ ∈ X be an accu-
mulation point of a refining subsequence {xk}k∈K constructed by Model GPS
Algorithm 5.1.8 in solving problem (4.2). Then,

〈∇f (x∗), t〉 ≥ 0, ∀ t ∈ TX(x∗), (5.11a)

and
−∇f (x∗) ∈ NX(x∗). (5.11b)

5.2 Generalized Pattern Search Methods
(Implementations)

We will now present di�erent implementations of the Generalized Pattern
Search (GPS) algorithms. They all use the Model GPS Algorithm 5.1.8to solve
problem Pc de�ned in ( 4.2). The problem Pcg de�ned in ( 4.3) can be solved
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by using penalty functions as described in Section8.2.

We will discuss the implementations for the case where the function f (·)
cannot be evaluated exactly, but will be approximated by functions f∗ : Rq

+ ×
Rn → R, where the �rst argument ǫ ∈ Rq

+ is the precision parameter of the
PDE, ODE, and algebraic equation solvers. This includes thecase whereǫ is
not varied during the optimization, in which case the explanations are identical,
except that the scheme to controlǫ is not applicable, and that the approximate
functions f∗(ǫ, ·) are replaced byf (·).

If the cost function f (·) is approximated by functions {f∗(ǫ, ·)}� ∈Rq
+

with
adaptive precision ǫ, then the function ρ : R+ → Rq

+ (to assign ǫ) can be im-
plemented by using GenOpt's pre-processing capability (see Section11.3).

5.2.1 Coordinate Search Algorithm

We will now present the implementation of the Coordinate Search algo-
rithm with adaptive precision function evaluations using t he Model GPS Al-
gorithm 5.1.8. To simplify the implementation, we assign f∗(ǫ, x) = ∞ for all
x 6∈ X where X is de�ned in ( 4.1).

a) Algorithm Parameters

The search direction matrix is de�ned as

D , [+ s1 e1, −s1 e1, . . . , + sn en , −sn en ] (5.12)

where si ∈ R, i ∈ {1, . . . , n}, is a scaling for each parameter (speci�ed by
GenOpt's parameter Step).

The parameterr ∈ N, r > 1, which is used to compute the mesh size param-
eter � k , is de�ned by the parameter MeshSizeDivider, the initial value for the
mesh size exponents0 ∈ N is de�ned by the parameter InitialMeshSizeExponent,
and the mesh size exponent incrementtk is, for the iterations that do not reduce
the cost, de�ned by the parameter MeshSizeExponentIncrement.

b) Global Search

In the Coordinate Search Algorithm, there is no global search. Thus, Gk = ∅
for all k ∈ N.

c) Local Search

The local search setGk is constructed using the set-valued mapEk : Rn ×
Q+ × Rq

+ → 2Mk , which is de�ned as follows:
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Algorithm 5.2.1 (Map Ek : Rn ×Q+ × Rq
+ → 2Mk for “Coordinate Search”)

Parameter: Search direction matrix D = [+ s1 e1, −s1 e1, . . . , + sn en , −sn en ].
Vector µ ∈ Nn .

Input: Iteration number k ∈ N.
Base point x ∈ Rn .
Mesh divider � k ∈ Q+.

Output: Set of trial points T .
Step 0: Initialize T = ∅.

If k = 0, initialize , µi = 0 for all i ∈ {1, . . . , n}.
Step 1: For i = 1 , . . . , n

Set x̃ = x + � k De2 i −1+� i and T ← T ∪ {x̃}.
If f∗(ǫ, x̃) < f∗(ǫ, x)

Set x = x̃.
else

If µi = 0, set µi = 1, else setµi = 0.
Set x̃ = x + � k D e2 i −1+� i and T ← T ∪ {x̃}.
If f∗(ǫ, x̃) < f∗(ǫ, x)

Set x = x̃.
else

If µi = 0, set µi = 1, else setµi = 0.
end if.

end if.
end for.

Step 2: Return T .

Thus, Ek (x, � k , ǫ) = T for all k ∈ N.

Remark 5.2.2 In Algorithm 5.2.1, the vector µ ∈ Nn contains for each coor-
dinate direction an integer 0 or 1 that indicates whether a step in the positive
or in the negative coordinate direction yield a decrease in cost in the previous
iteration. This reduces the number of exploration steps.

d) Parameter Update

The point x′ in Step 3 of the GPS Model Algorithm 5.1.8 corresponds to
x′ , arg minx ∈E k(x k;∆k;� ) f∗(ǫ, x) in the Coordinate Search algorithm.

e) Keywords

For the GPS implementation of the Coordinate Search Algorithm, the com-
mand �le (see page84) must only contain continuous parameters.

To invoke the algorithm, the Algorithm section of the GenOpt command
�le must have the following form:

Algorithm{
Main = GPSCoordinateSearch;
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MeshSizeDivider = Integer; // 1 < MeshSizeDivider
InitialMeshSizeExponent = Integer; // 0 <= InitialMeshSizeExponent
MeshSizeExponentIncrement = Integer; // 0 < MeshSizeExponentIncrement
NumberOfStepReduction = Integer; // 0 < NumberOfStepReduction

}

The entries are de�ned as follows:

Main The name of the main algorithm.

MeshSizeDivider The value for r ∈ N, r > 1, used to compute � k , 1/rsk

(see equation (5.6a)). A common value is r = 2.

InitialMeshSizeExponent The value for s0 ∈ N in (5.6b). A common value
is s0 = 0.

MeshSizeExponentIncrement The value for ti ∈ N (for the iterations that
do not yield a decrease in cost) in (5.6b). A common value is ti = 1.

NumberOfStepReduction The maximum number of step reductions before
the algorithm stops. Thus, if we use the notationm , NumberOfStepReduction,
then we have for the last iterations � k = 1/rs0+m t k . A common value
is m = 4.

5.2.2 Hooke-Jeeves Algorithm

We will now present the implementation of the Hooke-Jeeves algorithm [ HJ61]
with adaptive precision function evaluations using the Model GPS Algorithm 5.1.8.
The modi�cations of Smith [ Smi69], Bell and Pike [BP66] and De Vogelaere [DV68]
are implemented in this algorithm.

To simplify the implementation, we assignf∗(ǫ, x) = ∞ for all x 6∈ X where
X is de�ned in ( 4.1).

a) Algorithm Parameters

The algorithm parametersD, r, s0, and tk are de�ned as in the Coordinate
Search algorithm (see page22).

b) Map for Exploratory Moves

To facilitate the algorithm explanation, we use the set-valued mapEk : Rn×
Q+ ×Rq

+ → 2Mk , as de�ned in Algorithm 5.2.1. The map Ek (·, ·, ·) de�nes the
\exploratory moves" in [ HJ61], and will be used in Sectionc) to de�ne the
global search set map and, under conditions to be seen in Section d), the local
search direction map as well.

c) Global Search Set Map

The global search set mapγk (·, ·, ·) is de�ned as follows. Becauseγ0(·, ·, ·)
depends onx−1, we need to introducex−1, which we de�ne asx−1 , x0.
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Algorithm 5.2.3 (Global Search Set Map γk : Xk ×∆k × Rq
+ → 2Mk)

Map: Map for \exploratory moves" Ek : Rn ×Q+ × Rq
+ → 2Mk .

Input: Previous and current iterate, xk−1 ∈ Rn and xk ∈ Rn .
Mesh divider � k ∈ Q+.
Solver precisionǫ ∈ Rq

+.
Output: Global search setGk .
Step 1: Set x = xk + ( xk − xk−1).
Step 2: Compute Gk = Ek (x, � k , ǫ).
Step 3: If

(
minx ∈Gk f∗(ǫ, x)

)
> f∗(ǫ, xk )

Set Gk ← Gk ∪Ek (xk , � k , ǫ).
end if.

Step 4: Return Gk .

Thus, γk (xk , � k , ǫ) = Gk .

d) Local Search Direction Map

If the global search, as de�ned by Algorithm 5.2.3, has failed in reduc-
ing f∗(ǫ, ·), then Algorithm 5.2.3 has constructed a setGk that contains the
set {xk + � k Dei | i = 1 , . . . , 2n}. This is because in the evaluation of
Ek (xk , � k , ǫ), de�ned in Algorithm 5.2.1, all \If f∗(ǫ, x̃) < f∗(ǫ, x)" statements
yield false, and, hence, one has constructed{xk + � k D ei | i = 1 , . . . , 2n} =
Ek (xk , � k , ǫ).

Because the columns ofD span Rn positively, it follows that the search on
the set {xk + � k Dei | i = 1 , . . . , 2n} is a local search. Hence, the constructed
set

Lk , {xk + � k D ei | i = 1 , . . . , 2n} ⊂ Gk (5.13)

is a local search set. Consequently,f∗(ǫ, ·) has already been evaluated at all
points of Lk (during the construction of Gk ) and, hence, one does not need to
evaluate f∗(ǫ, ·) again in a local search.

e) Parameter Update

The point x′ in Step 3 of the GPS Model Algorithm 5.1.8 corresponds to
x′ , arg minx ∈Gk f∗(ǫ, x) in the Hooke-Jeeves algorithm. (Note that Lk ⊂ Gk

if a local search has been done as explained in the above paragraph.)

f) Keywords

For the GPS implementation of the Hooke-Jeeves algorithm, the command
�le (see page84) must only contain continuous parameters.

To invoke the algorithm, the Algorithm section of the GenOpt command
�le must have the following form:

Algorithm{
Main = GPSHookeJeeves;
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MeshSizeDivider = Integer; // bigger than 1
InitialMeshSizeExponent = Integer; // bigger than or equal to 0
MeshSizeExponentIncrement = Integer; // bigger than 0
NumberOfStepReduction = Integer; // bigger than 0

}

The entries are the same as for the Coordinate Search algorithm, and explained
on page23.

5.2.3 Multi-Start GPS Algorithms

All GPS algorithms can also be run using multiple initial points. Using mul-
tiple initial points increases the chance of �nding the global minimum if the
cost function has several local minima, and furthermore, itdecreases the risk
of not �nding a minimum if the cost function is not continuous ly di�erentiable,
which is the case if building simulation programs, such as EnergyPlus or TRN-
SYS, are used to compute the cost function (see the discussion in Section4.1.4).

The values that are speci�ed by GenOpt's parameterIni in GenOpt's com-
mand �le (see Section11.1.3) are used to initialize the �rst initial point. The
other initial points are randomly distributed, with a unifo rm distribution, be-
tween the lower and upper bounds of the feasible domain. Theyare, however,
set to the meshM0, de�ned in ( 5.7), which reduces the number of cost function
evaluations if the optimization algorithm converges from di�erent initial points
to the same minimizer.

In GenOpt's command �le, a lower and an upper bound must be speci�ed
for each independent variable using the keywordsMin and Max.

To use the GPSCoordinateSearch algorithm with multiple starting points,
the Algorithm section of the GenOpt command �le must have the following
form:

Algorithm{
Main = GPSCoordinateSearch;
MultiStart = Uniform;
Seed = Integer;
NumberOfInitialPoint = Integer; // bigger than or equal to 1
MeshSizeDivider = Integer; // 1 < MeshSizeDivider
InitialMeshSizeExponent = Integer; // 0 <= InitialMeshSizeExponent
MeshSizeExponentIncrement = Integer; // 0 < MeshSizeExponentIncrement
NumberOfStepReduction = Integer; // 0 < NumberOfStepReduction

}

The entries are de�ned as follows:

Main The name of the main algorithm.

MultiStart Keyword to invoke the multi-start algorithm. The only valid
value is Uniform.

Copyright (c) 1998-2009
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy. All rights reserved.

26



GenOpt
Generic Optimization Program
Version 3.0.0

Lawrence Berkeley National Laboratory
Building Technologies Department

Simulation Research Group

Seed This value is used to initialize the random number generator.

NumberOfInitialPoint The number of initial points.

The other entries are the same as for the Coordinate Search algorithm, and are
explained on page23.

To use the GPSHookeJeeves algorithm with multiple starting points, the
Algorithm section of the GenOpt command �le must have the following form:

Algorithm{
Main = GPSHookeJeeves;
MultiStart = Uniform;
Seed = Integer;
NumberOfInitialPoint = Integer; // 0 < NumberOfInitialPoint
MeshSizeDivider = Integer; // 1 < MeshSizeDivider
InitialMeshSizeExponent = Integer; // 0 <= InitialMeshSizeExponent
MeshSizeExponentIncrement = Integer; // 0 < MeshSizeExponentIncrement
NumberOfStepReduction = Integer; // 0 < NumberOfStepReduction

}

The entries are the same as for the multi-start Coordinate Search algorithm
above.
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5.3 Discrete Armijo Gradient

The Discrete Armijo Gradient algorithm can be used to solve problem Pc

de�ned in ( 4.2) where f (·) is continuously di�erentiable.

The Discrete Armijo Gradient algorithm approximates gradi ents by �nite
di�erences. It can be used for problems where the cost function is evaluated by
computer code that de�nes a continuously di�erentiable function but for which
obtaining analytical expressions for the gradients is impractical or impossible.

Since the Discrete Armijo Gradient algorithm is sensitive to discontinuities
in the cost function, we recommend not to use this algorithm if the simula-
tion program contains adaptive solvers with loose precision settings, such as
EnergyPlus [CLW +01]. On such functions, the algorithm is likely to fail. In
Section4.2, we recommend algorithms that are better suited for such situations.

We will now present the Discrete Armijo Gradient algorithm a nd the Armijo
step-size subprocedure.
Algorithm 5.3.1 (Discrete Armijo Gradient Algorithm)

Data: Initial iterate x0 ∈ X.
α, β ∈ (0, 1), γ ∈ (0,∞), k∗, k0 ∈ Z,
lmax , κ ∈ N (for reseting the step-size calculation).
Termination criteria ǫm , ǫx ∈ R+, imax ∈ N.

Step 0: Initialize i = 0 and m = 0.
Step 1: Compute the search direction hi .

If βm < ǫm , stop.
Else, setǫ = βk0+m and compute, for j ∈ {1, . . . , n},
hj

i = − (f (xi + ǫ ej ) − f (xi )) /ǫ.
Step 2 : Check descent.

Compute �( xi ;hi ) = ( f (xi + ǫ hi ) − f (xi )) /ǫ.
If �( xi ;hi ) < 0, go to Step 3.
Else, replacem by m + 1 and go to Step 1.

Step 3 : Line search.
Use Algorithm 5.3.2 (which requires k∗, lmax and κ) to compute ki .
Set

λi = arg min
� ∈{� ki ;� ki−1}

f (xi + λhi ). (5.14)

Step 4 : If f (xi + λi hi ) − f (xi ) > −γ ǫ, replacem by m + 1 and go to Step 1.
Step 5 : Set xi +1 = xi + λi hi .

If ‖λi hi ‖ < ǫx , stop. Else, replacei by i + 1 and go to Step 1.
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Algorithm 5.3.2 (Armijo Step-Size Subprocedure)

Data: Iteration number i ∈ N, iterate xi ∈ Rn , search directionhi ∈ Rn ,
k∗, ki −1 ∈ Z, α, β ∈ (0, 1), and �( xi ;hi ) ∈ R with �( xi ;hi ) < 0,
parameter for restart lmax , κ ∈ N.

Step 0: Initialize l = 0.
If i = 0, set k′ = k∗, else setk′ = ki −1.

Step 1: Replacel by l + 1, and test the conditions

f (xi + βk ′
hi ) − f (xi ) ≤ βk ′

α �( xi ;hi ), (5.15a)

f (xi + βk ′−1 hi ) − f (xi ) > βk ′−1 α �( xi ;hi ). (5.15b)

Step 2: If k′ satis�es (5.15a) and (5.15b), return k′.
Step 3: If k′ satis�es (5.15b) but not ( 5.15a),

replacek′ by k′ + 1.
else,

replacek′ by k′ − 1.
If l < lmax or ki −1 ≤ k∗ + κ, go to Step 1. Else, go to Step 4.

Step 4: Set K , {k ∈ Z | k ≥ k∗}, and compute
k′ , mink∈K{k | f (xi + βk hi ) − f (xi ) ≤ βk α �( xi ;hi )}.
Return k′.

Note that in Algorithm 5.3.2, as β → 1, the number of tries to compute the
Armijo step-size is likely to go to in�nity. Under appropria te assumptions one
can show that α = 1/2 yields fastest convergence [Pol97].

