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1 Abstract

GenOpt is an optimization program for the minimization of a cost function
that is evaluated by an external simulation program. It has been developed for
optimization problems where the cost function is computationally expensive
and its derivatives are not available or may not even exist. @nOpt can be
coupled to any simulation program that reads its input from text les and
writes its output to text les. The independent variables can be continuous
variables (possibly with lower and upper bounds), discretevariables, or both,
continuous and discrete variables. Constraints on depends variables can be
implemented using penalty or barrier functions.

GenOpt has a library with local and global multi-dimensional and one-
dimensional optimization algorithms, and algorithms for doing parametric runs.
An algorithm interface allows adding new minimization algorithms without
knowing the details of the program structure.

GenOpt is written in Java so that it is platform independent. The platform
independence and the general interface make GenOpt applibée to a wide range
of optimization problems.

GenOpt has not been designed for linear programming problesy quadratic
programming problems, and problems where the gradient of tb cost function
is available. For such problems, as well as for other probles) special tailored
software exists that is more e cient.
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2 Notation

1. We use the notationa, bto denote that a is equal to b by de nition.
We use the notationa  bto denote that a is assigned the value ob.

2. R" denotes the Euclidean space oh-tuplets of real numbers. Vectors
x 2 R" are always column vectors, and their elements are denoted by
superscripts. The inneerroduct in R" is denoted byh; i and for x;y 2
R" dened by hx;yi , = [_; x'y'. The norm in R" is denoted byk k
and for x 2 R" de ned by kxk, hx;xi'™.

3. We denote byZ the set of integers, byQ the set of rational numbers, and
by N, fO0;1;:::g the set of natural numbers. The setN. is de ned as
N. , f1;2;:::9. Similarly, vectors in R" with strictly positive elements
are denoted byR? , fx2 R"jx' > 0;i2f1;:::;nggand the setQ.
isdenedasQ. , fg2 Qjqgq> 0Og.

4. Let W be a set containing a sequencéw; g, . Then, we denote byw,
the sequencef wi g, and by W, the set of all k + 1 element sequences
in W.

5. If A and B are sets, we denote byA [ B the union of A and B and by
A\ B the intersection of A and B.

6. If Sis a set, we denote byS the closure of S and by 25 the set of all
nonempty subsets ofS.

7.6 D 2 Q" 9 is a matrix, we will use the notation ®2 B to denote
the fact that @2 Q" is a column vector of the matrix B, Similarly, by
D 1 we meanthatD 2 Q" P (3 p Q) isa matrix containing only

columns of ®. Further, card(D) denotes the number of columns oD.

8. f () denotes a function where () stands for the undesignated variables.
f (x) denotes the value off () at the point x. f: A! B indicates that
the domain of f () is in the spaceA and its range in the spaceB.

9. We say that a function f : R" ! R is once continuously di erentiable
if f ()is denedon R", and if f () has continuous derivatives onR".

10. Forx 2 R" andf:R"! R continuously di erentiable, we say that x
is stationary if r f (x ) =0.

11. We denote byfe g, the unit vectorsin R".

12. We denote by U(0;1) that 2 R is a uniformly distributed random

number, with O 1.
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3 Introduction

The use of system simulation for analyzing complex engine@rg problems is
increasing. Such problems typically involve many independnt variables', and
can only be optimized by means of numerical optimization. Many designers use
parametric studies to achieve better performance of such sgems, even though
such studies typically yield only partial improvement whil e requiring high la-
bor time. In such parametric studies, one usually xes all bu one variable and
tries to optimize a cost function? with respect to the non- xed variable. The
procedure is repeated iteratively by varying another varieble. However, every
time a variable is varied, all other variables typically become non-optimal and
hence need also to be adjusted. It is clear that such a manualrpcedure is very
time-consuming and often impractical for more than two or three independent
variables.

GenOpt, a generic optimization program, has been developetb nd with
less labor time the independent variables that yield betterperformance of such
systems. GenOpt does optimization of a user-supplied costuhction, using a
user-selected optimization algorithm.

In the most general form, the optimization problems addressed by GenOpt
can be stated as follows: LetX be a user-specied constraint set, and let
f: X ! R be a user-de ned cost function that is bounded from below. Tte
constraint set X consists of all possible design options, and the cost funan
f () measures the system performance. GenOpt tries to nd a soltion to the
problem?®

){T;I)I’(] f(x): (3.1)

This problem is usually \solved" by iterative methods, which construct in -
nite sequences, of progressively better approximations ta \solution", i.e., a
point that satis es an optimality condition. If X R", with some n 2 N,
and X or f () is not convex, we do not have a test for global optimality, ard
the most one can obtain is a point that satis es a local optimdity condition.
Furthermore, for X R", tests for optimality are based on di erentiability
assumptions of the cost function. Consequently, optimizaion algorithms can
fail, possibly far from a solution, if f () is not di erentiable in the continuous
independent variables. Some optimization algorithms are rore likely to fail at

1The independent variables are the variables that are varied by the optimization
algorithm from one iteration to the next. They are also calle d design parameters or
free parameters.

2The cost function is the function being optimized. The cost f unction measures
a quantity that should be minimized, such as a building's ann ual operation cost, a
system's energy consumption, or a norm between simulated ard measured values in
a data tting process. The cost function is also called objec tive function.

8If f () is discontinuous, it may only have an in mum (i.e., a greate st lower bound)
but no minimum even if the constraint set X is compact. Thus, to be correct, (3.1)
should be replaced by infx2x f (x). For simplicity, we will not make this distinction.
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discontinuities than others. GenOpt has algorithms that are not very sensi-
tive to (small) discontinuities in the cost function, such as Generalized Pattern
Search algorithms, which can also be used in conjunction wit heuristic global
optimization algorithms.

Since one of GenOpt's main application elds is building enegy use or
operation cost optimization, GenOpt has been designed sucthat it addresses
the special properties of optimization problems in this ar@. In particular,
GenOpt is designed for optimization problems with the folloving properties:

1. The cost function may have to be de ned on approximate numeical solu-
tions of di erential algebraic equations, which may fail to be continuous
(see Sectiord.1.4).

2. The number of independent variables is smalf.

3. Evaluating the cost function requires much more computaton time than
determining the values for the next iterate.

4. Analytical properties of the cost function (such as formua for the gradi-
ent) are not available.

GenOpt has the following properties:

1. GenOpt can be coupled to any simulation program that calculates the
cost function without having to modify or recompile either program,
provided that the simulation program reads its input from te xt les and
writes its output to text les.

2. The user can select an optimization algorithm from an algoithm library,
or implement a custom algorithm without having to recompile and un-
derstand the whole optimization environment.

3. GenOpt does not require an expression for the gradient oftte cost func-
tion.

With GenOpt, it is easy to couple a new simulation program, specify the
optimization variables and minimize the cost function. Therefore, in designing
complex systems, as well as in system analysis, a generic apization program
like GenOpt o ers valuable assistance. Note, however, thatoptimization is not
easy: The e ciency and success of an optimization is strongt a ected by the
properties and the formulation of the cost function, and by the selection of an
appropriate optimization algorithm.