The step-size Algorithm 5.3.2requires often only a small number of function
evaluations. However, occasionally, once a very small step-size has occurred,
Algorithm 5.3.2 can trap the Discrete Armijo Gradient algorithm into using a
very small step-size for all subsequent iterations. Hence,if ki −1 > k∗ + κ, we
reset the step-size by computing Step 4.

Algorithm 5.3.1 together with the step-size Algorithm 5.3.2 have the fol-
lowing convergence properties [Pol97].

Theorem 5.3.3 Let f : Rn → R be continuously differentiable and bounded
below.

1. If Algorithm 5.3.1 jams at xi , cycling indefinitely in the loop defined by
Steps 1-2 or in the loop defined by Steps 1-4, then ∇f (xi ) = 0 .

2. If {xi }∞
i =0 is an infinite sequence constructed by Algorithm 5.3.1 and Al-

gorithm 5.3.2 in solving (4.2), then every accumulation point x̂ of {xi }∞
i =0

satisfies ∇f (x̂) = 0 .

Note that ǫ hi has the same units as the cost function, and the algorithm
evaluatesxi + λhi for someλ ∈ R+. Thus, the algorithm is sensitive to the
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scaling of the problem variables, a rather undesirable e�ect. Therefore, in the
implementation of Algorithm 5.3.1and Algorithm 5.3.2, we normalize the cost
function values by replacing, for all x ∈ Rn , f (x) by f (x)/f (x0), where x0 is
the initial iterate. Furthermore, we set x0 = 0 and evaluate the cost function
for the values χj + xj sj , j ∈ {1, . . . , n}, where xj ∈ R is the j-th component
of the design parameter computed in Algorithm 5.3.1 or Algorithm 5.3.2 and
χj ∈ R and sj ∈ R are the setting of the parametersIni and Step, respectively,
for the j-th design parameter in the optimization command �le (see page 84).

In view of the sensitivity of the Discrete Armijo Gradient al gorithm to the
scaling of the problem variables and the cost function values, the implemen-
tation of penalty and barrier functions may cause numerical problems if the
penalty is large compared to the unpenalized cost function value.

If box-constraints for the independent parameters are speci�ed, then the
transformations (8.2) are used.

5.3.1 Keywords

For the Discrete Armijo Gradient algorithm, the command �le (see page84)
must only contain continuous parameters.

To invoke the algorithm, the Algorithm section of the GenOpt command
�le must have the following form:

Algorithm{
Main = DiscreteArmijoGradient;
Alpha = Double; // 0 < Alpha < 1
Beta = Double; // 0 < Beta < 1
Gamma = Double; // 0 < Gamma
K0 = Integer;
KStar = Integer;
LMax = Integer; // 0 <= LMax
Kappa = Integer; // 0 <= LMax
EpsilonM = Double; // 0 < EpsilonM
EpsilonX = Double; // 0 < EpsilonX

}

The entries are de�ned as follows:

Main The name of the main algorithm.

Alpha The variable α used in Step 1 and in Step 4 of Algorithm5.3.2. A
typical value is α = 1/2.

Beta The variable β used in approximating the gradient and doing the line
search. A typical value isβ = 0 .8.

Gamma The variable γ used in Step 4 of Algorithm5.3.1to determine whether
the accuracy of the gradient approximation will be increased.

K0 The variable k0 that determines the initial accuracy of the gradient ap-
proximation.
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KStar The variable k∗ used to initialize the line search.

LMax The variable lmax used in Step 3 of Algorithm 5.3.2 to determine
whether the line search needs to be reinitialized.

Kappa The variable κ used in Step 3 of Algorithm5.3.2to determine whether
the line search needs to be reinitialized.

EpsilonM The variable ǫm used in the determination criteria βm < ǫm in
Step 1 of Algorithm 5.3.1.

EpsilonX The variable ǫx used in the determination criteria ‖λi hi ‖ < ǫx in
Step 5 of Algorithm 5.3.1.
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5.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithms are populati on-based prob-
abilistic optimization algorithms �rst proposed by Kenned y and Eberhart [EK95,
KE95] to solve problem Pc de�ned in ( 4.2) with possibly discontinuous cost
function f : Rn → R. In Section 5.4.2, we will present a PSO algorithm for
discrete independent variables to solve problemPd de�ned in ( 4.4), and in
Section 5.4.3 we will present a PSO algorithm for continuous and discrete in-
dependent variables to solve problemPcd de�ned in ( 4.6). To avoid ambiguous
notation, we always denote the dimension of the continuous independent vari-
able by nc ∈ N and the dimension of the discrete independent variable by
nd ∈ N.

PSO algorithms exploit a set of potential solutions to the optimization
problem. Each potential solution is called aparticle, and the set of potential
solutions in each iteration step is called apopulation. PSO algorithms are global
optimization algorithms and do not require nor approximate gradients of the
cost function. The �rst population is typically initialize d using a random num-
ber generator to spread the particles uniformly in a user-de�ned hypercube. A
particle update equation, which is modeled on the social behavior of members
of bird 
ocks or �sh schools, determines the location of eachparticle in the
next generation.

A survey of PSO algorithms can be found in Eberhart and Shi [ES01].
Laskari et. al. present a PSO algorithm for minimax problems[LPV02b] and
for integer programming [LPV02a]. In [PV02a], Parsopoulos and Vrahatis dis-
cuss the implementation of inequality and equality constraints to solve problem
Pcg de�ned in ( 4.3).

We �rst discuss the case where the independent variable is continuous, i.e.,
the case of problemPc de�ned in ( 4.2).

5.4.1 PSO for Continuous Variables

We will �rst present the initial version of the PSO algorithm which is the
easiest to understand.

In the initial version of the PSO algorithm [ EK95, KE95], the update equa-
tion for the particle location is as follows: Let k ∈ N denote the generation
number, let nP ∈ N denote the number of particles in each generation, let
xi (k) ∈ Rn c , i ∈ {1, . . . , nP }, denote the i-th particle of the k-th generation,
let vi (k) ∈ Rn c denote its velocity, let c1, c2 ∈ R+ and let ρ1(k), ρ2(k) ∼ U (0, 1)
be uniformly distributed random numbers between 0 and 1. Then, the update
equation is, for all i ∈ {1, . . . , nP } and all k ∈ N,

vi (k + 1) = vi (k) + c1 ρ1(k)
(
pl;i (k) − xi (k)

)

+ c2 ρ2(k)
(
pg;i (k) − xi (k)

)
, (5.16a)

xi (k + 1) = xi (k) + vi (k + 1) , (5.16b)
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where vi (0) , 0 and

pl;i (k) , arg min
x ∈{x i(j )}k

j=0

f (x), (5.17a)

pg;i (k) , arg min
x ∈{{x i(j )}k

j=0}nP
i=1

f (x). (5.17b)

Thus, pl;i (k) is the location that for the i-th particle yields the lowest cost over
all generations, andpg;i (k) is the location of the best particle over all genera-
tions. The term c1 ρ1(k) (pl;i (k) − xi (k)) is associated with cognition since it
takes into account the particle's own experience, and the term c2 ρ2(k) (pg;i (k)−
xi (k)) is associated with social interaction between the particles. In view of
this similarity, c1 is calledcognitive acceleration constant and c2 is called social
acceleration constant.

a) Neighborhood Topology

The minimum in ( 5.17b) need not be taken over all points in the popu-
lation. The set of points over which the minimum is taken is de�ned by the
neighborhood topology. In PSO, the neighborhood topologies are usually de-
�ned using the particle index, and not the particle location . We will use the
lbest, gbest, and the von Neumann neighborhood topology, which we will now
de�ne.

In the lbest topology of sizel ∈ N, with l > 1, the neighborhood of a particle
with index i ∈ {1, . . . , nP } consist of all particles whose index are in the set

Ni , {i− l, . . . i, . . . , i + l}, (5.18a)

where we assume that the indices wrap around, i.e., we replace−1 by nP − 1,
replace−2 by nP − 2, etc.

In the gbest topology, the neighborhood contains all points of the popula-
tion, i.e.,

Ni , {1, . . . , nP }, (5.18b)

for all i ∈ {1, . . . , nP }.

For the von Neumann topology, consider a 2-dimensional lattice, with the
lattice points enumerated as shown in Figure5.1. We will use the von Neumann
topology of range 1, which is de�ned, for i, j ∈ Z, as the set of points whose
indices belong to the set

N v
(i;j ) ,

{
(k, l)

∣∣∣ |k − i| + |l − j| ≤ 1, k, l ∈ Z
}
. (5.18c)

The gray points in Figure 5.1 areN v
(1;2). For simplicity, we round in GenOpt

the user-speci�ed number of particlesn′
P ∈ N to the next biggest integer nP
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0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

Figure 5.1 : Section of a 2-dimensional lattice of particles with
√
nP ≥ 3.

The particles belonging to the von Neumann neighborhood N v
(1;2) with range 1,

defined in (5.18c), are colored gray. Indicated by dashes are the particles that
are generated by wrapping the indices.

such that
√
nP ∈ N and nP ≥ n′

P .2 Then, we can wrap the indices by replacing,
for k ∈ Z, (0, k) by (

√
nP , k), (

√
nP + 1 , k) by (1 , k), and similarly by replacing

(k, 0) by (k,
√
nP ) and (k,

√
nP + 1) by ( k, 1). Then, a particle with indices

(k, l), with 1 ≤ k ≤
√
nP and 1 ≤ l ≤

√
nP , has in the PSO algorithm the

index i = ( k − 1)
√
nP + l, and hencei ∈ {1, . . . , nP }.

Kennedy and Mendes [KM02] show that greater connectivity of the parti-
cles speeds up convergence, but it does not tend to improve the population's
ability to discover the global optimum. Best performance has been achieved
with the von Neumann topology, whereas neither thegbest nor the lbest topol-
ogy seemed especially good in comparison with other topologies.

Carlisle and Dozier [CD01] achieve on unimodal and multi-modal functions
for the gbest topology better results than for the lbest topology.

2In principle, the lattice need not be a square, but we do not see any computational
disadvantage of selecting a square lattice.
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b) Model PSO Algorithm

We will now present the Model PSO Algorithm that is implement ed in
GenOpt.
Algorithm 5.4.1 (Model PSO Algorithm for Continuous Variables)

Data: Constraint set X, as de�ned in (4.1),
but with �nite lower and upper bound for each independent variable.
Initial iterate x0 ∈ X.
Number of particles nP ∈ N and number of generationsnG ∈ N.

Step 0: Initialize k = 0, x0(0) = x0 and the neighborhoods{Ni }n P
i =1 .

Step 1: Initialize {xi (0)}n P
i =2 ⊂ X randomly distributed.

Step 2: For i ∈ {1, . . . , nP }, determine the local best particles
pl;i (k) , arg min

x ∈{x i(m )}k
m=0

f (x) (5.19a)

and the global best particle

pg;i (k) , arg min
x ∈{x j(m ) | j ∈Ni}k

m=0

f (x). (5.19b)

Step 3: Update the particle location {xi (k + 1) }n P
i =1 ⊂ X.

Step 4: If k = nG , stop. Else, go to Step 2.
Step 5: Replacek by k + 1, and go to Step 1.

We will now discuss the di�erent implementations of the Model PSO Algo-
rithm 5.4.1 in GenOpt.

c) Particle Update Equation

(i) Version with Inertia Weight Eberhart and Shi [SE98, SE99] in-
troduced an inertia weight w(k) which improves the performance of the original
PSO algorithm. In the version with inertia weight, the parti cle update equation
is, for all i ∈ {1, . . . , nP }, for k ∈ N and xi (k) ∈ Rn c , with vi (0) = 0,

v̂i (k + 1) = w(k) vi (k) + c1 ρ1(k)
(
pl;i (k) − xi (k)

)

+ c2 ρ2(k)
(
pg;i (k) − xi (k)

)
, (5.20a)

vj
i (k + 1) = sign( v̂j

i (k + 1)) min {|v̂j
i (k + 1) |, vj

max },
j ∈ {1, . . . , nc}, (5.20b)

xi (k + 1) = xi (k) + vi (k + 1) , (5.20c)

where
vj

max , λ (uj − lj ), (5.20d)

with λ ∈ R+, for all j ∈ {1, . . . , nc}, and l, u ∈ Rn c are the lower and upper
bound of the independent variable. A common value isλ = 1/2. In GenOpt,
if λ ≤ 0, then no velocity clamping is used, and hence,vj

i (k + 1) = v̂j
i (k + 1),

for all k ∈ N, all i ∈ {1, . . . , nP } and all j ∈ {1, . . . , nc}.
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We compute the inertia weight as

w(k) = w0 −
k
K

(w0 − w1), (5.20e)

wherew0 ∈ R is the initial inertia weight, w1 ∈ R is the inertia weight for the
last generation, with 0 ≤ w1 ≤ w0, and K ∈ N is the maximum number of
generations.w0 = 1 .2 andw1 = 0 can be considered as good choices [PV02b].

(ii) Version with Constriction Coefficient Clerc and Kennedy [CK02]
introduced a version with a constriction coe�cient that red uces the veloc-
ity. In their Type 1" implementation, the particle update eq uation is, for
all i ∈ {1, . . . , nP }, for k ∈ N and xi (k) ∈ Rn c , with vi (0) = 0,

v̂i (k + 1) = χ(κ, ϕ)
(
vi (k) + c1 ρ1(k)

(
pl;i (k) − xi (k)

)

+ c2 ρ2(k)
(
pg;i (k) − xi (k)

))
, (5.21a)

vj
i (k + 1) = sign( v̂j

i (k + 1)) min {|v̂j
i (k + 1) |, vj

max },
j ∈ {1, . . . , nc}, (5.21b)

xi (k + 1) = xi (k) + vi (k + 1) , (5.21c)

where
vj

max , λ (uj − lj ), (5.21d)

is as in (5.20d).
In (5.21a), χ(κ, ϕ) is called constriction coefficient, de�ned as

χ(κ, ϕ) ,

{ 2 �
|2−' −

√
' 2−4 ' |

, if ϕ > 4,

κ, otherwise,
(5.21e)

where ϕ , c1 + c2 and κ ∈ (0, 1] control how fast the population collapses
into a point. If κ = 1, the space is thoroughly searched, which yields slower
convergence.

Equation (5.21) can be used with or without velocity clamping (5.21b). If
velocity clamping (5.21b) is used, Clerc and Kennedy useϕ = 4 .1, otherwise
they useϕ = 4. In either case, they setc1 = c2 = ϕ/2 and a population size of
nP = 20.

Carlisle and Dozier [CD01] recommend the settingsnP = 30, no velocity
clamping, κ = 1, c1 = 2 .8 and c2 = 1 .3.

Kennedy and Eberhart [KES01] report that using velocity clamping ( 5.21b)
and a constriction coe�cient shows faster convergence for some test problems
compared to using an inertia weight, but the algorithm tends to get stuck in
local minima.
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Figure 5.2 : Sigmoid function.

5.4.2 PSO for Discrete Variables

Kennedy and Eberhart [KE97] introduced a binary version of the PSO al-
gorithm to solve problem Pd de�ned in ( 4.4).

The binary PSO algorithm encodes the discrete independent variables in
a string of binary numbers and then operates with this binary string. For
somei ∈ {1, . . . , nd}, let xi ∈ N be the component of a discrete independent
variable, and let ψi ∈ {0, 1}m i be its binary representation (with mi ∈ N+
bits), obtained using Gray encoding [PFTV93 ], and let πl;i (k) and πg;i (k) be
the binary representation of pl;i (k) and pg;i (k), respectively, wherepl;i (k) and
pg;i (k) are de�ned in (5.19).

Then, for i ∈ {1, . . . , nd} and j ∈ {1, . . . ,mi } we initialize randomly
ψj

i (0) ∈ {0, 1}, and compute, for k ∈ N,

v̂j
i (k + 1) = vj

i (k) + c1 ρ1(k)
(
πj

l;i (k) − ψj
i (k)

)

+ c2 ρ2(k)
(
πj

g;i (k) − ψj
i (k)

))
, (5.22a)

vj
i (k + 1) = sign( v̂j

i (k + 1)) min {|v̂j
i (k + 1) |, vmax }, (5.22b)

ψj
i (k + 1) =

{
0, if ρi;j (k) ≥ s

(
vj

i (k + 1)
)
,

1, otherwise,
(5.22c)

where
s(v) ,

1
1 + e−v (5.22d)

is the sigmoid function shown in Fig. 5.2 and ρi;j (k) ∼ U (0, 1), for all i ∈
{1, . . . , nd} and for all j ∈ {1, . . . ,mi }.