This manual is structured as follows: In Section4, we classify optimiza-
tion problems and discuss which of GenOpt's algorithms can b used for each
of these problems. Next, we explain the algorithms that are implemented in
GenOpt: In Section 5, we discuss the algorithms for multi-dimensional opti-
mization; in Section 6 the algorithms for one-dimensional optimization; and

4By small, we mean on the order of 10, but the maximum number of i ndependent
variables is not restricted in GenOpt.
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in Section 7 the algorithms for parametric runs. In Section 8, we discuss how
constraints on independent variables are implemented, andhow constraints on
dependent variables can be implemented. In Sectio®, we explain the struc-
ture of the GenOpt software, the interface for the simulation program and the

interface for the optimization algorithms. How to install a nd start GenOpt is

described in Section10. Section 11 shows how to set up the con guration and
input les, and how to use GenOpt's pre- and post-processingcapabilities.
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4 Optimization Problems

4.1 Classi cation of Optimization Problems

We will now classify some optimization problems that can be slved with
GenOpt's optimization algorithms. The classi cation will be used in Sectiord.2
to recommend suitable optimization algorithms.

We distinguish between problems whose design parametersacontinuous
variables!, discrete variableg, or both. In addition, we distinguish between
problems with and without inequality constraints on the dependent variables.
4.1.1 Problems with Continuous Variables

To denote box-constraints on independent continuous variales, we will use
the notation

X, x2R"jI' x di2f1:ng; (4.1)
where 1 '<ul 1 fori2fl;:::;ng.
We will consider optimization problems of the form
Pc )l(”ry)r?f (x); 4.2)

wheref : R" ! R is a once continuously di erentiable cost function.
Now, we add inequality constraints on the dependent variabés to (4.2) and
obtain

Peg min  (x); (4.3a)
a(x) ©; (4.3b)

where everything is as in @.2) and, in addition, g: R" ! R™ is a once con-
tinuously di erentiable constraint function (for some m 2 N). We will assume
that there exists an x 2 X that satises g(x ) < 0.

4.1.2 Problems with Discrete Variables

Next, we will discuss the situation where all design parametrs can only
take on user-speci ed discrete values.

Let X4 Z"¢ denote the constraint set with a nite, non-zero number of
integers for each variable.

LContinuous variables can take on any value on the real line, possibly between
lower and upper bounds.
2Discrete variables can take on only integer values.

Copyright (c) 1998-2008 10
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We will consider integer programming problems of the form

Pq min f (x): (4.4)

X2 X4

4.1.3 Problems with Continuous and Discrete Variables

Next, we will allow for continuous and discrete independentvariables.

We will use the notation

X , X¢ Xg; (4.5a)
Xe ,  x2R"™jI' x' ui2f1L::ng ; (4.5b)
where the bounds on the continuous independent variables siafy 1 I' <

u' 1 fori2f1;:::;ncg, and the constraint set X4 Z"¢ for the discrete
variables is a user-speci ed set with a nite, non-zero numker of integers for
each variable.

We will consider mixed-integer programming problems of theform
P cq erglg f(x); (4.6a)
(4.6b)

wherex , (X¢;Xqg) 2 R"e  ZM" f:R" Z" | RandX is asin (4.5).
Now, we add inequality constraints on the dependent variabés to (4.6) and
obtain

P cdg Xn’21i>r(1 f (x); (4.7a)
gx) O (4.7b)

where everything is as in @.6) and in addition g: R"e  R" 1 RM™ (for some
m 2 N). We will assume that there exists anx 2 X that satises g(x ) < 0.

4.1.4 Problems whose Cost Function is Evaluated by a
Building Simulation Program

Next, we will discuss problemP . de ned in (4.2) for the situation where
the cost function f : R" I R cannot be evaluated, but can be approximated
numerically by approximating cost functions f : R? R" ! R, where the rst
argument is the precision parameter of the numerical solves. This is typically
the case when the cost is computed by a thermal building simultion program,
such as EnergyPlus CLW* 01], TRNSYS [KDB76], or DOE-2 [WBB* 93]. In
such programs, computing the cost involves solving a systenof partial and
ordinary di erential equations that are coupled to algebraic equations. In gen-
eral, one cannot obtain an exact solution, but one can obtainan approximate
numerical solution. Hence, the cost functionf (x) can only be approximated by
an approximating cost function f (;x), where 2 R} is a vector that contains
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precision parameters of the numerical solvers. Consequdwt the optimization
algorithm can only be applied tof (;x) and not to f (x).

In such thermal building simulation programs it is common that the ter-
mination criteria of the solvers that are used to solve the patial di erential
equations, ordinary di erential equations, and algebraic equations depend on
the independent variablex. Therefore, a perturbation of x can cause a change in
the sequence of solver iterations, which causes the approrating cost functions
f (;x) to be discontinuous in x. Furthermore, if variable step size integration
methods are used, then the integration mesh can change fromne simulation
to the next. Therefore, part of the change in function valuesbetween di er-
ent points is caused by a change of the number of solver itera&ns, and by a
change of the integration mesh. Consequentlyf (; ) is discontinuous, and a
descent direction forf (; ) may not be a descent direction forf (). Therefore,
optimization algorithms can terminate at points that are no n-optimal.

The best one can do in trying to solve optimization problems viere the cost
and constraint functions are evaluated by a thermal building simulation pro-
gram that does not allow controlling the approximation error is to nd points
that are close to a local minimizer off (). Numerical experiments show that
by using tight enough precision and starting the optimization algorithm with
coarse initial values, one often comes close to a minimizerf 6 ( ). Furthermore,
by selecting di erent initial iterates for the optimizatio n, or by using di erent
optimization algorithms, one can increase the chance of nihg a point that is
close to a minimizer off (). However, even if the optimization terminates at
a point that is non-optimal for f (), one may have obtained a better system
performance compared to not doing any optimization.

See WPO03, WWO03] for a further discussion of optimization problems in
which the cost function value is computed by a building simuktion program.

4.2 Algorithm Selection

In this section, we will discuss which of GenOpt's algorithms can be se-
lected for the optimization problems that we introduced in Section 4.1.

4.2.1 Problem P.with n> 1

To solve P, with n > 1, the hybrid algorithm (Section 5.5, page41) or the
GPS implementation of the Hooke-Jeeves algorithm (Sectiorb.2.2 page 23)
can be used, possibly with multiple starting points (Sectian 5.2.3 page?25). If
f () is once continuously di erentiable and has bounded level sts (or if the
constraint set X de ned in (4.1) is compact) then these algorithms construct
for problem (4.2) a sequence of iterates with stationary accumulation poins
(see Theorem5.1.13.

Alternatively, the Discrete Armijo Gradient algorithm (Se ction 5.3, page27)
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can be used. Every accumulation point of the Discrete ArmijoGradient algo-
rithm is a feasible stationary point.

If f () is not continuously di erentiable, or if f () must be approximated by
an approximating cost function f (; ) where the approximation error cannot
be controlled, as described in Sectiod.1.4 then P can only be solved heuris-
tically. We recommend using the hybrid algorithm (Section 5.5, page 41), the
GPS implementation of the Hooke-Jeeves algorithm (Sectiorb.2.2, page 23),
possibly with multiple starting points (Section 5.2.3 page 25), or a Particle
Swarm Optimization algorithm (Section 5.4, page 31).

We do not recommend using the Nelder-Mead Simplex algorithm(Sec-
tion 5.7, page 49) or the Discrete Armijo Gradient algorithm (Section 5.3

page27).

The following approach reduces the risk of failing at a pointwhich is non-
optimal and far from a minimizer of f ():

1. Selecting large values for the parametefStep in the optimization com-
mand le (see page89).

2. Selecting di erent initial iterates.

3. Using the hybrid algorithm of Section 5.5, the GPS implementation of
the Hooke-Jeeves algorithm, possibly with multiple starting points (Sec-
tion 5.2.3 page 25), and/or a Particle Swarm Optimization algorithm
and select the best of the solutions.

4. Doing a parametric study around the solution that has beenobtained
by any of the above optimization algorithms. The parametric study can
be done using the algorithmsParametric (Section 7.1, page66) and/or
EquMesHSection 7.2, page67). If the parametric study yields a further
reduction in cost, then the optimization failed at a non-optimal point.
In this situation, one may want to try another optimization a Igorithm.

If f () is continuously di erentiable but must be approximated by approxi-
mating cost functions f (; ) where the approximation error can be controlled
as described in Sectiort.1.4 then P can be solved using the hybrid algorithm
(Section 5.5, page 41) or the GPS implementation of the Hooke-Jeeves algo-
rithm (Section 5.2.2, page 23), both with the error control scheme described
in the Model GPS Algorithm 5.1.8 (page 18). The GPS implementation of
the Hooke-Jeeves algorithm can be used with multiple startng points (Sec-
tion 5.2.3 page 25). The error control scheme can be implemented using the
value of GenOpt's variable stepNumber(page 72) and GenOpt's pre-processing
capabilities (Section11.2 page92). A more detailed description of how to use
the error control scheme can be found inPwW03, WPO03].

4.2.2 Problem P with n> 1

To solve P ¢4, the hybrid algorithm (Section 5.5, page41) or the GPS imple-
mentation of the Hooke-Jeeves algorithm (Sectiorb.2.2, page23) can be used,
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possibly with multiple starting points (Section 5.2.3 page 25). Constraints
g() O can be implemented using barrier and penalty functions (Setion 8,
page69).

If () or g() are not continuously di erentiable, we recommend using the
hybrid algorithm (Section 5.5, page 41) or the GPS implementation of the
Hooke-Jeeves algorithm (Sectiorb.2.2, page 23), possibly with multiple start-
ing points (Section 5.2.3 page 25), and implement the constraints g() O
using barrier and penalty functions (Section8, page69). To reduce the risk of
terminating far from a minimum point of f (), we recommend the same mea-
sures as for solvingP.

4.2.3 Problem P.with n=1

To solve P. with n = 1, any of the interval division algorithms can be
used (Section6.1, page60). Since only a few function evaluations are required
for parametric studies in one dimension, the algorithmParametric can also be
used for this problem (Section7.1, page66). We recommend doing a parametric
study if f () is expected to have several local minima.

4.2.4 Problem P,gwith n=1

To solve P ¢4 with n =1, the same applies as folP ; with n = 1. Constraints
g() 0 can be implemented by setting the penalty weighting factor in (8.8)
to a large value. This may still cause small constraint violdions, but it is easy
to check whether the violation is acceptable.

4.2.5 Problem Py

To solve Pq4, a Particle Swarm Optimization algorithm can be used (Sec-
tion 5.4, page 31).
4.2.6 Problem P and Pcgq

To solve P4, or Pcqag, the hybrid algorithm (Section 5.5, page 41) or a
Particle Swarm Optimization algorithm can be used (Section5.4, page 31).

4.2.7 Functions with Several Local Minima

If the problem has several local minima, we recommend usinghe GPS
implementation of the Hooke-Jeeves algorithm with multiple starting points
(Section 5.2.3 page 25), the hybrid algorithm (Section 5.5, page 41), or a
Particle Swarm Optimization algorithm (Section 5.4, page 31).

Copyright (c) 1998-2008 14
The Regents of the University of California (through Lawrenc e Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Depar tment of Energy. All rights reserved.



GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.1.0 Simulation Research Group

5 Algorithms for
Multi-Dimensional
Optimization

5.1 Generalized Pattern Search Methods
(Analysis)

Generalized Pattern Search (GPS) algorithms are derivatie free optimiza-
tion algorithms for the minimization of problem P and Py, de ned in (4.2
and (4.3), respectively. We will present the GPS algorithms for the @ase where
the function f () cannot be evaluated exactly, but can be approximated by
functionsf :RY R"! R, where the rstargument 2 RY is the precision
parameter of PDE, ODE, and algebraic equation solvers. Obwusly, the ex-
planations are similar for problems wheref () can be evaluated exactly, except
that the scheme to control is not applicable, and that the approximate func-
tions f (; ) are replaced byf ().

Under the assumption that the cost function is continuously di erentiable,
all the accumulation points constructed by the GPS algorithms are stationary.

What GPS algorithms have in common is that they de ne the congruction
of a meshMy in R", which is then explored according to some rules that di er
among the various members of the family of GPS algorithms. Iiho decrease in
cost is obtained on mesh points around the current iterate, hen the distance
between the mesh points is reduced, and the process is repedt

We will now explain the framework of GPS algorithms that will be used to
implement di erent instances of GPS algorithms in GenOpt. The discussion
follows the more detailed description of PWO03].
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5.1.1 Assumptions

We will assume that f () and its approximating functions ff (; )g 2ra
have the following properties.

Assumption 5.1.1
1. There exists an error bound function' : RY I R, such that for any
bounded setS X, there exists an s 2 R} and a scalarKs 2 (0; 1)

such that for all x 2 S and for all 2 RY, with st
it Gx) f(x)j Ks'(): (5.1)
Furthermore,
lim ' =0: 2
Jim ©()=0 (5.2)
2. The function f : R" ! R is once continuously di erentiable. 0
Remark 5.1.2

1. The functions ff (; )g ,rs may be discontinuous.

2. See PWO03] for the situation where f () is only locally Lipschitz contin-
uous. O

Next, we state an assumption on the level sets of the family odpproximate
functions. To do so, we rst de ne the notion of a level set.

De nition 5.1.3 (Level Set) Given a function f : R"! Rand an 2 R,
such that > infyore f (X), we will say that the setL (f) R", de ned as

L (f), fx2R"jf(x) g; (5.3)
is a level setof f (), parametrized by . 0
Assumption 5.1.4 (Compactness of Level Sets) Let ff (; )gore be as

in Assumption 5.1.1 and let X R" be the constraint set. Letxp 2 X be
the initial iterate and ¢ 2 RY be the initial precision setting of the numerical
solvers. Then, we assume that there exists a compact s€&t R" such that

Lt (oo GNVX C; 8 o (5.4)
O
'For 2 RY, by s,we meanthat0< ' & foralli2f1;:::;qg.
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5.1.2 Characterization of GPS Algorithms

There exist di erent geometrical explanations for pattern search algorithms,
and a generalization is given in the review KLT03]. We will use a simple im-
plementation of the pattern search algorithms in [PWO03] where we restrict the
search directions to be the positive and negative coordinat directions. Thus,
the search directions are the columns of the matrix

D, [ e +e;:::; e +e]22z2" 2, (5.5)

which su ces for box-constrained problems. Furthermore, we construct the
sequence of mesh size parameters that parametrizes the mimum distance
between iterates such that it satis es the following assumpion.