In (5.22b), vmax ∈ R+ is often set to 4 to prevent a saturation of the sigmoid
function, and c1, c2 ∈ R+ are often such that c1 + c2 = 4 (see [KES01]).

Notice that s(v) → 0.5, as v → 0, and consequently the probability of

ipping a bit goes to 0 .5. Thus, in the binary PSO, a small vmax causes a
large exploration, whereas in the continuous PSO, a smallvmax causes a small
exploration of the search space.
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Any of the above neighborhood topologies can be used, and Model Algo-
rithm 5.4.1 applies if we replace the constraint setX by the user-speci�ed set
Xd ⊂ Zn d .

5.4.3 PSO for Continuous and Discrete Variables

For problem Pcd de�ned in ( 4.6), we treat the continuous independent
variables as in (5.20) or (5.21), and the discrete independent variables as
in (5.22). Any of the above neighborhood topologies can be used, and Model
Algorithm 5.4.1 applies if we de�ne the constraint set X as in (4.5).

5.4.4 PSO on a Mesh

We now present a modi�cation to the previously discussed PSOalgorithms.
For evaluating the cost function, we will modify the continu ous independent
variables such that they belong to a �xed mesh in Rn c . Since the iterates
of PSO algorithms typically cluster during the last iterati ons, this reduces
in many cases the number of simulation calls during the optimization. The
modi�cation is done by replacing the cost function f : Rn c×Zn d → R in Model
Algorithm 5.4.1 as follows: Letx0 , (xc;0, xd;0) ∈ Rn c ×Zn c denote the initial
iterate, let Xc be the feasible set for the continuous independent variables
de�ned in ( 4.5b), let r, s ∈ N, with r > 1, be user-speci�ed parameters, let

� ,
1
rs (5.23)

and let the mesh be de�ned as

M(xc;0, � , s) ,

{

xc;0 + �
n∑

i =1

mi si ei | m ∈ Zn c

}

, (5.24)

where s ∈ Rn c is equal to the value de�ned by the variable Step in GenOpt's
command �le (see page84). Then, we replacef (·, ·) by f̂ : Rn c × Zn d × Rn c ×
R× Rn c → R, de�ned by

f̂ (xc, xd;xc;0, � , s) , f (γ(xc), xd), (5.25)

where γ : Rn c → Rn c is the projection of the continuous independent variable
to the closest feasible mesh point, i.e.,γ(xc) ∈ M(xc;0, � , s) ∩Xc. Thus, for
evaluating the cost function, the continuous independent variables are replaced
by the closest feasible mesh point, and the discrete independent variables re-
main unchanged.

Good numerical results have been obtained by selectings ∈ Rn c and r, s ∈
N such that about 50 to 100 mesh points are located along each coordinate
direction.

5.4.5 Population Size and Number of Generations

Parsopoulos and Vrahatis [PV02b] use for x ∈ Rn c a population size of
about 5n up to n = 15. For n ≈ 10. . .20, they usenP ≈ 10n. They set
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the number of generations tonG = 1000 up to n = 20 and to nG = 2000 for
n = 30.

Van den Bergh and Engelbrecht [vdBE01] recommend using more than 20
particles and 2000 to 5000 generations.

Kennedy and Eberhart [KES01] use, for test cases with thelbest neigh-
borhood topology of sizel = 2 and n = 2 and n = 30, a population size of
nP = 20 . . .30. They report that 10 . . .50 particles usually work well. As a rule
of thumb, they recommend for the lbest neighborhood to select the neighbor-
hood size such that each neighborhood consists of 10. . .20% of the population.

5.4.6 Keywords

For the Particle Swarm algorithm, the command �le (see page84) can con-
tain continuous and discrete independent variables.

The di�erent speci�cations for the Algorithm section of the GenOpt com-
mand �le are as follows:

PSO algorithm with inertia weight:

Algorithm{
Main = PSOIW;
NeighborhoodTopology = gbest | lbest | vonNeumann;
NeighborhoodSize = Integer; // 0 < NeighborhoodSize
NumberOfParticle = Integer;
NumberOfGeneration = Integer;
Seed = Integer;
CognitiveAcceleration = Double; // 0 < CognitiveAcceleration
SocialAcceleration = Double; // 0 < SocialAcceleration
MaxVelocityGainContinuous = Double;
MaxVelocityDiscrete = Double; // 0 < MaxVelocityDiscrete
InitialInertiaWeight = Double; // 0 < InitialInertiaWeight
FinalInertiaWeight = Double; // 0 < FinalInertiaWeight

}

PSO algorithm with constriction coe�cient:

Algorithm{
Main = PSOCC;
NeighborhoodTopology = gbest | lbest | vonNeumann;
NeighborhoodSize = Integer; // 0 < NeighborhoodSize
NumberOfParticle = Integer;
NumberOfGeneration = Integer;
Seed = Integer;
CognitiveAcceleration = Double; // 0 < CognitiveAcceleration
SocialAcceleration = Double; // 0 < SocialAcceleration
MaxVelocityGainContinuous = Double;
MaxVelocityDiscrete = Double; // 0 < MaxVelocityDiscrete
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ConstrictionGain = Double; // 0 < ConstrictionGain <= 1
}

PSO algorithm with constriction coe�cient and continuous i ndependent vari-
ables restricted to a mesh:

Algorithm{
Main = PSOCCMesh;
NeighborhoodTopology = gbest | lbest | vonNeumann;
NeighborhoodSize = Integer; // 0 < NeighborhoodSize
NumberOfParticle = Integer;
NumberOfGeneration = Integer;
Seed = Integer;
CognitiveAcceleration = Double; // 0 < CognitiveAcceleration
SocialAcceleration = Double; // 0 < SocialAcceleration
MaxVelocityGainContinuous = Double;
MaxVelocityDiscrete = Double; // 0 < MaxVelocityDiscrete
ConstrictionGain = Double; // 0 < ConstrictionGain <= 1
MeshSizeDivider = Integer; // 1 < MeshSizeDivider
InitialMeshSizeExponent = Integer; // 0 <= InitialMeshSizeExponent

}

The entries that are common to all implementations are de�ned as follows:

Main The name of the main algorithm. The implementation PSOIW uses the
location update equation (5.20) for the continuous independent variables,
and the implementation PSOCC uses (5.21) for the continuous independent
variables. All implementations use (5.22) for the discrete independent
variables.

NeighborhoodTopology This entry de�nes what neighborhood topology is
being used.

NeighborhoodSize For the lbest neighborhood topology, this entry is equal
to l in (5.18a). For the gbest and the von Neumann neighborhood topol-
ogy, the value of NeighborhoodSize is ignored.

NumberOfParticle This is equal to the variable nP ∈ N.

NumberOfGeneration This is equal to the variablenG ∈ N in Algorithm 5.4.1.

Seed This value is used to initialize the random number generator.

CognitiveAcceleration This is equal to the variable c1 ∈ R+.

SocialAcceleration This is equal to the variable c2 ∈ R+.

MaxVelocityGainContinuous This is equal to the variableλ ∈ R+ in (5.20d)
and in (5.21d). If MaxVelocityGainContinuous is set to zero or to a
negative value, then no velocity clamping is used, and hence, vj

i (k+1) =
v̂j

i (k + 1), for all k ∈ N, all i ∈ {1, . . . , nP } and all j ∈ {1, . . . , nc}.

MaxVelocityDiscrete This is equal to the variable vmax ∈ R+ in (5.22b).

Copyright (c) 1998-2009
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy. All rights reserved.

40



GenOpt
Generic Optimization Program
Version 3.0.0

Lawrence Berkeley National Laboratory
Building Technologies Department

Simulation Research Group

For the PSOIW implementation, following additional entries must be speci�ed:

InitialInertiaWeight This is equal to w0 ∈ R+ in (5.20e).

FinalInertiaWeight This is equal to w1 ∈ R+ in (5.20e).

For the PSOCC implementation, following additional entries must be speci�ed:

ConstrictionGain This is equal to κ ∈ (0, 1] in (5.21e).

Notice that for discrete independent variables, the entries of InitialInertiaWeight,
FinalInertiaWeight, and ConstrictionGain are ignored.

For the PSOCCMesh implementation, following additional entries must be spec-
i�ed:

MeshSizeDivider This is equal to r ∈ N, with r > 1, used in (5.23).

InitialMeshSizeExponent This is equal to s ∈ N used in (5.23).
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5.5 Hybrid Generalized Pattern Search Algorithm
with Particle Swarm Optimization Algorithm

This hybrid global optimization algorithm can be used to solve problemPc

de�ned in ( 4.2) and problem Pcd de�ned in ( 4.6). Problem Pcg de�ned in ( 4.3)
and problem Pcdg de�ned in ( 4.7) can be solved if the constraint functionsg(·)
are implemented as described in Section8.2.

This hybrid global optimization algorithm starts by doing a Particle Swarm
Optimization (PSO) on a mesh, as described in Section5.4.4, for a user-
speci�ed number of generationsnG ∈ N. Afterwards, it initializes the Hooke-
Jeeves Generalized Pattern Search (GPS) algorithm, described in Section5.2.2,
using the continuous independent variables of the particlewith the lowest cost
function value. If the optimization problem has continuous and discrete in-
dependent variables, then the discrete independent variables will for the GPS
algorithm be �xed at the value of the particle with the lowest cost function
value.

We will now explain the hybrid algorithm for the case where all independent
variables are continuous, and then for the case with mixed continuous and
discrete independent variables. Throughout this section,we will denote the
dimension of the continuous independent variables bync ∈ N and the dimension
of the discrete independent variables bynd ∈ N.

5.5.1 Hybrid Algorithm for Continuous Variables

We will now discuss the hybrid algorithm to solve problem Pc de�ned
in (4.2). However, we require the constraint setX ⊂ Rn c de�ned in ( 4.1) to
have �nite lower and upper bounds li , ui ∈ R, for all i ∈ {1, . . . , nc}.

First, we run the PSO algorithm 5.4.1, with user-speci�ed initial iterate
x0 ∈ X for a user-speci�ed number of generationsnG ∈ N on the mesh de�ned
in (5.24). Afterwards, we run the GPS algorithm 5.1.8where the initial iterate
x0 is equal to the location of the particle with the lowest cost function value,
i.e.,

x0 , p , arg min
x ∈{x j(k) | j ∈{1;:::;n P }; k ∈{1;:::;n G}}

f (x), (5.26)

where nP ∈ N denotes the number of particles andxj (k), j ∈ {1, . . . , nP },
k ∈ {1, . . . , nG} are as in Algorithm 5.4.1.

Since the PSO algorithm terminates after a �nite number of it erations, all
convergence results of the GPS algorithm hold. In particular, if the cost func-
tion is once continuously di�erentiable, then the hybrid al gorithm constructs
accumulation points that are feasible stationary points of problem (4.2) (see
Theorem 5.1.13).
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Since the PSO algorithm is a global optimization algorithm, the hybrid al-
gorithm is, compared to the Hooke-Jeeves algorithm, less likely to be attracted
by a local minimum that is not global. Thus, the hybrid algori thm combines
the global features of the PSO algorithm with the provable convergence prop-
erties of the GPS algorithm.

If the cost function is discontinuous, then the hybrid algorithm is, compared
to the Hooke-Jeeves algorithm, less likely to jam at a discontinuity far from a
solution.

5.5.2 Hybrid Algorithm for Continuous and Discrete
Variables

For problem Pcd de�ned in ( 4.6) with continuous and discrete independent
variables, we run the PSO algorithm 5.4.1, with user-speci�ed initial iterate
x0 ∈ X , Xc × Xd ⊂ Rn c × Zn d for a user-speci�ed number of generations
nG ∈ N, where the continuous independent variables are restricted to the mesh
de�ned in ( 5.24). We require the constraint set Xc ⊂ Rn c de�ned in ( 4.5b) to
have �nite lower and upper bounds li , ui ∈ R, for all i ∈ {1, . . . , nc}.

Afterwards, we run the GPS algorithm 5.1.8, where the initial iterate x0 ∈
Xc is equal topc ∈ Xc, which we de�ne as the continuous independent variables
of the particle with the lowest cost function value, i.e., p , (pc, pd) ∈ Xc ×
Xd, where p is de�ned in ( 5.26). In the GPS algorithm, we �x the discrete
components at pd ∈ Xd for all iterations. Thus, we use the GPS algorithm
to re�ne the continuous components of the independent variables, and �x the
discrete components of the independent variables.

5.5.3 Keywords

For this algorithm, the command �le (see page84) can contain continuous
and discrete independent variables. It must contain at least one continuous
parameter.

The speci�cations of the Algorithm section of the GenOpt command �le
is as follows:

Note that the �rst entries are as for the PSO algorithm on page 40 and the
last entries are as for GPS implementation of the Hooke-Jeeves algorithm on
page25.

Algorithm{
Main = GPSPSOCCHJ;
NeighborhoodTopology = gbest | lbest | vonNeumann;
NeighborhoodSize = Integer; // 0 < NeighborhoodSize
NumberOfParticle = Integer;
NumberOfGeneration = Integer;
Seed = Integer;
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CognitiveAcceleration = Double; // 0 < CognitiveAcceleration
SocialAcceleration = Double; // 0 < SocialAcceleration
MaxVelocityGainContinuous = Double;
MaxVelocityDiscrete = Double; // 0 < MaxVelocityDiscrete
ConstrictionGain = Double; // 0 < ConstrictionGain <= 1
MeshSizeDivider = Integer; // 1 < MeshSizeDivider
InitialMeshSizeExponent = Integer; // 0 <= InitialMeshSizeExponent
MeshSizeExponentIncrement = Integer; // 0 < MeshSizeExponentIncrement
NumberOfStepReduction = Integer; // 0 < NumberOfStepReduction

}

The entries are de�ned as follows:

Main The name of the main algorithm.

NeighborhoodTopology This entry de�nes what neighborhood topology is
being used.

NeighborhoodSize This entry is equal to l in (5.18). For the gbest neigh-
borhood topology, the value of NeighborhoodSize will be ignored.

NumberOfParticle This is equal to the variable nP ∈ N.

NumberOfGeneration This is equal to the variablenG ∈ N in Algorithm 5.4.1.

Seed This value is used to initialize the random number generator.

CognitiveAcceleration This is equal to the variable c1 ∈ R+ used by the
PSO algorithm.

SocialAcceleration This is equal to the variable c2 ∈ R+ used by the PSO
algorithm.

MaxVelocityGainContinuous This is equal to the variableλ ∈ R+ in (5.20d)
and in (5.21d). If MaxVelocityGainContinuous is set to zero or to a
negative value, then no velocity clamping is used, and hence, vj

i (k+1) =
v̂j

i (k + 1), for all k ∈ N, all i ∈ {1, . . . , nP } and all j ∈ {1, . . . , nc}.

MaxVelocityDiscrete This is equal to the variable vmax ∈ R+ in (5.22b).

ConstrictionGain This is equal to κ ∈ (0, 1] in (5.21e).

MeshSizeDivider This is equal to r ∈ N, with r > 1, used by the PSO
algorithm in ( 5.23) and used by the GPS algorithm to compute � k ,
1/rsk (see equation (5.6a)). A common value is r = 2.

InitialMeshSizeExponent This is equal to s ∈ N used by the PSO algo-
rithm in ( 5.23) and used by the GPS algorithm in (5.6a). A common
value is s0 = 0.

MeshSizeExponentIncrement The value for tk ∈ N (�xed for all k ∈ N)
used by the GPS algorithm in (5.6a). A common value is tk = 1.

NumberOfStepReduction The maximum number of step reductions before
the GPS algorithm stops. Thus, if we use the notationm , NumberOfStepReduction,
then we have for the last iterations � k = 1/rs0+m t k . A common value
is m = 4.
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5.6 Simplex Algorithm of Nelder and Mead with
the Extension of O’Neill

The Simplex algorithm of Nelder and Mead is a derivative freeoptimization
algorithm. It can be used to seek a solution of problemPc de�ned in ( 4.2) and
problem Pcg de�ned in ( 4.3), with constraints on the dependent parameters
implemented as described in Section8. The number of independent parame-
ters n must be larger than 1.

The Simplex algorithm constructs an n-dimensional simplex in the space
that is spanned by the independent parameters. At each of the(n+ 1) vertices
of the simplex, the value of the cost function is evaluated. In each iteration
step, the point with the highest value of the cost function is replaced by another
point. The algorithm consists of three main operations: (a) point reflection,
(b) contraction of the simplex and (c) expansion of the simplex.

Despite the well known fact that the Simplex algorithm can fail to converge
to a stationary point [ Kel99b, Tor89, Kel99a, Wri96, McK98, LRWW98 ], both
in practice and theory, particularly if the dimension of ind ependent variables
is large, say bigger than 10 [Tor89], it is an often used algorithm. Several
improvements to the Simplex algorithm or algorithms that were motivated by
the Simplex algorithm exist, see for example [Kel99b, Tor89, Kel99a, Tse99].
However, in GenOpt, we use the original Nelder-Mead algorithm [NM65] with
the extension of O'Neill [O'N71]. Optionally, the here implemented algorithm
allows using a modi�ed stopping criteria.

We will now explain the di�erent steps of the Simplex algorit hm.

5.6.1 Main Operations

The notation de�ned below is used in describing the main operations. The
operations are illustrated in Fig. 5.3 where for simplicity a two-dimensional
simplex is illustrated.

We now introduce some notation and de�nitions.

1. We will denote by I , {1, . . . , n + 1} the set of all vertex indices.

2. We will denote by l ∈ I the smallest index in I such that

l = arg min
i ∈I

f (xi ). (5.27a)

Hence,f (xl ) ≤ f (xi ), for all i ∈ I.

3. We will denote by h ∈ I the smallest index in I such that

h = arg max
i ∈I

f (xi ). (5.27b)

Hence,f (xh ) ≥ f (xi ), for all i ∈ I.
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Figure 5.3 : Simplex operations.
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4. Let xi , for i ∈ I, denote the simplex vertices, and leth be as in (5.27b).
We will denote by xc ∈ Rn the centroid of the simplex, de�ned as

xc ,
1
n

n +1∑

i =1
i 6=h

xi (5.27c)

Next, we introduce the three main operations.

Reflection Let h ∈ I be as in (5.27b) and let xc be as in (5.27c). The re
ection
of xh ∈ Rn to a point denoted asx∗ ∈ Rn is de�ned as

x∗ , (1 + α) xc − αxh , (5.28a)

whereα ∈ R, with α > 0, is called thereflection coefficient.

Expansion of the simplex Let x∗ ∈ Rn be as in (5.28a) and xc be as
in (5.27c). The expansion ofx∗ ∈ Rn to a point denoted asx∗∗ ∈ Rn is
de�ned as

x∗∗ , γ x∗ + (1 − γ) xc, (5.28b)

where γ ∈ R, with γ > 1, is called theexpansion coefficient.

Contraction of the simplex Let h ∈ I be as in (5.27b) and xc be as in (5.27c).
The contraction of xh ∈ Rn to a point denoted asx∗∗ ∈ Rn is de�ned as

x∗∗ , β xh + (1 − β) xc, (5.28c)

whereβ ∈ R, with 0 < β < 1, is called thecontraction coefficient.

5.6.2 Basic Algorithm

In this section, we describe the basic Nelder and Mead algorithm [NM65].
The extension of O'Neill and the modi�ed restart criterion a re discussed later.
The algorithm is as follows:

1. Initialization: Given an initial iterate x1 ∈ Rn , a scalarc, with c = 1 in
the initialization, a vector s ∈ Rn with user-speci�ed step sizes for each
independent parameter, and the set of unit coordinate vectors {ei }n

i =1,
construct an initial simplex with vertices, for i ∈ {1, . . . , n},

xi +1 = x1 + c si ei . (5.29)

Compute f (xi ), for i ∈ I.

2. Re
ection: Re
ect the worst point, that is, compute x∗ as in (5.28a).

3. Test whether we got the best point: Iff (x∗) < f (xl ), expand the simplex
using (5.28b) since further improvement in this direction is likely. If
f (x∗∗) < f (xl ), then xh is replaced byx∗∗, otherwise xh is replaced by
x∗, and the procedure is restarted from2.
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Figure 5.4 : Sequence of iterates generated by the Simplex algorithm.

4. If it turned out under 3 that f (x∗) ≥ f (xl ), then we check if the new
point x∗ is the worst of all points: If f (x∗) > f (xi ), for all i ∈ I, with
i 6= h, we contract the simplex (see5); otherwise we replacexh by x∗

and go to 2.

5. For the contraction, we �rst check if we should try a partia l outside
contraction or a partial inside contraction: If f (x∗) ≥ f (xh ), then we
try a partial inside contraction. To do so, we leave our indices as is and
apply (5.28c). Otherwise, we try a partial outside contraction. This is
done by replacingxh by x∗ and applying (5.28c). After the partial inside
or the partial outside contraction, we continue at 6.

6. If f (x∗∗) ≥ f (xh )3, we do a total contraction of the simplex by replacing
xi ← (xi + xl )/2, for all i ∈ I. Otherwise, we replacexh by x∗∗. In both
cases, we continue from2.

3Nelder and Mead [NM65] use the strict inequality f(x∗∗) > f(xh). However, if
the user writes the cost function value with only a few representative digits to a text
file, then the function looks like a step function if slow convergence is achieved. In
such cases, f(x∗∗) might sometimes be equal to f(xh). Experimentally, it has been
shown advantageous to perform a total contraction rather than continuing with a
reflection. Therefore, the strict inequality has been changed to a weak inequality.
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Fig. 5.4 shows a contour plot of a cost functionf : Rn → R with a se-
quence of iterates generated by the Simplex algorithm. The sequence starts
with constructing an initial simplex x1, x2, x3. x1 has the highest function
value and is therefore re
ected, which generatesx4. x4 is the best point in
the set {x1, x2, x3, x4}. Thus, it is further expanded, which generatesx5. x2,
x3 and x5 now span the new simplex. In this simplex,x3 is the vertex with
the highest function value and hence goes over tox6 and further to x7. The
process of re
ection and expansion is continued again two times, which leads to
the simplex spanned byx7, x9 and x11. x7 goes over tox12 which turns out to
be the worst point. Hence, we do a partial inside contraction, which generates
x13. x13 is better than x7 so we use the simplex spanned byx9, x11 and x13
for the next re
ection. The last steps of the optimization ar e for clarity not
shown.

5.6.3 Stopping Criteria

The �rst criterion is a test of the variance of the function va lues at the
vertices of the simplex

1
n




n +1∑

i =1

(
f (xi )

)2 −
1

n + 1

(
n +1∑

i =1

f (xi )

)2


 < ǫ2, (5.30)

then the original implementation of the algorithm stops. Nelder and Mead
have chosen this stopping criterion based on the statistical problem of �nding
the minimum of a sum of squares surface. In this problem, the curvature
near the minimum yields information about the unknown parameters. A slight
curvature indicates a high sampling variance of the estimate. Nelder and Mead
argue that in such cases, there is no reason for �nding the minimum point
with high accuracy. However, if the curvature is marked, then the sampling
variance is low and a higher accuracy in determining the optimal parameter
set is desirable.

Note that the stopping criterion ( 5.30) requires the variance of the function
values at the simplex vertices to be smaller than a prescribed limit. However,
if f (·) has large discontinuities, which has been observed in building energy
optimization problems [WW03], then the test (5.30) may never be satis�ed.
For this reason, among others, we do not recommend using thisalgorithm if
the cost function has large discontinuities.
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5.6.4 O’Neill’s Modification

O'Neill modi�ed the termination criterion by adding a furth er condition [O'N71].
He checks whether any orthogonal step, each starting from the best vertex of
the current simplex, leads to a further improvement of the cost function. He
therefore setsc = 0 .001 and tests if

f (xl ) < f (x) (5.31a)

for all x de�ned by

x , xl + c si ei , i ∈ {1, . . . , n}, (5.31b)

wherexl denotes the best known point, andsi and ei are as in (5.29).

5.6.5 Modification of Stopping Criteria

In GenOpt, ( 5.31) has been modi�ed. It has been observed that users
sometimes write the cost function value with only few representative digits to
the output �le. In such cases, (5.31a) is not satis�ed if the write statement
in the simulation program truncates digits so that the di�er encef (xl ) − f (x),
where f (·) denotes the value that is read from the simulation output �l e, is
zero. To overcome this numerical problem, (5.31b) has been modi�ed to

x = xl + exp( j) c si ei , i ∈ {1, . . . , n} (5.31c)

where for each directioni ∈ {1, . . . , n}, the counter j ∈ N is set to zero for the
�rst trial and increased by one as long asf (xl ) = f (x).

If ( 5.31a) fails for any direction, then x computed by (5.31c) is the new
starting point and a new simplex with side lengths (c si ), i ∈ {1, . . . , n}, is
constructed. The point x that failed ( 5.31a) is then used as the initial point xl

in (5.29).

Numerical experiments showed that during slow convergencethe algorithm
was restarted too frequently.

Fig. 5.5(a) shows a sequence of iterates where the algorithm was restarted
too frequently. The iterates in the �gure are part of the iter ation sequence near
the minimum of the test function shown in Fig. 5.5(b). The algorithm gets close
to the minimum with appropriately large steps. The last of th ese steps can be
seen at the right of the �gure. After this step, the stopping criterion ( 5.30)
was satis�ed which led to a restart check, followed by a new construction of
the simplex. From there on, the convergence was very slow dueto the small
step size. After each step, the stopping criterion was satis�ed again which led
to a new test of the optimality condition ( 5.31a), followed by a reconstruction
of the simplex. This check is very costly in terms of functionevaluations and,
furthermore, the restart with a new simplex does not allow increasing the step
size, though we are heading locally in the right direction.
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Figure 5.5 : Nelder Mead trajectory.

O'Neill's modi�cation prevents both excessive checking ofthe optimality
condition as well as excessive reconstruction of the initial simplex. This is
done by checking for convergence only after a predeterminednumber of steps
(e.g., after �ve iterations). However, the performance of the algorithm depends
strongly on this number. As an extreme case, a few test runs were done where
convergence was checked after each step as in Fig.5.5(a). It turned out that in
some cases no convergence was reached within a moderate number of function
evaluations if ǫ in (5.30) is chosen too large, e.g.,ǫ = 10−3 (see Tab. 5.1).

To make the algorithm more robust, it is modi�ed based on the following
arguments:

1. If the simplex is moving in the same direction in the last two steps, then
the search is not interrupted by checking for optimality since we are
making steady progress in the moving direction.

2. If we donot have a partial inside or total contraction immediately beyond
us, then it is likely that the minimum lies in the direction cu rrently being
explored. Hence, we do not interrupt the search with a restart.

These considerations have led to two criteria that both haveto be satis�ed
to permit the convergence check according to (5.30), which might be followed
by a check for optimality.

First, it is checked if we have done a partial inside contraction or a total
contraction. If so, we check if the direction of the latest two steps in which
the simplex is moving has changed by an angle of at least (π/2). To do so, we
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introduce the center of the simplex, de�ned by

xm ,
1

n + 1

n +1∑

i =1

xi , (5.32)

where xi , i ∈ {1, . . . , n}, are the simplex vertices. We also introduce the
normalized direction of the simplex between two steps,

dk ,
xm;k − xm;k −1

‖xm;k − xm;k −1‖
, (5.33)

where k ∈ N is the current iteration number.
We determine how much the simplex has changed its directiondk between

two steps by computing the inner product 〈dk−1, dk 〉. The inner product is
equal to the cosine of the angledk−1 and dk . If

cosφk = 〈dk−1, dk 〉 ≤ 0, (5.34)

then the moving direction of the simplex has changed by at least π/2. Hence,
the simplex has changed the exploration direction. Therefore, a minimum
might be achieved and we need to test the variance of the vertices (5.30), pos-
sibly followed by a test of (5.31a).

Besides the above modi�cation, a further modi�cation was tested: In some
cases, a reconstruction of the simplex after a failed check (5.31a) yields to slow
convergence. Therefore, the algorithm was modi�ed so that it continues at
point 2 on page 47 without reconstructing the simplex after failing the test
(5.31a). However, reconstructing the simplex led in most of the benchmark
tests to faster convergence. Therefore, this modi�cation is no longer used in
the algorithm.

5.6.6 Benchmark Tests

Tab. 5.1 shows the number of function evaluations and Fig.5.6 shows the
relative number of function evaluations compared to the original implementa-
tion for several test cases. The di�erent functions and the parameter settings
are given in the Appendix. The only numerical parameter that was changed
for the di�erent optimizations is the accuracy, ǫ.

It turned out that modifying the stopping criterion is e�ect ive in most
cases, particularly if a new simplex is constructed after the check (5.31a) failed.
Therefore, the following two versions of the simplex algorithm are implemented
in GenOpt:

1. The base algorithm of Nelder and Mead, including the extension of
O'Neill. After failing ( 5.31a), the simplex is always reconstructed with
the new step size.

2. The base algorithm of Nelder and Mead, including the extension of
O'Neill, but with the modi�ed stopping criterion as explain ed above.
That is, the simplex is only reconstructed if its moving direction changed,
and if we have an inside or total construction beyond us.
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Accuracy
ǫ = 10−3 ǫ = 10−5

Test
function

Rosen-
brock

2D1 Quad
with I
ma-
trix

Quad
with

Q ma-
trix

Rosen-
brock

2D1 Quad
with I
ma-
trix

Quad
with

Q ma-
trix

Original,
with recon-
struction

137 120 3061 1075 139 109 1066 1165

Original,
no recon-
struction

136 110 1436 1356 139 109 1433 1253

Modi�ed,
with recon-
struction

145 112 1296 1015 152 111 1060 1185

Modi�ed,
no recon-
struction

155 120 1371 1347 152 109 1359 1312

Table 5.1 : Comparison of the number of function evaluations for different
implementations of the simplex algorithm. See Appendix for the definition of
the function.
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Figure 5.6 : Comparison of the benchmark tests.
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5.6.7 Keywords

For the Simplex algorithm, the command �le (see page84) must only con-
tain continuous parameters.

To invoke the Simplex algorithm, the Algorithm section of the GenOpt
command �le must have following form:

Algorithm{
Main = NelderMeadONeill;
Accuracy = Double; // 0 < Accuracy
StepSizeFactor = Double; // 0 < StepSizeFactor
BlockRestartCheck = Integer; // 0 <= BlockRestartCheck
ModifyStoppingCriterion = Boolean;

}

The key words have following meaning:

Main The name of the main algorithm.

Accuracy The accuracy that has to be reached before the optimality condi-
tion is checked. Accuracy is de�ned as equal toǫ of (5.30), page 49.

StepSizeFactor A factor that multiplies the step size of each parameter for
(a) testing the optimality condition and (b) reconstructin g the simplex.
StepSizeFactor is equal to c in (5.29) and (5.31c).

BlockRestartCheck Number that indicates for how many main iterations
the restart criterion is not checked. If zero, restart might be checked
after each main iteration.

ModifyStoppingCriterion Flag indicating whether the stopping criterion
should be modi�ed. If true, then the optimality check ( 5.30) is done
only if both of the following conditions are satis�ed: (a) in the last step,
either a partial inside contraction or total contraction wa s done, and (b)
the moving direction of the simplex has changed by an angleφk of at
least (π/2), whereφk is computed using (5.34).
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Figure 6.1 : Interval division.

6 Algorithms for
One-Dimensional Optimization

6.1 Interval Division Algorithms

Interval division algorithm can be used to minimize a function f : R → R,
(i.e., the function depends on one independent parameter only,) over a user-
speci�ed interval. The algorithms do not require derivativ es and they require
only one function evaluation per interval division, except for the initialization.

First, we explain a master algorithm for the interval divisi on algorithms.
The master algorithm is used to implement two commonly used interval division
algorithms: The Golden Section search and the Fibonacci Division.