Assumption 5.1.5 ( k-th Mesh Size Parameter) Letr;sg;k 2 N, with r >
1, and ftigh,,!  N. We will assume that the sequence of mesh size parameters
satis es

1
K » er, (563)
where fork > 0
K1
Sk, Sot ti: (5.6b)
i=0
O
With this construction, all iterates lie on a rational mesh of the form
Mg, fXo+ xDm jm2N>"g: (5.7)

We will now characterize the set-valued maps that determinethe mesh
points for the \global" and \local" searches. Note that the i mages of these
maps may depend on the entire history of the computation.

De nition 5.1.6 Let Xy R"™ and _ Q.+ be the sets of all sequences
containing k + 1 elements, letMy be the current mesh, and let 2 R? be the
solver tolerance.

1. We de ne the global search set mapto be any set-valued map
kX, 4y R$U2Mey X (5.8a)
whose image (X,;__; ) contains only a nite number of mesh points.

2. We will call G, «(Xyx;_y; ) the global search set

3. We de ne the directions for the local search as

D, [ e;+e;:::; ey +enl: (5.8b)
4. We will call
Lk, xk+ kDeji2f1:::;2ng \ X (5.8¢)
the local search set [
Copyright (c) 1998-2008 17
The Regents of the University of California (through Lawrenc e Berkeley National Laboratory),

subject to receipt of any required approvals from U.S. Depar tment of Energy. All rights reserved.



GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.1.0 Simulation Research Group
Remark 5.1.7

1. Themap «(; ; )canbe dynamicinthe sense thatiff xx, 0=y ,  «kXi:_x: ),

then the rule for selecting x,, 1 P I, can depend onf xy, g?zol and

ff (X )g?zol. It is only important that the global search terminates
after a nite number of computations, and that G, (M« \ X)[; .

2. As we shall see, the global search a ects only the e ciencyof the algo-
rithm but not its convergence properties. Any heuristic procedure that

leads to a nite number of function evaluations can be used fo «(; ;).

3. The empty set is included in the range of (; ; ) to allow omitting the
global search.

O
5.1.3 Model Adaptive Precision GPS Algorithm

We will now present our model GPS algorithm with adaptive precision cost

function evaluations.

Algorithm 5.1.8 (Model GPS Algorithm)

Data : Initial iterate Xq 2 X;
Mesh size dividerr 2 N, with r > 1;
Initial mesh size exponentsy 2 N.

Maps :  Global search set map : Xk _ RI 1T 2Me\ X [;
Function :R. ! RY (to assign ), such that the composition
' : R+ ! Ry is strictly monotone decreasing and satis es
“(() = ! 0O,as ! O.

Step 0: |Initialize k=0, o=1=r%,and = (1).

Step 1: Global Search
Construct the global search setG = «(Xy;_; )-
Iff (;x9 f (;xx)< 0foranyx®2Gy, go to Step 3;
else, go to Step 2.

Step 2: Local Search
Evaluate f (; ) for any x°2 L until some x°2 L
satisfyingf (;x9 f (;xk) < O is obtained, or until all points
in L, are evaluated.

Step 3: Parameter Update
If there exists anx®2 Gy [L  satisfying f (;x9 f (;xx) <0,

setXgs1 = X% Sk+1 = Sk, k+1 = k. and do not change
else, setXx+1 = Xk, Sk+1 = Sk + tk, with tx 2 N, arbitrary,
ker =1=rt = (k1= o).

Step 4: Replacek by k +1, and go to Step 1.

Remark 5.1.9
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1. To ensure that does not depend on the scaling of o, we normalized the
argument of (). In particular, we want to decouple from the user's
choice of the initial mesh parameter.

2. In Step 2, once a decrease of the cost function is obtainedyne can
proceed to Step 3. However, one is allowed to evaluate (; ) at more
points in Ly in an attempt to obtain a bigger reduction in cost. However,
one is allowed to proceed to Step 3 only after either a cost deease has
been found, or afterall points in L are tested.

3. In Step 3, we are not restricted to accepting thex®2 Gy [L  that gives
lowest cost value. But the mesh size parameter i is reducedonly if
there exists nox°2 G [L « satisfyingf (;x9 f (;xx)<O0.

4. To simplify the explanations, we do not increase the meshige parameter
if the cost has been reduced. However, our global search alis search-
ing on a coarser meshi¥ My, and hence, our algorithm can easily
be extended to include a rule for increasing y for a nite number of
iterations.

5. Audet and Dennis JAD03] update the mesh size parameter using the
formula k41 = ™ k,where 2 Q, > 1, andm is any element of
Z. Thus, our update rule for  is a special case of Audet's and Dennis'
construction since we set =1=r,withr 2 N,,r 2(sothat < 1)and
m 2 N. We prefer our construction because we do not think it negatvely
a ects the computing performance, but it leads to simpler convergence
proofs. 0

5.1.4 Convergence Results

We will now present the convergence results for our Model GP&lgorithm.
See PWO03] for a detailed discussion and convergence proofs.

a) Unconstrained Minimization

We will rst present the convergence properties of the ModelGPS Algo-
rithm 5.1.8 on unconstrained minimization problems, i.e., forX = R".

First, we will need the notion of a re ning subsequence which we de ne as
follows:

De nition 5.1.10 (Re ning Subsequence) Consider a sequencd Xk 0i_,
constructed by Model GPS Algorithm5.1.8. We will say that the subsequence
fXkOk2k is the re ning subsequenceif (41 < (foral k2 K,and ¢+ =

k forall k 2K. 0

We now state that pattern search algorithms with adaptive precision func-
tion evaluations construct sequences with stationary accmulation points.

Theorem 5.1.11 (Convergence to a Stationary Point) Suppose that As-
sumptions 5.1.1 and 5.1.4 are satis ed and that X = R". Let x 2 R" be an
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accumulation point of the re ning subsequenced xxgk2k , constructed by Model
GPS Algorithm 5.1.8. Then,

rf(x)=0: (5.9)

O

b) Box-Constrained Minimization

We now present the convergence results for the box-constraed prob-
lem (4.2). See ADO03, PWO03, KLT03] for the more general case of linearly-
constrained problems and for the convergence proofs.

First, we introduce the notion of a tangent cone and a normal one, which
are de ned as follows:

De nition 5.1.12 (Tangent and Normal Cone)
1. Let X R". Then, we de ne the tangent coneto X at a point x 2 X

> Tx(x), f (x x)j 0;x2 Xg: (5.10a)

2. Let Tx (x ) be as above. Then, we de ne thaormal coneto X atx 2 X
> Nx(x), fv2R"j8t2Tx(x );hv;ti Og: (5.10b)
O

We now state that the accumulation points generated by ModelGPS Al-
gorithm 5.1.8 are feasible stationary points of problem 4.2).