6.1.1 General Interval Division

We now describe the ideas behind the interval division methods. For given
x0, x3 ∈ R, with x0 < x3, let X , [x0, x3]. Suppose we want to minimizef (·)
on X, and suppose thatf : R → R has a unique minimizerx∗ ∈ X. For some
s ∈ (0, 1), let

x1 , x0 + s (x3 − x0), (6.1)

x2 , x1 + s (x3 − x1). (6.2)

If f (x1) ≤ f (x2), then x∗ ∈ [x0, x2]. Hence, we can eliminate the interval
(x2, x3] and restrict our search to [x0, x2]. Similarly, if f (x1) > f (x2), then
x∗ ∈ [x1, x3] and we can eliminate [x0, x1). Thus, we reduced the initial inter-
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val to a new interval that contains the minimizer x∗.

Let i ∈ N be the iteration number. We want to nest the sequence of
intervals

[x0;(i +1), x3;(i +1)] ⊂ [x0;i , x3;i ], i ∈ {0, 1, 2, . . .}, (6.3)

such that we have to evaluatef (·) in each step at one new point only. To do so,
we assign the new bounds of the interval such that either [x0;(i +1), x3;(i +1)] =
[x0;i , x2;i ], or [x0;(i +1), x3;(i +1)] = [ x1;i , x3;i ], depending on which interval has
to be eliminated. By doing so, we have to evaluate only one newpoint in
the interval. It remains to decide where to locate the new point. The Golden
Section and Fibonacci Division di�er in this decision.

6.1.2 Golden Section Interval Division

Suppose we have three pointsx0 < x1 < x3 in X ⊂ R such that for some
q ∈ (0, 1), to be determined later,

|x0 − x1|
|x0 − x3|

= q. (6.4a)

Hence,
|x1 − x3|
|x0 − x3|

= 1 − q. (6.4b)

Suppose that x2 is located somewhere betweenx1 and x3 and de�ne the
ratio

w ,
|x1 − x2|
|x0 − x3|

. (6.5)

Depending on which interval is eliminated, the interval in t he next iteration
step will either be of length (q + w) |x0−x3|, or (1− q) |x0−x3|. We select the
location of x2 such that the two intervals are of the same length. Hence,

q + w = 1 − q. (6.6a)

Now, we determine the fractionq. Since we apply the process of interval division
recursively, we know by scale similarity that

w
1− q

= q. (6.6b)

Combining (6.6a) and (6.6b) leads to

q2 − 3q + 1 = 0 , (6.7a)

with solutions

q1;2 =
3±
√

5
2

. (6.7b)

Sinceq < 1 by (6.4a), the solution of interest is

q =
3−
√

5
2

≈ 0.382. (6.7c)
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The fractional distances q ≈ 0.382 and 1− q ≈ 0.618 correspond to the
so-calledGolden Section, which gives this algorithm its name.

Note that the interval is reduced in each step by the fraction 1− q, i.e., we
have linear convergence. In the m-th iteration, we have

|x0; m − x2; m | = |x1; m − x3; m | = |x0; (m +1) − x3; (m +1)|

= (1 − q)m +1 |x0; 0 − x3; 0|. (6.8)

Hence, the required number of iterations,m, to reduce the initial interval of
uncertainty |x0; 0 − x3; 0| to at least a fraction r, de�ned as

r ,
|x0; m − x2; m |
|x0; 0 − x3; 0|

=
|x1; m − x3; m |
|x0; 0 − x3; 0|

, (6.9)

is given by

m =
ln r

ln(1 − q)
− 1. (6.10)

6.1.3 Fibonacci Division

Another way to divide an interval such that we need one function evaluation
per iteration can be constructed as follows: Given an initial interval [ x0; i , x3; i ]
, i = 0, we divide it into three segments symmetrically around its midpoint.
Let d1; i < d2; i < d3; i denote the distance of the segment endpoints, measured
from x0; i . Then we have by symmetry d3; i = d1; i + d2; i . By the bracket
elimination procedure explained above, we know that we are eliminating a
segment of lengthd1; i . Therefore, our new interval is of lengthd3; (i +1) = d2; i .
By symmetry we also haved3; (i +1) = d1; (i +1) + d2; (i +1). Hence, if we construct
our segment length such thatd3; (i +1) = d1; (i +1) + d2; (i +1) = d2; i we can reuse
one known point. Such a construction can be done by usingFibonacci numbers,
which are de�ned recursively by

F0 , F1 , 1, (6.11a)

Fi , Fi −1 + Fi −2, i ∈ {2, 3, . . .}. (6.11b)

The �rst few numbers of the Fibonacci sequence are{1, 1, 2, 3, 5, 8, 13, 21, . . .}.
The length of the intervals d1; i and d2; i , respectively, are then given by

d1; i =
Fm −i

Fm −i +2
, d2; i =

Fm −i +1

Fm −i +2
, i ∈ {0, 1, . . . , m}, (6.12)

wherem > 0 describes how many iterations will be done. Note thatm must
be known prior to the �rst interval division. Hence, the algo rithm must be
stopped afterm iterations.

The reduction of the length of the uncertainty interval per i teration is given
by

d3; (i +1)

d3; i
=

d2; i

d1; i + d2; i
=

Fm−i+1
Fm−i+2

Fm−i
Fm−i+2

+ Fm−i+1
Fm−i+2

=
Fm −i +1

Fm −i +2
. (6.13)
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After m iterations, we have

d3; m

d3; 0
=

d3; m

d3; (m −1)

d3; (m −1)

d3; (m −2)
. . .

d3; 2

d3; 1

d3; 1

d3; 0

=
F2

F3

F3

F4
. . .

Fm

Fm +1

Fm +1

Fm +2
=

2
Fm +2

. (6.14)

The required number of iterations m to reduce the initial interval d3; 0 to at
least a fraction r, de�ned by ( 6.9), can again be obtained by expansion from

r =
d2; m

d3; 0
=
d3; (m +1)

d3; 0
=
d3; (m +1)

d3; m

d3; m

d3; (m −1)
. . .

d3; 2

d3; 1

d3; 1

d3; 0

=
F1

F2

F2

F3
. . .

Fm

Fm +1

Fm +1

Fm +2
=

1
Fm +2

. (6.15)

Hence,m is given by

m = arg min
m ∈N

{
m | r ≥

1
Fm +2

}
. (6.16)

6.1.4 Comparison of Efficiency

The Golden Section is more e�cient than the Fibonacci Divisi on. Compar-
ing the reduction of the interval of uncertainty, |x0; m − x3; m |, in the limiting
case form→∞, we obtain

lim
m →∞

|x0; m − x3; m |GS

|x0; m − x3; m |F
= lim

m →∞

Fm +2

2
(1− q)m = 0 .95. (6.17)

6.1.5 Master Algorithm for Interval Division

The following master algorithm explains the steps of the interval division
algorithm.
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Algorithm 6.1.1 (Model Interval Division Algorithm)

Data: x0, x3.
Procedure that returns ri , de�ned as
ri , |x0; i − x2; i |/|x0; 0 − x3; 0|.

Step 0: Initialize
� x = x3 − x0,
x2 = x0 + r1 � x,
x1 = x0 + r2 � x,
f1 = f (x1), f2 = f (x2), and
i = 2.

Step 1: Iterate.
Replacei by i + 1.
If ( f2 < f1)

Set x0 = x1, x1 = x2,
f1 = f2,
x2 = x3 − ri � x, and
f2 = f (x2).

else
Set x3 = x2, x2 = x1,
f2 = f1,
x1 = x0 + ri � x,
f1 = f (x1).

Step 2: Stop or go to Step 1.

6.1.6 Keywords

For the Golden Section and the Fibonacci Division algorithm, the com-
mand �le (see page84) must contain only one continuous parameter.

To invoke the Golden Section or the Fibonacci Division algorithm, the
Algorithm Section of the GenOpt command �le must have following form:

Algorithm{
Main = GoldenSection | Fibonacci;

[AbsDiffFunction = Double; | // 0 < AbsDiffFunction
IntervalReduction = Double; ] // 0 < IntervalReduction

}

The keywords have the following meaning

Main The name of the main algorithm.

The following two keywords are optional. If none of them is speci�ed, then
the algorithm stops after MaxIte function evaluations (i.e., after MaxIte−2
iterations), where MaxIte is speci�ed in the section OptimizationSettings.
If both of them are speci�ed, an error occurs.
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AbsDiffFunction The absolute di�erence de�ned as

� f , |min{f (x0), f (x3)} −min{f (x1), f (x2)}|. (6.18)

If � f is lower than AbsDiffFunction, the search stops successfully.
Note: Since the maximum number of interval reductions must be known
for the initialization of the Fibonacci algorithm, this key word can be
used only for the Golden Section algorithm. It must not be speci�ed for
the Fibonacci algorithm.

IntervalReduction The required maximum fraction, r, of the end interval
length relative to the initial interval length (see equatio n (6.9)).
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7 Algorithms for Parametric
Runs

The here described algorithms for parametric runs can be used to determine
how sensitive a function is with respect to a change in the independent variables.
They can also be used to do a parametric sweep of a function over a set of
parameters. The algorithm described in Section7.1 varies one parameter at
a time while holding all other parameters �xed at the value speci�ed by the
keyword Ini. The algorithm described in Section7.2, in contrast, constructs a
mesh in the space of the independent parameters, and evaluates the objective
function at each mesh point.

7.1 Parametric Runs by Single Variation

7.1.1 Algorithm Description

The Parametric algorithm allows doing parametric runs where one param-
eter at a time is varied and all other parameters are �xed at their initial values
(speci�ed by the keyword Ini).

Each parameter must have a lower and upper bound. For the logarithmic
scale, the lower and upper bounds must be bigger than zero. Toallow negative
increments, the lower bound can be larger than the upper bound. The absolute
value of the keyword Step de�nes in how many intervals each coordinate axis
will be divided. If Step < 0, then the spacing is logarithmic; otherwise it is
linear. Set Step = 0 to keep the parameter always �xed at the value speci�ed
by Ini.

This algorithm can also be used with discrete parameters. This allows, for
example, using a string to specify a window construction.

The spacing is computed as follows: For simplicity, the explanation is done
for one parameter. Let l , Min, u , Max and m , |Step|, where Min, Max and
Step are speci�ed in the command �le.

If Step < 0, we compute, fori ∈ {0, . . . ,m},

p =
1
m

log
u
l
, (7.1a)

xi = l 10p i . (7.1b)

If Step > 0, we compute, fori ∈ {0, . . . ,m},

xi = l +
i
m

(u− l). (7.1c)

Example 7.1.1 (Parametric run with logarithmic and linear spacing)
Suppose the parameter speci�cation is of the form

Copyright (c) 1998-2009
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy. All rights reserved.

62



GenOpt
Generic Optimization Program
Version 3.0.0

Lawrence Berkeley National Laboratory
Building Technologies Department

Simulation Research Group

Vary{
Parameter{ Name = x1; Ini = 5; Step = -2; Min = 10; Max = 1000; }
Parameter{ Name = x2; Ini = 3; Step = 1; Min = 2; Max = 20; }

}
and the cost function takes two arguments,x1, x2 ∈ R. Then, the cost function
will be evaluated at the points
(x1, x2) ∈ {(10, 3), (100, 3), (1000, 3), (5, 2), (5, 20)}.

7.1.2 Keywords

For this algorithm, the command �le (see page84) can contain continuous
and discrete parameters.

The Parametric algorithm is invoked by the following speci�cation in the
command �le:

Algorithm{
Main = Parametric;
StopAtError = true | false;

}

The keywords have the following meaning:

Main The name of the main algorithm.

StopAtError If true, then the parametric run stops if a simulation error
occurs. If false, then the parametric run does not stop if a simulation
error occurs. The failed function evaluation will be assigned the function
value zero. For information, an error message will be written to the user
interface and the optimization log �le.

7.2 Parametric Runs on a Mesh

7.2.1 Algorithm Description

In contrast to the algorithm Parametric, the algorithm Mesh spans a multi-
dimensional grid in the space of the independent parameters, and it evaluates
the objective function at each grid point.

Note that the number of function evaluations increases exponentially with
the number of independent parameters. For example, a 5-dimensional grid with
2 intervals in each dimension requires 35 = 243 function evaluations, whereas
a 10-dimensional grid would require 310 = 59049 function evaluations.

The values that each parameter can take on are computed in thesame way
as for the algorithm Parametric. Therefore, the speci�cation of a Parameter
underlies the same constraints as for the algorithmParametric, which is de-
scribed above.
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Example 7.2.1 (Parametric run on a mesh)
Suppose the parameter speci�cation is of the form

Vary{
Parameter{ Name = x1; Min = -10; Ini = 99; Max = 10; Step = 1; }
Parameter{ Name = x2; Min = 1; Ini = 99; Max = 100; Step = -2; }

}
and the cost function takes two arguments,x1, x2 ∈ R. Then, the cost function
will be evaluated at the points
(x1, x2) ∈ {(−10, 1), (10, 1), (−10, 10), (10, 10), (−10, 100), (10, 100)}.

An alternative speci�cation for x2 that uses a discrete parameter and gives
the same result is

Parameter{ Name = x2; Ini = "1"; Values = "1, 10, 100"; }

7.2.2 Keywords

The Mesh algorithm is invoked by the following speci�cation in the com-
mand �le:

Algorithm{
Main = Mesh;
StopAtError = true | false;

}

The keywords have the following meaning:

Main The name of the main algorithm.

StopAtError If true, then the parametric run stops if a simulation error
occurs. If false, then the parametric run does not stop if a simulation
error occurs. The failed function evaluation will be assigned the function
value zero. For information, an error message will be written to the user
interface and the optimization log �le.
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8 Constraints
For some optimization problems it is necessary to impose constraints on the

independent variables and/or the dependent variables, as the following example
shows.

Example 8.0.2 Suppose we want to minimize the heating energy of a build-
ing, and suppose that the normalized mass 
ow _m of the heating system is
an independent variable, with constraints 0 ≤ _m ≤ 1. Without using con-
straints, the minimum energy consumption would be achievedfor _m = 0,
since then the heating system is switched o�. To solve this problem, we
can impose a constraint on a dependent variable. One possibility is to add
a \penalty" term to the energy consumption. This could be such that every
time a thermal comfort criterion (which is a dependent variable) is violated, a
large positive number is added to the energy consumption. Thus, if ppd(x),
with ppd: Rn → R, denotes the predicted percent of dissatis�ed people (in
percentage), and if we require that ppd(x) ≤ 10%, we could use the inequality
constraint g(x) , ppd(x) − 10≤ 0.

In Section 8.1.1, the method that is used in GenOpt to implement box
constraints is described. In Section8.2, penalty and barrier methods that can
be used to implement constraints on dependent variables aredescribed. They
involve reformulating the cost function and, hence, are problem speci�c and
have to be implemented by the user.

8.1 Constraints on Independent Variables

8.1.1 Box Constraints

Box constraints are constant inequality constraints that de�ne a feasible
set as

X ,
{
x ∈ Rn | li ≤ xi ≤ ui , i ∈ {1, . . . , n}

}
, (8.1)

where−∞ ≤ li < ui ≤ ∞ for i ∈ {1, . . . , n}.
In GenOpt, box constraints are either implemented directly in the opti-

mization algorithm by setting f (x) = ∞ for unfeasible iterates, or, for some
algorithms, the independent variable x ∈ X is transformed to a new uncon-
strained variable which we will denote in this section by t ∈ Rn .

Instead of optimizing the constrained variable x ∈ X, we optimize with
respect to the unconstrained variablet ∈ Rn . The transformation ensures that
all variables stay feasible during the iteration process. In GenOpt, the follow-
ing transformations are used:

If li ≤ xi , for somei ∈ {1, . . . , n},

ti =
√
xi − li , (8.2a)

xi = li + ( ti )2. (8.2b)
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If li ≤ xi ≤ ui , for somei ∈ {1, . . . , n},

ti = arcsin

(√
xi − li

ui − li

)

, (8.2c)

xi = li + ( ui − li ) sin2 ti . (8.2d)

If xi ≤ ui , for somei ∈ {1, . . . , n},

ti =
√
ui − xi , (8.2e)

xi = ui − (ti )2. (8.2f)

8.1.2 Coupled Linear Constraints

In some cases the constraints have to be formulated in terms of a linear
system of equations of the form

Ax = b, (8.3)

whereA ∈ Rm × Rn , x ∈ Rn , b ∈ Rm , and rank(A) = m.