Theorem 5.1.13 (Convergence to a Feasible Stationary Point )
Suppose Assumptionss.1.1 and 5.1.4 are satised. Let x 2 X be an accu-
mulation point of a re ning subsequencef xxgk2k constructed by Model GPS
Algorithm 5.1.8 in solving problem (4.2). Then,

hrf(x);ti O 8t2 Tx(x); (5.11a)

and
r f(x)2Nx(x): (5.11b)

5.2 Generalized Pattern Search Methods
(Implementations)

We will now present di erent implementations of the Generalized Pattern
Search (GPS) algorithms. They all use the Model GPS Algorithm 5.1.8to solve
problem P de ned in (4.2). The problem P4 de ned in (4.3) can be solved
by using penalty functions as described in Sectior8.2
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We will discuss the implementations for the case where the foction f ()
cannot be evaluated exactly, but will be approximated by functions f : R}
R" I R, where the rst argument 2 RY is the precision parameter of the
PDE, ODE, and algebraic equation solvers. This includes thecase where is
not varied during the optimization, in which case the explanations are identical,
except that the scheme to control is not applicable, and that the approximate
functions f ('; ) are replaced byf ().

If the cost function f () is approximated by functions ff (; )g,gs with

adaptive precision , then the function : R, ! RY (to assign ) can be im-
plemented by using GenOpt's pre-processing capability (se Section11.2).

5.2.1 Coordinate Search Algorithm

We will now present the implementation of the Coordinate Seach algo-
rithm with adaptive precision function evaluations using the Model GPS Al-
gorithm 5.1.8 To simplify the implementation, we assignf (;x)= 1 for all
x 62X where X is de ned in (4.1).

a) Algorithm Parameters

The search direction matrix is de ned as

D, [+ste; ste;::i;+s"e,; s"e] (5.12)

GenOpt's parameter Step).

The parameterr 2 N, r > 1, which is used to compute the mesh size param-
eter , is de ned by the parameter MeshSizeDivider , the initial value for the
mesh size exponensy 2 N is de ned by the parameter InitialMeshSizeExponent
and the mesh size exponent incremerti is, for the iterations that do not reduce
the cost, de ned by the parameter MeshSizeExponentincrement.

b) Global Search

In the Coordinate Search Algorithm, there is no global searb. Thus, G = ;
for all k 2 N.
c) Local Search

The local search setG, is constructed using the set-valued mapEy : R"
Q. RY 1 2M« which is de ned as follows:
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Algorithm 5.2.1 (Map Ex:R" Q. R{! 2M« for \Coordinate Search")

Parameter : Search direction matrix D = [+ ste;; sley;:::; +s"e,; s'ey]
Vector 2 N".
Input : Iteration number k 2 N.

Base pointx 2 R".
Mesh divider ¢ 2 Q..

Output : Set of trial points T.
Step 0: Initialize T = ;.

If k=0, initialize, "=0forall i 2f1;:::;ng.
Step 1: Fori=1;:::;n

Sete=x+ ¢Dey; + iandT T [f kg
Iff (;e)<f (;x)
Setx = B.
else
If T=0,set =1, elseset ' =0.
Sete=x+ ¢Dey 1+ ,andT T [f kg
Iff (;e)<f (;x)
Setx = g.
else
If "=0,set =1, elseset ' =0.
end if.
end if.
end for.
Step 2: Return T.

Thus, Ex(X; «; )= T forall k2 N.

Remark 5.2.2 In Algorithm 5.2.1, the vector 2 N" contains for each coor-
dinate direction an integer 0 or 1 that indicates whether a sep in the positive
or in the negative coordinate direction yield a decrease in @st in the previous
iteration. This reduces the number of exploration steps. 0

d) Parameter Update

The point x°in Step 3 of the GPS Model Algorithm 5.1.8 corresponds to

0, argmin,, Ecx: «;)F (;x)inthe Coordinate Search algorithm.

X

e) Keywords
For the GPS implementation of the Coordinate Search Algorithm, the com-
mand le (see page88) must only contain continuous parameters.

To invoke the algorithm, the Algorithm section of the GenOpt command
le must have the following form;

Algorithm{

Main = GPSCoordinateSearch;
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MeshSizeDivider = Integer; // 1 < MeshSizeDivider
InitiaIMeshSizeExponent = Integer; // 0 <= InitialMeshSiz eExponent
MeshSizeExponentincrement = Integer; // 0 < MeshSizeExpon entincrement
NumberOfStepReduction = Integer; // 0 < NumberOfStepReduc tion

}

The entries are de ned as follows:
Main The name of the main algorithm.

MeshSizeDivider The value forr 2 N, r > 1, used to compute  , 1=rs
(see equation 6.6a). A common value isr = 2.

InitialMeshSizeExponent  The value forsg 2 N in (5.6h). A common value
is sp = 0.

MeshSizeExponentincrement The value for t; 2 N (for the iterations that
do not yield a decrease in cost) in 5.6b). A common value ist; = 1.

NumberOfStepReduction The maximum number of step reductions before
the algorithm stops. Thus, if we use the notationm , NumberOfStepReduction
then we have for the last iterations = 1=rs*™tx A common value
ism =4,

5.2.2 Hooke-Jeeves Algorithm

We will now present the implementation of the Hooke-Jeeveslgorithm [ HI61]
with adaptive precision function evaluations using the Model GPS Algorithm 5.1.8
The modi cations of Smith [ Smi69], Bell and Pike [BP66] and De Vogelaere DV68]
are implemented in this algorithm.

To simplify the implementation, we assignf (;x)= 1 forall x 62X where
X is de ned in (4.1).

a) Algorithm Parameters

The algorithm parameters D, r, sg, and tx are de ned as in the Coordinate
Search algorithm (see page2l).
b) Map for Exploratory Moves

To facilitate the algorithm explanation, we use the set-vaued mapEy : R"
Q. R{ ! 2Mx asde ned in Algorithm 5.2.1 The map Ex( ; ; ) de nes the
\exploratory moves" in [ HJ61], and will be used in Sectionc) to de ne the
global search set map and, under conditions to be seen in Séah d), the local
search direction map as well.

c) Global Search Set Map

The global search set map i (; ; ) is de ned as follows. Because o( ; ;)
depends onx 3, we need to introducex 1, which we de ne asx 1, Xo.
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Algorithm 5.2.3 (Global Search Set Map ki Xy _ RI1 2V

Map : Map for \exploratory moves" Ex: R" Q. R{ ! 2M«,

Input : Previous and current iterate, xx 1 2 R" and xx 2 R".

Mesh divider ¢ 2 Q..
Solver precision 2 R{.

Output : Global search setG.

Step 1: Setx = Xk +(Xk Xk 1)-

Step 2:  Compute G = Ex(X; «; ).

Step 3: If minyse, T (;x) > (;Xk)

SetG G k[ Ex(Xk; «; )

end if.

Step 4 Return G.

Thus, k(Xx;_x; )= G

d) Local Search Direction Map

If the global search, as de ned by Algorithm 5.2.3 has failed in reduc-
ing f (; ), then Algorithm 5.2.3 has constructed a setG that contains the
setfxk + kDei ji = 1;:::;2ng. This is because in the evaluation of
Ex(Xk; «; ), denedin Algorithm 5.2.1 all\If f (;®) <f (;x)"statements
yield false , and, hence, one has constructedixy + Dejji=1;:::;2ng=
Ex(Xk; «; )

Because the columns oD spanR" positively, it follows that the search on
the setfxy+ «Dejji=1;:::;2ngis alocal search. Hence, the constructed
set

Ly, fxk+ kDeji=1;:::;2ng G (5.13)

is a local search set. Consequentlyf (; ) has already been evaluated at all
points of Lk (during the construction of G,) and, hence, one does not need to
evaluatef (; ) again in a local search.

e) Parameter Update

The point x°in Step 3 of the GPS Model Algorithm 5.1.8 corresponds to
x%, argmingys, f (;x) in the Hooke-Jeeves algorithm. (Note thatLy G
if a local search has been done as explained in the above paragh.)

f) Keywords
For the GPS implementation of the Hooke-Jeeves algorithm, he command
le (see page88) must only contain continuous parameters.