There are various algorithms that take this kind of restrict ion into account.
However, such restrictions are rare in building simulationand thus not imple-
mented in GenOpt. If there is a need to impose such restrictions, they can be
included by adding an appropriate optimization algorithm and retrieving the
coe�cients by using the methods o�ered in GenOpt's class Optimizer.

8.2 Constraints on Dependent Variables

We now discuss the situation where the constraints are non-linear and de-
�ned by

g(x) ≤ 0, (8.4)

whereg : Rn → Rm is once continuously di�erentiable. (8.4) also allows formu-
lating equality constraints of the form

h(x) = 0 , (8.5)

for h : Rn → Rm , which can be implemented by using penalty functions. In
example, one can de�negi (x) , hi (x)2 for i ∈ {1, . . . ,m}. Then, sincegi (·) is
non-negative, the only feasible value isg(·) = 0. Thus, we will only discuss the
case of inequality constraints of the form (8.4).

Such a constraint can be taken into account by addingpenalty or barrier
functions to the cost function, which are multiplied by a positive weighting fac-
tor µ that is monotonically increased (for penalty functions) or monotonically
decreased to zero (for barrier functions).

We now discuss the implementation of barrier and penalty functions.
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8.2.1 Barrier Functions

Barrier functions impose a punishment if the dependent variable gets close
to the boundary of the feasible region. The closer the variable is to the bound-
ary, the higher the value of the barrier function becomes.
To implement a barrier function for g(x) ≤ 0, whereg : Rn → Rm is a continu-
ously di�erentiable function whose elements are strictly monotone increasing,
the cost function f : Rn → R can be modi�ed to

f̃ (x, µ) , f (x) + µ
1∑m

i =1 gi (x)
(8.6)

where f̃ : Rn ×R→ R. The optimization algorithm is then applied to the new
function f̃ (x, µ). Note that ( 8.6) requires that x is in the interior of the feasible
set1.

A drawback of barrier functions is that the boundary of the feasible set
can not be reached. By selecting the weighting factors small, one can get close
to the boundary. However, too small a weighting factor can cause the cost
function to be ill-conditioned, which can cause problems for the optimization
algorithm.

Moreover, if the variation of the iterates between successive iterations is
too big, then the feasible boundary can be crossed. Such a behavior must be
prevented by the optimization algorithm, which can produce additional prob-
lems.

For barrier functions, one can start with a moderately largeweighting factor
µ and let µ tend to zero during the optimization process. That is, one constructs
a sequence

µ0 > . . . > µi > µi +1 > . . . > 0. (8.7)

Section 8.2.3shows howµi can be computed in the coarse of the optimization.
Barrier functions do not allow formulating equality constr aints of the form (8.5).

8.2.2 Penalty Functions

In contrast to barrier functions, penalty functions allow c rossing the bound-
ary of the feasible set, and they allow implementation of equality constraints
of the form (8.5). Penalty functions add a positive term to the cost function if
a constraint is violated.
To implement a penalty function for g(x) ≤ 0, where g : Rn → Rm is once
continuously di�erentiable and each element is strictly monotone decreasing,
the cost function f : Rn → R can be modi�ed to

f̃ (x, µ) , f (x) + µ
m∑

i =1

max(0, gi (x))2, (8.8)

where f̃ : Rn×R→ R is once continuously di�erentiable in x. The optimization
algorithm is then applied to the new function f̃ (x, µ).

1I.e., x satisfies the strict inequality g(x) > 0.
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As for the barrier method, selecting the weighting factor µ is not trivial.
Too small a value for µ produces too big a violation of the constraint. Hence,
the boundary of the feasible set can be exceeded by an unacceptable amount.
Too large a value ofµ can lead to ill-conditioning of the cost function, which
can cause numerical problems.

The weighting factors have to satisfy

0< µ0 < . . . < µi < µi +1 < . . . , (8.9)

with µi →∞, as i→∞. See Section8.2.3 for how to adjust µi .

8.2.3 Implementation of Barrier and Penalty Functions

We now discuss how the weighting factorsµi can be adjusted. Fori ∈ N,
let x∗(µi ) be de�ned as the solution

x∗(µi ) , arg min
x ∈X

f̃ (x, µi ), (8.10)

where f̃ (x, µi ) is as in (8.6) or (8.8), respectively. Then, we initialize i = 0,
select an initial value µ0 > 0 and computex∗(µ0). Next, we select aµi +1 such
that it satis�es ( 8.7) (for barrier functions) or ( 8.9) (for penalty functions), and
compute x∗(µi +1), using the initial iterate x∗(µi ), and increase the counteri
to i + 1. This procedure is repeated until µi is su�ciently close to zero (for
barrier functions) or su�ciently large (for penalty functi ons).

To recompute the weighting factorsµi , users can request GenOpt to write
a counter to the simulation input �le, and then compute µi as a function of
this counter. The value of this counter can be retrieved by setting the keyword
WriteStepNumber in the optimization command �le to true, and specifying
the string %stepNumber% in the simulation input template �le. GenOpt will
replace the string %stepNumber% with the current counter value when it writes
the simulation input �le. The counter starts with the value 1 and its increment
is 1.

Users who implement their own optimization algorithm in GenOpt can call
the method increaseStepNumber(...) in the classOptimizer to increase the
counter. If the keyword WriteStepNumber in the optimization command �le is
set to true, the method calls the simulation to evaluate the cost function for
the new value of this counter. If WriteStepNumber is false, no new function
evaluation is performed by this method since the cost function does not depend
on this counter.
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Figure 9.1 : Interface between GenOpt and the simulation program that eval-
uates the cost function.

9 Program
GenOpt is divided into a kernel part and an optimization part . The kernel

reads the input �les, calls the simulation program, stores the results, writes
output �les, etc. The optimization part contains the optimi zation algorithms.
It also contains classes of mathematical functions such as those used in linear
algebra.

Since there is a variety of simulation programs and optimization algorithms,
GenOpt has a simulation program interface and an optimization algorithm in-
terface. The simulation program interface allows using anysimulation software
to evaluate the cost function (see below for the requirements on the simulation
program), and allows implementing new optimization algorithms with little
e�ort.

9.1 Interface to the Simulation Program

Text �les are used to exchange data with the simulation program and to
specify how to start the simulation program. This makes it possible to couple
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any simulation program to GenOpt without requiring code adaptation on either
the GenOpt side or the simulation program side. The simulation program must
satisfy the following requirements:

1. The simulation program must read its input from one or more text �les,
must write the value of the cost function to a text �le, and mus t write
error messages to a text �le.

2. It must be able to start the simulation program by a command and the
simulation program must terminate automatically. This means that the
user does not have to open the input �le manually and shut downthe
simulation program once the simulation is �nished.

The simulation program may be a commercially available program or one
written by the user.

9.2 Interface to the Optimization Algorithm

The large variety of optimization algorithms led to the development of
an open interface that allows easy implementation of optimization algorithms.
Users can implement their own algorithms and add them to the library of avail-
able optimization algorithms without having to adapt and re compile GenOpt.
To implement a new optimization algorithm, the optimizatio n algorithm must
be written according to the guidelines of Section9.4. Thus, GenOpt can not
only be used to do optimization with built-in algorithms, bu t it can also be
used as a framework for developing, testing and comparing optimization algo-
rithms.

Fig. 9.2 shows GenOpt's program structure. The classOptimizer is the
superclass of each optimization algorithm. It o�ers all the functions required
for retrieval of parameters that specify the optimization settings, performing
the evaluation of the cost function and reporting results. For a listing of its
methods, seehttp://SimulationResearch.lbl.gov or the Javadoc code doc-
umentation that comes with GenOpt's installation.

9.3 Package genopt.algorithm

The Java packagegenopt.algorithm consists of all classes that contain
mathematical formulas that are used by the optimization algorithm. The fol-
lowing packages belong togenopt.algorithm.

genopt.algorithm This package contains all optimization algorithms. The
abstract classOptimizer, which must be inherited by each optimization
algorithm, is part of this package.

genopt.algorithm.util.gps contains a model Generalized Pattern Search
optimization algorithm.

genopt.algorithm.util.linesearch contains classes for doing a line search
along a given direction.
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Figure 9.2 : Implementation of optimization algorithms into GenOpt.
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genopt.algorithm.util.math contains classes for mathematical operations.

genopt.algorithm.util.optimality contains classes that can be used to
check whether a variable value is at a minimum point or not.

genopt.algorithm.util.pso contains a model Particle Swarm Optimiza-
tion algorithm.

These packages are documented in the Javadoc source code documentation that
comes with GenOpt's.

9.4 Implementing a New Optimization Algorithm

To implement a new optimization algorithm, you must write a J ava class
that has the syntax shown in Fig. 9.3. The class must use the methods of
the abstract classOptimizer to evaluate the cost function and to report the
optimization steps. The methods of the Optimizer class are documented in
the Javadoc source code documentation.

Follow these steps to implement and use your own optimization algorithm:

1. Put the byte-code (ClassName.class) in the directory genopt/algorithm.

2. Set the value of the keywordMain in the Algorithm section of the op-
timization command �le to the name of the optimization class (without
�le extension).

3. Add any further keywords that the algorithm requires to th e Algorithm
section. The keywords must be locatedafter the entry Main of the opti-
mization command �le. The keywords must be in the same sequence as
they are called in the optimization code.

4. Call the method Optimizer.report(final Point, final boolean) af-
ter evaluating the cost function. Otherwise, the result will not be re-
ported.

5. Call either the method Optimizer.increaseStepNumber() or the method
Optimizer.increaseStepNumber(final Point) after the optimization
algorithm converged to some point. These methods increase acounter
that can be used to add penalty or barrier functions to the cost func-
tion. In particular, the methods Optimizer.increaseStepNumber()
and Optimizer.increaseStepNumber(finalPoint) increase the vari-
able stepNumber (see Section8) by one.
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package genopt.algorithm;

import genopt.GenOpt;
import genopt.lang.OptimizerException;
import genopt.io.InputFormatException;

public class ClassName extends Optimizer{

public ClassName (GenOpt genOptData)
throws InputFormatException, OptimizerException,

IOException, Exception

{
// set the mode to specify whether the
// default transformations for the box
// constraints should be used or not
int constraintMode = xxxx;

super(genOptData, constraintMode);

// remaining code of the constructor
}

public int run() throws OptimizerException, IOException

{
// the code of the optimization algorithm

}

// add any further methods and data members
}

Figure 9.3 : Code snippet that specifies how to implement an optimization
algorithm.
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10 Installing and Running
GenOpt

10.1 System Requirements

To run GenOpt and the GenOpt installation program, a Java 2 v1.5.0 run-
time environment is required. Java may be obtained fromhttp://java.sun.com.
GenOpt should run on any operating system that can run Java applications.

10.2 Installing and uninstalling GenOpt

To install GenOpt, download the installation program genopt-install.jar
from http://SimulationResearch.lbl.gov/GO. Then, either double-click on
the �le genopt-install.jar1 or open a command shell, change to the direc-
tory that contains genopt-install.jar and type

java -jar genopt-install.jar

No environment variables need to be set to run GenOpt. (This is new since
GenOpt 2.1.0.)

To uninstall GenOpt, delete the directory in which GenOpt was installed.

10.3 Running GenOpt

10.3.1 Running GenOpt from the file explorer

To run GenOpt from the �le explorer, double-click on the �le genopt.jar.1

This will start the graphical user interface. From the graphical user interface,
selectFile, Start... and select a GenOpt initialization �le.

10.3.2 Running GenOpt from the command line

GenOpt can also be run as a console application, either with or without
the graphical user interface. To run GenOpt as a console application with the
graphical user interface, open a shell, change to the directory that contains
genopt.jar and type

java -jar genopt.jar [initializationFile]

where [initializationFile] is an optional argument that can be replaced
with the GenOpt initialization �le (see example below). To s tart GenOpt
without the graphical user interface, type

java -classpath genopt.jar genopt.GenOpt [initializationFile]

1Depending on your Java installation, the file extension jar may not be associated
with Java. In this situation, please consult the instructions of your operating system
for how to associate file extensions with programs.
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Figure 10.1 : Output of GenOpt on Mac OS X for the example file in the
directory example/quad/GPSHookeJeeves.

For instance, to run the example �le provided with GenOpt tha t minimizes
a quadratic function using the Hooke-Jeeves algorithm, type on Mac OS X

java -jar genopt.jar example/quad/GPSHookeJeeves/optMacOSX.ini

on Linux

java -jar genopt.jar example/quad/GPSHookeJeeves/optLinux.ini

and on Windows

java -jar genopt.jar example\quad\GPSHookeJeeves\optWinXP.ini

This should produce the window shown in Fig.10.1.
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11 Setting Up an Optimization
Problem

We will now discuss how to set up an optimization problem.

First, de�ne a cost function. The cost function is the functi on that needs
to be minimized. It must be evaluated by an external simulation program
that satis�es the requirements listed on page70. To maximize a cost function,
change the sign of the cost function to turn the maximization problem into a
minimization problem.

Next, specify possible constraints on the independent variables or on de-
pendent variables (dependent variables are values that arecomputed in the
simulation program). To do so, use the default scheme for boxconstraints
on the independent variables or add penalty or barrier functions to the cost
function as described in Chapter8.

Next, make sure that the simulation program writes the cost function value
to the simulation output �le. It is important that the cost function value is
written to the output file without truncating any digits (see Section11.4). For
example, if the cost function is computed by a Fortran program in double
precision, it is recommended to use theE24.16 format in the write statement.

In the simulation output �le, the cost function value must be indicated by
a string that stands in front of the cost function value (see page81).

Then, specify the �les described in Section11.1and, if required, implement
pre- and post-processing, as described in Section11.3.

11.1 File Specification

This section de�nes the �le syntax for GenOpt. The directory example of
the GenOpt installation contains several examples.

The following notation will be used to explain the syntax:

1. Text that is part of the �le is written in fixed width fonts.

2. | stands for possible entries. Only one of the entries that areseparated
by | is allowed.

3. [ ] indicates optional values.

4. The �le syntax follows the Java convention. Hence,

(a) // indicates a comment on a single line,

(b) /* and */ enclose a comment,

(c) the equal sign, =, assigns values,

(d) a statement has to be terminated by a semi-colon,;,

(e) curly braces, { }, enclose a whole section of statements, and
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(f) the syntax is case sensitive.

The following basic types are used:

String Any sequence of characters.
If the sequence contains a blank character,
it has to be enclosed in apostrophes (").
If there are apostrophes within quoted text,
they must be speci�ed by a leading backslash (i.e.,\").
Similarly, a backslash must be preceded by another
backslash (i.e.,"c:\\go_prg").

StringReference Any name of a variable that appears in the same section.
Integer Any integer value.
Double Any double value (including integer).
Boolean Either true or false

The syntax of the GenOpt �les is structured into sections of parameters
that belong to the same object. The sections have the form

ObjectKeyWord { Object }

where Object can either be anotherObjectKeyWord or an assignment of the
form

Parameter = Value ;

Some variables can be referenced. References have to be written in the
form

Parameter = ObjectKeyWord1.ObjectKeyWord2.Value ;

where ObjectKeyWord1 refers to the root of the object hierarchy as speci�ed
in the corresponding �le.

11.1.1 Initialization File

The initialization �le speci�es

1. where thefiles of the current optimization problems are located,

2. which simulation �les the user likes to have saved for later inspection,

3. what additional strings have to be passed to the command that starts
the simulation (such as the name of the simulation input �le) ,

4. what number in the simulation output �le is a cost function value,

5. whether and if so, how, the cost function value(s) have to be post-
processed, and

6. which simulation program is being used.
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The sections must be speci�ed in the order shown below. The order of the
keywords in each section is arbitrary, as long as the numbersthat follow some
keywords (such asFile1) are in increasing order.

The initialization �le syntax is

Simulation {
Files {

Template {
File1 = String | StringReference;

[ Path1 = String | StringReference; ]
[ File2 = String | StringReference;
[ Path2 = String | StringReference; ]

[ ... ] ]
}
Input { // the number of input file must be equal to

// the number of template files
File1 = String | StringReference;

[ Path1 = String | StringReference; ]
[ SavePath1 = String | StringReference; ]

[ File2 = String | StringReference;
[ Path2 = String | StringReference; ]
[ SavePath2 = String | StringReference; ]

[ ... ] ]
}
Log {
The Log section has the same syntax as the Input section.