To invoke the algorithm, the Algorithm section of the GenOpt command
le must have the following form;

Algorithm{

Main = GPSHookeJeeves;
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MeshSizeDivider = Integer; /I bigger than 1
InitialMeshSizeExponent = Integer; // bigger than or equal to 0
MeshSizeExponentincrement = Integer; // bigger than 0
NumberOfStepReduction = Integer; // bigger than 0
}

The entries are the same as for the Coordinate Search algohim, and explained
on page22.

5.2.3 Multi-Start GPS Algorithms

All GPS algorithms can also be run using multiple initial points. Using mul-
tiple initial points increases the chance of nding the global minimum if the
cost function has several local minima, and furthermore, itdecreases the risk
of not nding a minimum if the cost function is not continuous ly di erentiable,
which is the case if building simulation programs, such as EargyPlus or TRN-
SYS, are used to compute the cost function (see the discussian Section4.1.4).

The values that are speci ed by GenOpt's parameterini in GenOpt's com-
mand le (see Section11.1.3 are used to initialize the rst initial point. The
other initial points are randomly distributed, with a unifo rm distribution, be-
tween the lower and upper bounds of the feasible domain. Thewre, however,
set to the meshMy, de ned in (5.7), which reduces the number of cost function
evaluations if the optimization algorithm converges from d erent initial points
to the same minimizer.

In GenOpt's command le, a lower and an upper bound must be spei ed
for each independent variable using the keyword$vin and Max

To use the GPSCoordinateSearchalgorithm with multiple starting points,
the Algorithm section of the GenOpt command le must have the following
form:

Algorithm{
Main = GPSCoordinateSearch;
MultiStart = Uniform;
Seed = Integer;
NumberOfinitialPoint = Integer; // bigger than or equal to 1
MeshSizeDivider = Integer; // 1 < MeshSizeDivider
InitialMeshSizeExponent = Integer; // 0 <= InitialMeshSiz eExponent
MeshSizeExponentincrement = Integer; // 0 < MeshSizeExpon entincrement
NumberOfStepReduction = Integer; // 0 < NumberOfStepReduc tion

}

The entries are de ned as follows:
Main The name of the main algorithm.

MultiStart ~ Keyword to invoke the multi-start algorithm. The only valid
value is Uniform.
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Seed This value is used to initialize the random number generator
NumberOfinitialPoint ~ The number of initial points.
The other entries are the same as for the Coordinate Search gbrithm, and are
explained on page22.

To use the GPSHookeJeevesalgorithm with multiple starting points, the
Algorithm section of the GenOpt command le must have the following fom:

Algorithm{
Main = GPSHookeJeeves;
MultiStart = Uniform;
Seed = Integer;
NumberOfinitialPoint = Integer; // 0 < NumberOfinitialPoi nt
MeshSizeDivider = Integer; // 1 < MeshSizeDivider
InitialIMeshSizeExponent = Integer; // 0 <= InitialMeshSiz eExponent
MeshSizeExponentincrement = Integer; // 0 < MeshSizeExpon entincrement
NumberOfStepReduction = Integer; // 0 < NumberOfStepReduc tion

}

The entries are the same as for the multi-start Coordinate Sarch algorithm
above.
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5.3 Discrete Armijo Gradient

The Discrete Armijo Gradient algorithm can be used to solve poblem P
de ned in (4.2) where f () is continuously di erentiable.

The Discrete Armijo Gradient algorithm approximates gradients by nite
di erences. It can be used for problems where the cost functin is evaluated by
computer code that de nes a continuously di erentiable function but for which
obtaining analytical expressions for the gradients is impactical or impossible.

Since the Discrete Armijo Gradient algorithm is sensitive to discontinuities
in the cost function, we recommend not to use this algorithm f the simula-
tion program contains adaptive solvers with loose precisio settings, such as
EnergyPlus [CLW* 01]. On such functions, the algorithm is likely to fail. In
Section4.2, we recommend algorithms that are better suited for such sitiations.

We will now present the Discrete Armijo Gradient algorithm and the Armijo
step-size subprocedure.
Algorithm 5.3.1 (Discrete Armijo Gradient Algorithm)

Data : Initial iterate xo 2 X.
7 2(0;1), 2(0;1), k ;ko2 Z,
Imax ;2 N (for reseting the step-size calculation).
Termination criteria m; x 2 R+, imax 2 N.

Step O: Initialize i =0 and m = 0.

Step 1: Compute the search direction h;.
If ™< ., stop.
Else, set = ko*™ and compute, forj 2f1;::::ng,
ho= (Foa+ e) f)=.

Step 2 : Check descent.

Compute ( xi;hi))=(f(xi+ hi) f(xi))=.
If ( xi;hj) < 0, go to Step 3.
Else, replacem by m +1 and go to Step 1.

Step 3 : Line search.
Use Algorithm 5.3.2 (which requiresk ;lnhax and ) to compute k.
Set
i= argmin f(x;+ hj): (5.14)
2f ki ki 1g
Step 4 : Iff(xi+ h) f(x)> , replacem by m + 1 and go to Step 1.
Step 5 : Setxj+1 = Xj + jh;.

If k jhik< , stop. Else, replacei by i +1 and go to Step 1.
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Algorithm 5.3.2 (Armijo Step-Size Subprocedure)

Data : Iteration number i 2 N, iterate x; 2 R", search directionh; 2 R",
k;ki 122, ; 2(0; 1),and ( xj;hi) 2 Rwith ( xj;h;) <0,
parameter for restart Inax ; 2 N.

Step O: Initialize |1 = 0.
If i =0, set k9= k , else setk®= k; ;.
Step 1: Replacel by | + 1, and test the conditions
foa+ ¥h) f(x) K (xi:h); (5.15a)
foa+ X thy foa) > K1 (xish): (5.15b)
Step 2: If kO satis es (5.159 and (5.15b), return Kk°
Step 3: If kO satis es (5.15b) but not ( 5.159,

replacek® by kO+ 1.
else,
replacek®by kO 1.
If I<lmax Orki 1 k + ,goto Step 1. Else, go to Step 4.

Step 4: SetK , fk2Zjk k g, and compute
KO, miniok fkjfOa+ Khi) fa) % (xi;hi)g.
Return k°
Note that in Algorithm 5.3.2 as ! 1, the number of tries to compute the

Armijo step-size is likely to go to in nity. Under appropria te assumptions one
can show that = 1=2 yields fastest convergenceHol97].

The step-size Algorithm 5.3.2requires often only a small number of function
evaluations. However, occasionally, once a very small stepize has occurred,
Algorithm 5.3.2 can trap the Discrete Armijo Gradient algorithm into using a
very small step-size for all subsequent iterations. Hencef ki 1 >k + , we
reset the step-size by computing Step 4.

Algorithm 5.3.1 together with the step-size Algorithm 5.3.2 have the fol-
lowing convergence propertiesfol97].