}
Output {
The Output section has the same syntax as the Input section.

}
Configuration {

File1 = String | StringReference;
[ Path1 = String | StringReference; ]
}

} // end of section Simulation.Files
[CallParameter {

[Prefix = String | StringReference;]
[Suffix = String | StringReference;]

}]
[ObjectiveFunctionLocation {

Name1 = String;
Delimiter1 = String | StringReference; | Function1 = String;

[ Name2 = String;
Delimiter2 = String | StringReference; | Function2 = String;
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[ ... ] ]

}]
} // end of section Simulation
Optimization {

Files {
Command {

File1 = String | StringReference;
[ Path1 = String | StringReference; ]
}

}
} // end of section Optimization
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The sections have the following meaning:

Simulation.Files.Template GenOpt writes the value of the independent
variables to the simulation input �les. To do so, GenOpt reads the simu-
lation input template �les, replaces each occurrence of%variableName%
by the numerical value of the corresponding variable, and the result-
ing �le contents are written as the simulation input �les. Th e string
%variableName% refers to the name of the variable as speci�ed by the
entry Name in the optimization command �le on page 84.

The independent variables can be written to several simulation input
�les if required. To do so, specify as manyFilei and Pathi assignments
as necessary (wherei stands for a one-based counter of the �le and path
name). Note that there must obviously be the same number of �les and
paths in the Input section that follows this section.

If there are multiple simulation input template �les, each � le will be
written to the simulation input �le whose keyword ends with t he same
number.

The following rules are imposed:

1. Each variable name speci�ed in the optimization command �le must
occur in at least one simulation input template �le or in at le ast one
function that is speci�ed in the section ObjectiveFunctionLocation
below.

2. Multiple occurrences of the same variable name are allowed in the
same �le and in the same function speci�cation (as speci�ed by the
keyword Functioni, i = 1 , 2, . . .).

3. If the value WriteStepNumber in the sectionOptimizationSettings
of the optimization command �le is set to true, then rule 1 and 2
apply also to %stepNumber%. If WriteStepNumber is set to false,
then %stepNumber% can occur, but it will be ignored.

Simulation.Files.Input The simulation input �le is generated by GenOpt
based on the current parameter set and the corresponding simulation in-
put template �le, as explained in the previous paragraph. Obviously, the
number of simulation input �les must be equal to the number of simula-
tion input template �les.

The sectionInput has an optional keyword, calledSavePath. If SavePath
is speci�ed, then the corresponding input �le will after each simulation
be copied into the directory speci�ed by SavePath. The copied �le will
have the same name, but with the simulation number added as pre�x.

Simulation.Files.Log GenOpt scans the simulation log �le for error mes-
sages. The optimization terminates if any of the strings speci�ed by the
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variable ErrorMessage in the SimulationError section of the GenOpt
con�guration �le is found. At least one simulation log �le mu st be spec-
i�ed.

The section Log also has the optional keywordSavePath. It has the
same functionality as explained in the previous section.

Simulation.Files.Output GenOpt reads the cost function value from this
�le. GenOpt assumes that the value that is written after the last occur-
rence of the string speci�ed by Delimiteri (i = 1 , 2, . . .) in the section
ObjectiveFunctionLocation is the cost function value. The number
of cost function values is arbitrary (but at least one must be speci�ed).
The optimization algorithms minimize the �rst cost functio n value. The
other values can be used for post-processing of the simulation output.
They will also be reported to the output �les and the online chart.

GenOpt searches for the cost function value as follows:

1. After the �rst simulation, GenOpt searches for the �rst co st func-
tion value in the �rst output �le. The number that occurs afte r the
last occurrence of the string speci�ed by the variableDelimiteri
(i = 1 , 2, . . .) in the section ObjectiveFunctionLocation is as-
sumed to be the cost function value. If the �rst output �le doe s
not contain the �rst cost function value, then GenOpt reads t he
second output �le (if present) and so on until the last output �le is
read. If GenOpt cannot �nd the cost function value in any of th e
output �les or function de�nitions, it will terminate with a n error.
The same procedure is repeated with the second cost functionvalue
(if present) until all cost function values have been found.

2. In the following iterations, GenOpt will only read the �le (s) where it
found the cost function value(s) after the �rst simulation. The �les
that did not contain a cost function value after the �rst simu lation
will not be read anymore.

This section also contains the optional keywordSavePath. If this key-
word is speci�ed, then GenOpt copies the output �le. This is particularly
useful for doing parametric runs.

Simulation.Files.Configuration The entries in this section specify the
simulation con�guration �le, which contains information t hat is related
to the simulation program only, but not related to the optimi zation prob-
lem. The simulation con�guration �le is explained below.

Simulation.CallParameter Here, a pre�x and su�x for the command that
starts the simulation program can be added. With these entries, any
additional information, such as the name of the weather �le, can be
passed to the simulation program. To do so, one has to refer toeither of
these entries in the argument of the keywordCommand (see page83).
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Simulation.ObjectiveFunctionLocation This section speci�es where the
cost function values can be found in the simulation output �l es, and
possibly how these values have to be post-processed before they will be
passed to the optimization algorithm.

GenOpt reads the value after the last occurrence of Delimiteri (i
= 1 , 2, . . .) as the cost function value. The value ofNamei is used to
label the results in the output reports.

Alternatively to the entry Delimiteri, an entry Functioni can be spec-
i�ed to de�ne how the cost function values should be post-processed. See
page90 for an example.

For convenience, the sectionObjectiveFunctionLocation can option-
ally be speci�ed in the initialization �le, but its speci�ca tion is required
in the con�guration �le. If this section is speci�ed in both � les, then the
speci�cation in the initialization �le will be used.

Specifying the sectionObjectiveFunctionLocation in the initialization
�le is of interest if a simulation program is used for di�eren t problems
that require di�erent values of this section. Then, the same (simulation
program speci�c) con�guration �le can be used for all runs and the dif-
ferent settings can be speci�ed in the (project dependent) initialization
�le rather than in the con�guration �le.

Optimization.Files.Command This section speci�es where the optimiza-
tion command �le is located. This �le contains the mathemati cal infor-
mation of the optimization. See page84 for a description of this �le.

11.1.2 Configuration File

The con�guration �le contains information related only to t he simulation
program used and not to the optimization problem. Hence, it has to be written
only once for each simulation program and operating system.We recommend
to put this �le in the directory cfg so that it can be used for di�erent op-
timization projects. Some con�guration �les are provided with the GenOpt
installation.
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The syntax is speci�ed by

// Error messages of the simulation program.
SimulationError{

ErrorMessage = String;
[ErrorMessage = String;
[ ... ] ]

}

// Number format for writing simulation input files.
IO{

NumberFormat = Float | Double;
}

// Specifying how to start the simulation program.
SimulationStart{

Command = String;
WriteInputFileExtension = Boolean;

}

// Specifying the location of the
// cost function value in the simulation output file
ObjectiveFunctionLocation{

Name1 = String;
Delimiter1 = String | StringReference; | Function1 = String;

[ Name2 = String;
Delimiter2 = String | StringReference; | Function2 = String;

[ ... ] ]
}

The entries have the following meaning:

SimulationError The error messages that might be written by the simu-
lation program must be assigned to the keywordErrorMessage so that
GenOpt can check whether the simulation has completed successfully.
At least one entry for ErrorMessage must be given.

IO The keyword NumberFormat speci�es in what format the independent pa-
rameters will be written to the simulation input �le. The set ting Double
is recommended, unless the simulation program cannot read this number
format.

SimulationStart The keyword Command speci�es what string must be used
to start the simulation program. It is important that this co mmand waits
until the simulation terminates (see the directory cfg for examples). The
value of the variable Command is treated in a special way: Any value of
the optimization initialization �le can be automatically c opied into the
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value of Command. To do so, surround the reference to the corresponding
keyword with percent signs. For example, a reference to the keyword
Prefix of the initialization �le looks like

%Simulation.CallParameter.Prefix%

By setting WriteInputFileExtension to false, the value of the key-
word Simulation.Input.Filei (where i stands for 1, 2, 3) is copied
into Command, and the �le extension is removed.

ObjectiveFunctionLocation Note that this section can also be speci�ed in
the initialization �le. The section in this �le is ignored if this section is
also speci�ed in the con�guration �le. See page82 for a description.

11.1.3 Command File

The command �le speci�es optimization-related settings such as the inde-
pendent parameters, the stopping criteria and the optimization algorithm being
used. The sequence of the entries in all sections of the command �le is arbitrary.

There are two di�erent types of independent parameters, continuous pa-
rameters and discrete parameters. Continuous parameters can take on any
values, possibly constrained by a minimum and maximum value. Discrete pa-
rameters can take on only user-speci�ed discrete values, tobe speci�ed in this
�le.

Some algorithms require all parameters to be continuous, orall parameters
to be discrete, or allow both continuous and discrete parameters. Please refer
to the algorithm section on page16-64.

a) Specification of a Continuous Parameter

The structure for a continuous parameter is

// Settings for a continuous parameter
Parameter{

Name = String;
Ini = Double;
Step = Double;
[ Min = Double | SMALL; ]
[ Max = Double | BIG; ]
[ Type = CONTINUOUS; ]

}

The entries are:

Name The name of the independent variable. GenOpt searches the simula-
tion input template �les for this string { surrounded by perc ent signs {
and replaces each occurrence by its numerical value before it writes the
simulation input �les.
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Ini Initial value of the parameter.

Step Step size of the parameter. How this variable is used dependson
the optimization algorithm being used. See the optimization algorithm
descriptions for details.

Min Lower bound of the parameter. If the keyword is omitted or set to
SMALL, the parameter has no lower bound.

Max Upper bound of the parameter. If the keyword is omitted or setto BIG,
the parameter has no upper bound.

Type Optional keyword that speci�es that this parameter is conti nuous. By
default, if neither Type nor Values (see below) are speci�ed, then the
parameter is considered to be continuous and theParameter section
must have the above format.

b) Specification of a Discrete Parameter

For discrete parameters you need to specify the set of admissible values.
Alternatively, if a parameter is spaced either linearly or logarithmically, specify
the minimum and maximum value of the parameter and the numberof intervals.

First, we list the entry for the case of specifying the set of admissible values:

// Settings for a discrete parameter
Parameter{

Name = String;
Ini = Integer;
Values = String;

[ Type = SET; ]
}

The entries are:

Name As for the continuous parameter above.

Ini 1-based index of the initial value. For example, ifValues speci�es three
admissible values, thenIni can be either1, 2, or 3.

Values Set of admissible values. The entry must be of the form
Values = "value1, value2, value3";

i.e., the values are separated by a comma, and the list is enclosed in
apostrophes ("). For value1, value2, etc., numbers and strings are
allowed.
If all entries of Values are numbers, then the result reports contain
the actual values of this entry. Otherwise, the result reports contain
the index of this value, i.e., 1 corresponds tovalue1, 2 corresponds to
value2, etc.

Type Optional keyword that speci�es that this parameter is discrete. By
default, if the entry Values is speci�ed, a parameter is considered to be
discrete, and theParameter section must have the above format.
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To obtain linear or logarithmic spacing between a minimum and maximum
value, the Parameter section can be speci�ed as

// Settings for a discrete parameter, linearly or logarithmically spaced
Parameter{

Name = String;
Ini = Integer;
Type = SET;
Min = Double;
Max = Double;
Step = Integer;

}

Name As for the continuous parameter above.

Ini 1-based index of the initial value. For example, ifStep is set to +2 or
to −2, then Ini can be set to any integer between 1 and 3.

Type This variable must be equal to SET.

Min Minimum value of the spacing.

Max Maximum value of the spacing.

Step Number of intervals. If Step < 0, then the spacing is logarithmic,
otherwise it is linear. Set Step = 0 to keep the parameter always �xed
on its minimum value.

The linear or logarithmic spacing is computed using (7.1) on page62.

c) Specification of Input Function Objects

The speci�cation of input function objects in optional. If a ny input func-
tion object is speci�ed, then its name must appear either in another input
function object, in a simulation input template �le, or in an output function
object. Otherwise, GenOpt terminates with an error message. See Section11.3
on page90 for an explanation of input and output function objects.

The syntax for input function objects is

// Input function objects entry
Function{

Name = String;
Function = String;

}

The entries are

Name A unique name that is not used for any other input function object
and for any other independent parameter.

Function A function object (see Section11.3on page90). The string must
be enclosed by apostrophes (").

Copyright (c) 1998-2009
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy. All rights reserved.

86



GenOpt
Generic Optimization Program
Version 3.0.0

Lawrence Berkeley National Laboratory
Building Technologies Department

Simulation Research Group

d) Structure of the Command File

Using above structures of theParameter section, the command �le has the
structure

// Settings of the independent parameters
Vary{

// Parameter entry
List any of the Parameter sections as described
in the Sections 11.1.3.a) and 11.1.3.b).

// Input function object
List any of the Function sections as described
in the Section 11.1.3.c).

}

// General settings for the optimization process
OptimizationSettings{

MaxIte = Integer;
WriteStepNumber = Boolean;

[ MaxEqualResults = Integer; ]
[ UnitsOfExecution = Integer; ]
}

// Specification of the optimization algorithm
Algorithm{

Main = String;
... // any other entries that are required

// by the optimization algorithm
}

The di�erent sections are:

Vary This section contains the de�nition of the independent parameter and
the input function objects. See Sections11.1.3.a), 11.1.3.b), and 11.1.3.c)
for possible entries.

OptimizationSettings This section speci�es general settings of the opti-
mization. MaxIte is the maximum number of iterations. After MaxIte
main iterations, GenOpt terminates with an error message.
WriteStepNumber speci�es whether the current step of the optimization
has to be written to the simulation input �le or to a function o bject.
The step number can be used to calculate a penalty or barrier function
(see Section8.2 on page66).
The optional parameter MaxEqualResults speci�es how many times the
cost function value can be equal to a value that has previously been
obtained before GenOpt terminates. This setting is used to terminate
GenOpt if the cost function value is constant for several iterates (see
Section 11.4). The default value of MaxEqualResults is 5.
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The optional parameter UnitsOfExecution speci�es the maximum num-
ber of simulations that may run in parallel. If this paramete r is not
speci�ed or set to zero, then its value is set to the number of processors
of the computer that runs GenOpt. In general, this parameter need not
be speci�ed.

Algorithm The setting of Main speci�es which algorithm is invoked for doing
the optimization. Its value has to be equal to the class name that con-
tains the algorithm. Note that additional parameters might be required
depending on the algorithm used (see Section5 for the implemented
algorithms).

11.1.4 Log File

GenOpt writes a log �le to the directory that contains the ini tialization
�le. The name of the log �le is GenOpt.log.

The GenOpt log �le contains general information about the optimization
process. It also contains warnings and errors that occur during the optimiza-
tion.

11.1.5 Output Files

In addition to GenOpt.log, GenOpt writes two output �les to the directory
where the optimization command �le is located. (The location of the optimiza-
tion command �le is de�ned by the variable Optimization.Files.Command.Path1
in the optimization initialization �le.)

The iterations are written to the output �les OutputListingMain.txt and
OutputListingAll.txt. The �le OutputListingMain.txt contains only the
main iteration steps, whereasOutputListingAll.txt contains all iteration
steps.

Each time the method genopt.algorithm.Optimizer.report() is called
from the optimization algorithm, the current trial is repor ted in either one of
the �les.

11.2 Resolving Directory Names for Parallel
Computing

To allow doing simulations using parallel computing, GenOpt will create a
temporary directory for each simulation. This avoids di�er ent simulations writ-
ing to the same output or log �les simultaneously. The simulations will be done
in subdirectories of the directory that contains the optimization initialization
�le.

To explain which directories are created by GenOpt, supposethat GenOpt's
optimization initialization �le is stored in the directory /data/optMacOSX.ini.
(For Windows, simply replace /data with C:\data and replace all forward-
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slashes with backslashes.) Suppose that GenOpt's initialization �le states
that the simulation input �le is /data/input/in.txt, the simulation log �le
is /data/log.txt, and the simulation output �le is /data/output/out.txt.
Thus, in this example, the simulation will read its input fro m input/in.txt,
it will write its log messages to log.txt, and it will write its output to
output/out.txt, where the directoriesinput and output are subdirectories
of the directory in which the simulation was started. Then, for the �rst simu-
lation, GenOpt will proceed as follows:

1. It will create the simulation input �le /data/tmp-genopt-run-1/input/in.txt
(including the temporary directory tmp-genopt-run-1/input).

2. It will change the working directory for the simulation to the directory
/data/tmp-genopt-run-1. Hence, if the simulation program writes to
the current directory, then it will write to /data/tmp-genopt-run-1.

3. GenOpt will read /data/tmp-genopt-run-1/log.txt to retrieve the
simulation log messages.

4. If no error has been found in the log �le, then GenOpt will read the
simulation output �le /data/tmp-genopt-run-1/output/out.txt.

5. GenOpt will delete the directory /data/tmp-genopt-run-1 and all its
subdirectories.

For the second simulation, the same steps will be repeated, but the temporary
directory will be /data/tmp-genopt-run-2.

To resolve the directory names, GenOpt uses the following rules. The rules
are applied to the directories of the simulation input �les, simulation log �les
and simulation output �les. They are also applied to the value of the keyword
Command in the section SimulationStart of the optimization con�guration �le.

1. A period (\.") is replaced by the path name of the optimizat ion initial-
ization �le.

2. If the keywords Path1, Path2 etc. are not speci�ed in the optimization
initialization �le, then they will be set to the directory of the optimization
initialization �le.

3. For the simulation input, the simulation log and the simul ation output
�les, the string tmp-genopt-run-#, where# is the number of the simula-
tion, will be inserted between the name of the optimization initialization
�le and the subdirectory name of the simulation input, log or output �le.

4. When resolving the �le names, a path separator (\\" on Windows or \/"
on Mac OS X and Linux) will be appended if needed.

These rules work for situations in which the simulation program uses the
current directory, or subdirectories of the current directory, to read input and
write output, provided that the optimization con�guration �le is also in the
directory that contains the simulation input �les.
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For the declaration of the Command line in the GenOpt con�guration �le, we
recommend using the full directory name. For example, we recommend using

Command = "./simulate.sh [linebreak added]
%Simulation.Files.Log.Path1%/%Simulation.Files.Log.File1%";

instead of

Command = "./simulate.sh ./%Simulation.Files.Log.File1%";

The �rst version ensures that the argument that is passed to simulate.sh
is the simulation log �le in the working directory that is use d by the current
simulation. However, in the second version, because of rule(1) the simulation
log �le will be in the directory of GenOpt's con�guration �le , and thus di�erent
simulations may write to the same simulation log �le simulta neously, causing
unpredictable behavior.

11.3 Pre-Processing and Post-Processing

Some simulation programs do not have the capability to pre-process the
independent variables, or to post-process values computedduring the simula-
tion. For such situations, GenOpt's input function objects and output function
objects can be used.

a) Function Objects

Function objects are formulas whose arguments can be the independent
variables, the keyword stepNumber, and for post-processing, the result of the
simulation.

Following functions are implemented:

Function Returns
add(x0, x1) x0 + x1

add(x0, x1, x2) x0 + x1 + x2

subtract(x0, x1) x0 − x1

multiply(x0, x1) x0 x1

multiply(x0, x1, x2) x0 x1 x2

divide(x0, x1) x0/x1

log10(x0) log10(x0)

Furthermore, all functions that are de�ned in the class java.lang.StrictMath
and whose arguments and return type are of typedouble can be accessed by
typing their name (without the package and class name).

In addition, users can implement any other static method with arguments
and return type double by adding the method to genopt/algorithm/util/math/Fun.java.
The method must have the syntax
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public static double methodName(double x0, double x1) {
double r;
// do any computations
return r;

}

The number of arguments is arbitrary.
Compile the �le after adding new methods. No other changes are required.

To compile the �le, a Java compiler must be installed (such asthe one from
Sun Microsystems). To compile it, open a console (or DOS window), change
to the directory genopt/algorithm/util/math and type

javac Fun.java

This will generate the �le Fun.class. If the compilation fails, then the variable
CLASSPATH is probably not set as described in Chapter10.

Next, we present an example for pre-processing and afterwards an example
for post-processing.

b) Pre-Processing

Example 11.3.1 Suppose we want to �nd the optimal window width and
height. Let w and h denote the window width and height, respectively. Suppose
we want the window height to be 1/2 times the window width, and the window
width must be between 1 and 2 meters. Then, we could specify inthe command
�le the section

Parameter{
Name = w;
Ini = 1.5; Step = 0.05;
Min = 1; Max = 2;
Type = CONTINUOUS;

}
Function{

Name = h; Function = "multiply( %w%, 0.5 )";
}

Then, in the simulation input template �les, GenOpt will rep lace all occur-
rences of%w% by the window width and all occurences of%h% by 1/2 times the
numerical value of %w%.

GenOpt does not report values that are computed by input functions. To
report such values, a user needs to specify them in the section ObjectiveFunctionLocation,
as shown in Example11.3.2below.

c) Post-Processing

Example 11.3.2 Suppose we want to minimize the sum of annual heating
and cooling energy consumption, which we will calltotal energy. Some simu-
lation programs cannot add di�erent output variables. For e xample, Energy-
Plus [CLW +01] writes the heating and cooling energy consumption separately
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to the output �le. In order to optimize the total energy, the s imulation output
must be post-processed.

To post-process the simulation results in GenOpt, we can proceed as fol-
lows:
Suppose the cost function delimiter (see Section11.1.1) for the heating and
cooling energy are, respectively,Eheat= and Ecool=. In addition, suppose we
want to report the value of the variable h that has been computed by the input
function object in Example 11.3.1.

Then, in the optimization initialization �le (see Section 11.1.1) we can
specify the section

ObjectiveFunctionLocation{
Name1 = E_tot; Function1 = "add( %E_heat%, %E_cool% )";
Name2 = E_heat; Delimiter2 = "Eheat=";
Name3 = E_cool; Delimiter3 = "Ecool=";
Name4 = height; Function4 = %h%;

}

This speci�cation causes GenOpt to (i) substitute the value of h in Function4,
(ii) read from the simulation output �le(s) the numbers that occur after the
strings Eheat= and Ecool=, (iii) substitute these numbers into the function
add( %E heat%, %E cool% ), (iv) evaluate the functions Function1 and Function4,
and (v) minimize the sum of heating and cooling energy.

As arguments of the function de�ned above, we can use any nameof an in-
dependent variable, of an input function object, or the keyword %stepNumber%.

11.4 Truncation of Digits of the Cost Function
Value

For x′ ∈ Rn and f : Rn → R, assume there exists a scalarδ > 0 such that
f (x′) = f (x′′) for all x′′ ∈ B(x′, δ), whereB(x′, δ) , {x′′ ∈ Rn | ‖x′−x′′‖ < δ}.
Obviously, in B(x′, δ), an optimization algorithm can fail because iterates in
B(x′, δ) contain no information about descent directions outside of B(x′, δ).
Furthermore, in absence of convexity off (·), the optimality of x′ cannot be
ascertain in general.

Such situations can be generated if the simulation program writes the cost
function value to the output �le with only a few digits. Fig. 11.1 illustrates
that truncating digits can cause problems particularly in domains off (·) where
the slope off (·) is 
at. In Fig. 11.1, we show the function

f (x) , 0.1x− 0.1x2 + 0 .04x4. (11.1)

The upper line is the exact value off (·), and the lower line is the rounded
value of f (·) such that it has only two digits beyond the decimal point. If the
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−0.2

−0.1

0.0

0.1

Figure 11.1 : Function (11.1) with machine precision and with truncated digits.
The upper line shows the cost function value with machine precision, and the
lower line shows the cost function value with only two digits beyond the decimal
point.

optimization algorithm makes changes inx in the size of 0.2, then it may fail
for 0.25 < x < 1, which is far from the minimum. In this interval, no useful
information about the descent off (·) can be obtained. Thus, the cost function
must be written to the output �le without truncating digits.

To detect such cases, the optimization algorithm can cause GenOpt to check
whether a cost function values is equal to a previous cost function value. If
the same cost function value is obtained more than a user-speci�ed number of
times, then GenOpt terminates with an error message. The maximum number
of equal cost function values is speci�ed by the parameterMaxEqualResults
in the command �le (see page84).

GenOpt writes an information to the user interface and to the log �le if a
cost function value is equal to a previous function value.
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12 Conclusion
In system optimization it is not possible to apply a general optimization

algorithm that works e�ciently on all problems. What algori thm should be
used depends on the properties of the cost function, such as the number of
independent parameters, the continuity of the cost function and its derivatives,
and the existence of local minima. Thus a variety of optimization algorithms
is needed. To address this need, GenOpt has a library with di�erent optimiza-
tion algorithms and an optimization algorithm interface th at users can use to
implement their own optimization algorithm if desired.

The fact that analytical properties of the cost function are unavailable for
the class of optimization problems that GenOpt has been developed for makes it
possible to separate optimization and function evaluation. Therefore, GenOpt
has a simulation program interface that allows coupling anyprogram that ex-
changes input and output using text �les. Hence, users are not restricted to
using a special program for evaluating the cost function. Rather, they can
use the simulation program they are already using for their system design and
development. Thus, the system can be optimized with little additional e�ort.

This open environment not only allows coupling any simulation program
and implementing special purpose algorithms, but it also allows sharing algo-
rithms among users. This makes it possible to extend the algorithm library
and thus extend GenOpt's applicability.
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14 Legal
14.1 Copyright Notice

GenOpt Copyright (c) 1998-2009, The Regents of the University of Cali-
fornia, through Lawrence Berkeley National Laboratory (subject to receipt of
any required approvals from the U.S. Dept. of Energy). All rights reserved.

If you have questions about your rights to use or distribute this software,
please contact Berkeley Lab's Technology Transfer Department at TTD@lbl.gov.

NOTICE. This software was developed under partial funding from the
U.S. Department of Energy. As such, the U.S. Government has been granted
for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable,
worldwide license in the Software to reproduce, prepare derivative works, and
perform publicly and display publicly. Beginning �ve (5) ye ars after the date
permission to assert copyright is obtained from the U.S. Department of Energy,
and subject to any subsequent �ve (5) year renewals, the U.S.Government
is granted for itself and others acting on its behalf a paid-up, nonexclusive,
irrevocable, worldwide license in the Software to reproduce, prepare derivative
works, distribute copies to the public, perform publicly and display publicly,
and to permit others to do so.

14.2 License agreement

GenOpt Copyright (c) 1998-2009, The Regents of the University of Cali-
fornia, through Lawrence Berkeley National Laboratory (subject to receipt of
any required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without modi-
�cation, are permitted provided that the following conditi ons are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright no-
tice, this list of conditions and the following disclaimer in the documen-
tation and/or other materials provided with the distributi on.

3. Neither the name of the University of California, Lawrence Berkeley Na-
tional Laboratory, U.S. Dept. of Energy nor the names of its contributors
may be used to endorse or promote products derived from this software
without speci�c prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
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PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug �xes, patches, or
upgrades to the features, functionality or performance of the source code ("En-
hancements") to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory,
without imposing a separate written license agreement for such Enhancements,
then you hereby grant the following license: a non-exclusive, royalty-free per-
petual license to install, use, modify, prepare derivativeworks, incorporate
into other computer software, distribute, and sublicense such enhancements or
derivative works thereof, in binary and source code form.
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A Benchmark Tests
This section lists the settings used in the benchmark tests on page52.

The settings in OptimizationsSettings and Algorithm are the same for
all runs expect for Accuracy, which is listed in the result chart on page53.

The common settings were:

OptimizationSettings{
MaxIte = 1500;
WriteStepNumber = false;

}

Algorithm{
Main = NelderMeadONeill;
Accuracy = see page53;
StepSizeFactor = 0.001;
BlockRestartCheck = 5;
ModifyStoppingCriterion = see page53;

}

The benchmark functions and the Parameter settings in the Vary section are
shown below.

A.1 Rosenbrock

The Rosenbrock function that is shown in Fig A.1 is de�ned as

f (x) , 100
(
x2 − (x1)2)2

+ (1 − x1)2, (A.1)

wherex ∈ R2. The minimum is at x∗ = (1 , 1), with f (x∗) = 0.

The section Vary of the optimization command �le was set to

Vary{
Parameter{

Name = x1; Min = SMALL;
Ini = -1.2; Max = BIG;
Step = 1;
}

Parameter{
Name = x2; Min = SMALL;
Ini = 1; Max = BIG;
Step = 1;
}

}
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Figure A.1 : Rosenbrock function.

A.2 Function 2D1

This function has only one minimum point. The function is de� ned as

f (x) ,
3∑

i =1

f i (x), (A.2)

with

f1(x) , 〈b, x〉 +
1
2
〈x, Qx〉, b ,

(
1
2

)
, Q ,

(
10 6
6 8

)
, (A.3)

f2(x) , 100 arctan
(
(2 − x1)2 + (2 − x2)2)

, (A.4)

f3(x) , 50 arctan
(
(0.5 + x1)2 + (0 .5 + x2)2)

, (A.5)

where x ∈ R2. The function has a minimum at x∗ = (1 .855340, 1.868832),
with f (x∗) = −12.681271. It has two regions where the gradient is very small
(see Fig. A.2).
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Figure A.2 : Contour plot of @df(x )
@x1 = 0 and @df(x )

@x2 = 0 , where f (x) is as in
(A.2).

The section Vary of the optimization command �le is

Vary{
Parameter{

Name = x0; Min = SMALL;
Ini = -3; Max = BIG;
Step = 0.1;

}
Parameter{

Name = x1; Min = SMALL;
Ini = -3; Max = BIG;
Step = 0.1;

}
}

A.3 Function Quad

The function \Quad" is de�ned as

f (x) , 〈b, x〉 +
1
2
〈x, M x〉, (A.6)

where b, x ∈ R10, M ∈ R10×10, and

b , (10, 10, . . . , 10)T . (A.7)

This function is used in the benchmark test with two di�erent positive de�nite
matricesM . In one test case,M is the identity matrix I and in the other test
caseM is a matrix, called Q, with a large range of eigenvalues. The matrixQ
has elements
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579.7818 −227.6855 49.2126 −60.3045 −152.4101 −207.2424 8.0917 33.6562 204.1312 −3.7129

−227.6855 236.2505 −16.7689 −40.3592 179.8471 80.0880 −64.8326 15.2262 −92.2572 40.7367

49.2126 −16.7689 84.1037 −71.0547 20.4327 5.1911 −58.7067 −36.1088 −62.7296 7.3676

−60.3045 −40.3592 −71.0547 170.3128 −140.0148 8.9436 26.7365 125.8567 62.3607 −21.9523

−152.4101 179.8471 20.4327 −140.0148 301.2494 45.5550 −31.3547 −95.8025 −164.7464 40.1319

−207.2424 80.0880 5.1911 8.9436 45.5550 178.5194 22.9953 −39.6349 −88.1826 −29.1089

8.0917 −64.8326 −58.7067 26.7365 −31.3547 22.9953 124.4208 −43.5141 75.5865 −32.2344

33.6562 15.2262 −36.1088 125.8567 −95.8025 −39.6349 −43.5141 261.7592 86.8136 22.9873

204.1312 −92.2572 −62.7296 62.3607 −164.7464 −88.1826 75.5865 86.8136 265.3525 −1.6500

−3.7129 40.7367 7.3676 −21.9523 40.1319 −29.1089 −32.2344 22.9873 −1.6500 49.2499

The eigenvalues ofQ are in the range of 1 to 1000.

The functions have minimum points x∗ at

Matrix M: I Q
x∗0

−10 −2235.1810
x∗1

−10 −1102.4510
x∗2

−10 790.6100
x∗3

−10 −605.2480
x∗4

−10 −28.8760
x∗5

−10 228.7640
x∗6

−10 −271.8830
x∗7

−10 −3312.3890
x∗8

−10 −2846.7870
x∗9

−10 −718.1490
f (x∗) −500 0

Both test functions have been optimized with the same parameter settings.
The settings for the parametersx0 to x9 are all the same, and given by

Vary{
Parameter{

Name = x0; Min = SMALL;
Ini = 0; Max = BIG;
Step = 1;

}
}
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