Theorem 5.3.3 Let f: R" ! R be continuously di erentiable and bounded
below.

1. If Algorithm 5.3.1 jams at Xx;, cycling inde nitely in the loop de ned by
Steps 1-2 or in the loop de ned by Steps 1-4, then f (x;) =0.

2. If fxigl, is an in nite sequence constructed by Algorithm5.3.1 and Al-
gorithm 5.3.2in solving (4.2), then every accumulation pointk of f x; g,
satisesr f(k)=0.

O

Note that h; has the same units as the cost function, and the algorithm
evaluatesx; + h; for some 2 R.. Thus, the algorithm is sensitive to the
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scaling of the problem variables, a rather undesirable e et Therefore, in the
implementation of Algorithm 5.3.1and Algorithm 5.3.2 we normalize the cost
function values by replacing, for all x 2 R", f (x) by f (x)=f (xg), where xq is
the initial iterate. Furthermore, we set Xo = 0 and evaluate the cost function

of the design parameter computed in Algorithm 5.3.1 or Algorithm 5.3.2 and
I 2 Rands 2 R are the setting of the parametersini and Step, respectively,
for the j-th design parameter in the optimization command le (see paye 88).
In view of the sensitivity of the Discrete Armijo Gradient al gorithm to the
scaling of the problem variables and the cost function valus, the implemen-
tation of penalty and barrier functions may cause numerical problems if the
penalty is large compared to the unpenalized cost function alue.
If box-constraints for the independent parameters are spded, then the
transformations (8.2) are used.

5.3.1 Keywords
For the Discrete Armijo Gradient algorithm, the command le (see page38)
must only contain continuous parameters.

To invoke the algorithm, the Algorithm section of the GenOpt command
le must have the following form:

Algorithm{
Main = DiscreteArmijoGradient;
Alpha = Double; /I 0 < Alpha < 1
Beta = Double; // 0 < Beta <1
Gamma = Double; /I 0 < Gamma
KO = Integer,

KStar = Integer;

LMax = Integer; /I 0 <= LMax
Kappa = Integer; /I 0 <= LMax
EpsilonM = Double; // 0 < EpsilonM
EpsilonX = Double; // 0 < EpsilonX

}

The entries are de ned as follows:
Main The name of the main algorithm.

Alpha The variable used in Step 1 and in Step 4 of Algorithm5.3.2 A
typical value is =1=2.

Beta The variable used in approximating the gradient and doing the line
search. A typical value is =0:8.

Gammdahe variable used in Step 4 of Algorithm 5.3.1to determine whether
the accuracy of the gradient approximation will be increasel.

KO The variable ko that determines the initial accuracy of the gradient ap-
proximation.
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KStar The variable k used to initialize the line search.

LMax The variable 1nax used in Step 3 of Algorithm 5.3.2 to determine
whether the line search needs to be reinitialized.

Kappa The variable used in Step 3 of Algorithm 5.3.2to determine whether
the line search needs to be reinitialized.

EpsilonM The variable ,, used in the determination criteria ™ <  in
Step 1 of Algorithm 5.3.1

EpsilonX The variable 4 used in the determination criteria k j hik <  in
Step 5 of Algorithm 5.3.1
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5.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithms are populati on-based prob-
abilistic optimization algorithms rst proposed by Kenned y and Eberhart [EK95,
KE95] to solve problem P, de ned in (4.2) with possibly discontinuous cost
function f : R" ! R. In Section 5.4.2 we will present a PSO algorithm for
discrete independent variables to solve problemPy de ned in (4.4), and in
Section 5.4.3 we will present a PSO algorithm for continuous and discrete m-
dependent variables to solve problenP .4 de ned in (4.6). To avoid ambiguous
notation, we always denote the dimension of the continuousridependent vari-
able by n; 2 N and the dimension of the discrete independent variable by
ng 2 N.

PSO algorithms exploit a set of potential solutions to the ogimization
problem. Each potential solution is called aparticle, and the set of potential
solutions in each iteration step is called goopulation. PSO algorithms are global
optimization algorithms and do not require nor approximate gradients of the
cost function. The rst population is typically initialize d using a random num-
ber generator to spread the particles uniformly in a user-dened hypercube. A
particle update equation, which is modeled on the social bedwvior of members
of bird ocks or sh schools, determines the location of eachparticle in the
next generation.

A survey of PSO algorithms can be found in Eberhart and Shi ESO1].
Laskari et. al. present a PSO algorithm for minimax problems[LPV02b] and
for integer programming [LPV02a]. In [PV02a], Parsopoulos and Vrahatis dis-
cuss the implementation of inequality and equality constrants to solve problem
Pcy de ned in (4.3).

We rst discuss the case where the independent variable is adinuous, i.e.,
the case of problemP. de ned in (4.2).

5.4.1 PSO for Continuous Variables

We will rst present the initial version of the PSO algorithm which is the
easiest to understand.

In the initial version of the PSO algorithm [ EK95, KE95], the update equa-
tion for the particle location is as follows: Let k 2 N denote the generation
number, let np 2 N denote the number of particles in each generation, let

let vi (k) 2 R"e denote its velocity, let c;;c; 2 R+ and let 1(k); 2(k) U(0;1)
be uniformly distributed random numbers between 0 and 1. Tha, the update

vitk+1) = vi(k)+ ¢ oa(k) pii (k) xi(k)
+C2 2(k) pgi(K)  xi(K) ; (5.16a)
xi(k+1) = x(K)+ vi(k+1); (5.16b)
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wherev;(0), 0 and

pii (K) argmin  f (x); (5.17a)
x2f xi (1) g
Pgi (K) argmin  f (x): (5.17b)

x2ff xi (1)gko 9

Thus, pi; (k) is the location that for the i-th particle yields the lowest cost over
all generations, andpg; (k) is the location of the best particle over all genera-
tions. The term ¢ 1(K) (pii (k) X (k)) is associated with cognition since it
takes into account the particle's own experience, and the tam ¢ 2(K) (pg;i (k)
xi(K)) is associated with social interaction between the partides. In view of
this similarity, c; is called cognitive acceleration constantand c; is called social
acceleration constant

a) Neighborhood Topology

The minimum in (5.17b) need not be taken over all points in the popu-
lation. The set of points over which the minimum is taken is dened by the
neighborhood topology In PSO, the neighborhood topologies are usually de-
ned using the particle index, and not the particle location. We will use the
Ibest gbest and the von Neumannneighborhood topology, which we will now
de ne.

In the lbesttopology of sizel 2 N, with | > 1, the neighborhood of a particle

Ni, fi I +lg; (5.18a)

where we assume that the indices wrap around, i.e., we replac 1 by np 1,
replace 2bynp 2, etc.

In the gbesttopology, the neighborhood contains all points of the popua-
tion, i.e.,
Ni, fL:::npg; (5.18b)

For the von Neumanntopology, consider a 2-dimensional lattice, with the
lattice points enumerated as shown in Figure5.1. We will use the von Neumann
topology of range 1, which is de ned, fori;j 2 Z, as the set of points whose
indices belong to the set

n 0
Nejy, (k) jkdj+jl jj Lkl2z : (5.18c)

The gray points in Figure 5.1 are N(\i;z)- For simplicity, we round in GenOpt
the user-speci ed number of particlesn 2 N to the next biggest integer np
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Figure 5.1: Section of a 2-dimensional lattice of particles with pﬁp 3.
The particles belonging to the von Neumann neighborhodd (‘1;2) with range 1,

de ned in (5.189, are colored gray. Indicated by dashes are the particles tha
are generated by wrapping the indices.

such that P n, 2 N egwgnp rb%f Then, we can wrap the indices by replacing,
fork 2 Z, (O;d()_by( Np; kg,i np +1;Kk) by (1;k), and similarly by replacing
(k;0) by (k;" np) ang (k;" np +1) by (pk; 1). Then, a particle with indices
(k; 1), with 1 li) n, and 1 | np, has in the PSO algorithm the
indexi=(k 1) np+1,and hencei 2f1;:::;npg.

Kennedy and Mendes KM02] show that greater connectivity of the parti-
cles speeds up convergence, but it does not tend to improve ¢hpopulation's
ability to discover the global optimum. Best performance has been achieved
with the von Neumann topology, whereas neither thegbestnor the Ibesttopol-
ogy seemed especially good in comparison with other topolaeg.

Carlisle and Dozier [CD01] achieve on unimodal and multi-modal functions
for the gbesttopology better results than for the Ibesttopology.

2|n principle, the lattice need not be a square, but we do not see any computational
disadvantage of selecting a square lattice.
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b) Model PSO Algorithm

We will now present the Model PSO Algorithm that is implemented in

GenOpt.
Algorithm 5.4.1 (Model PSO Algorithm for Continuous Variab les)
Data : Constraint set X, as de ned in (4.1),
but with nite lower and upper bound for each independent variable.
Initial iterate xg 2 X.
Number of particles np 2 N and number of generationsng 2 N.
Step O: Initialize k =0, Xo(0) = Xo and the neighborhoodsfN ig'f; .
Step 1: Initialize fx;(0)g¥, X randomly distributed.
Step 2: Fori 2f1;:::;npg, determine the local best particles
pii (K) , argmin  f (x) (5.19a)
x2f xi(m)gk _o
and the global best particle
Pg;i (K) , argmin f(x): (5.19b)
x 2f Xj (m) ] jZN igfn:o
Step 3: Update the particle location fx;(k +1) g%,  X.
Step 4: If k = ng, stop. Else, go to Step 2.
Step 5: Replacek by k + 1, and go to Step 1.

We will now discuss the dierent implementations of the Model PSO Algo-
rithm 5.4.1in GenOpt.

c) Particle Update Equation

(i) Version with Inertia Weight Eberhart and Shi [SE98 SE99 in-
troduced aninertia weight w(k) which improves the performance of the original
PSO algorithm. In the version with inertia weight, the parti cle update equation

B(k+1) = wk)vi(k)+ co 1(k) pii (k) xi(k)
+C2 2(K) pgi(K)  xi(k) ; (5.20a)
Vi(k+1) = sign(ig (k+1)) min fj bl (k + 1) ; Vi, 0
j 2f1;:::;n60; (5.20b)
xi(k+1) =  xi(K)+ vi(k+1); (5.20c)
where _ ' _
Vi » (1), (5.20d)

with 2 R,, forall j 2f1;:::;ncg, and l;u 2 R"c are the lower and upper
bound of the independent variable. A common value is =1=2. In GenOpt,
if 0, then no velocity clamping is used, and hencey! (k + 1) = o (k + 1),
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We compute the inertia weight as
k
w(k) = wo K (Wo Wi); (5.20e)

wherewp 2 R is the initial inertia weight, w; 2 R is the inertia weight for the
last generation, with 0 w;  wp, and K 2 N is the maximum number of
generations.wp = 1:2 andw; = 0 can be considered as good choicePY02b].

(i)  Version with Constriction Coe cient Clerc and Kennedy [CK02]
introduced a version with a constriction coe cient that red uces the veloc-
ity. In their Type 1" implementation, the particle update eq uation is, for

Bk+1) = (") vi(k+c 1(k) pi (k) xi(k)
+C 2(K) pgi(k)  xi(k) ; (5.21a)
vi(k+1) = sign( it (k+1)) min it ( + 1) j; Vi 0
j 211 ne0; (5.21b)
xi(k+1) = x(k)+ vi(k+1); (5.21c)
where . _ .
Viax » (W P); (5.21d)
is as in (5.20d).
In (5.219, (;' ) is called constriction coe cient , de ned as
(.—é=_; if'> 4
(;'), jz2 24 (5.21e)
; otherwise
where' , ¢+ ¢ and 2 (0;1] control how fast the population collapses
into a point. If = 1, the space is thoroughly searched, which yields slower

convergence.

Equation (5.21) can be used with or without velocity clamping (5.21b). If
velocity clamping (5.21b) is used, Clerc and Kennedy usé = 4:1, otherwise
they use' =4. In either case, they setc; = ¢; = '= 2 and a population size of
np = 20.

Carlisle and Dozier [CD01] recommend the settingsnp = 30, no velocity
clamping, =1, ¢g=2:8andc; =1:3.

Kennedy and Eberhart [KESO1] report that using velocity clamping (5.21b
and a constriction coe cient shows faster convergence for sme test problems
compared to using an inertia weight, but the algorithm tends to get stuck in
local minima.
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Figure 5.2: Sigmoid function.

5.4.2 PSO for Discrete Variables

Kennedy and Eberhart [KE97] introduced a binary version of the PSO al-
gorithm to solve problem P4 de ned in (4.4).

The binary PSO algorithm encodes the discrete independent ariables in
a string of binary numbers and then operates with this binary string. For
variable, and let ; 2 f0;1g™ be its binary representation (with m; 2 N.
bits), obtained using Gray encoding PFTV93], and let ; (k) and g (k) be
the binary representation of p; (k) and pg.i (k), respectively, wherep; (k) and
Pg:i (K) are de ned in (5.19.

{ (0) 2 f 0; 1g, and compute, fork 2 N,

B(k+1) = v(+ca 1k LK (K
*e 2 L) 1) (5.22a)
Vi(k+1) = s{gn( B (k+1) minfitd (k+1)j;Vmax g,  (5.22b)
o = %I D
where
s(v) , (5.22d)

l+eV
is the sigmoid function shown in Fig. 5.2 and ; (k) U(0; 1), for all i 2

In (5.220), vmax 2 R+ is often setto 4 to prevent a saturation of the sigmoid
function, and c¢;;c; 2 R: are often such thatc; + ¢, =4 (see KESO01]).

Notice that s(v) ! 05, asv ! 0, and consequently the probability of
ipping a bit goes to 0:5. Thus, in the binary PSO, a small vmax causes a
large exploration, whereas in the continuous PSO, a smalyax causes a small
exploration of the search space.
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Any of the above neighborhood topologies can be used, and Metl Algo-
rithm 5.4.1applies if we replace the constraint setX by the user-speci ed set
Xq ZMNd,

5.4.3 PSO for Continuous and Discrete Variables

For problem P, dened in (4.6), we treat the continuous independent
variables as in 6.20 or (5.21), and the discrete independent variables as
in (5.22. Any of the above neighborhood topologies can be used, and dlel
Algorithm 5.4.1 applies if we de ne the constraint set X as in (4.5).

5.4.4 PSO on a Mesh

We now present a modi cation to the previously discussed PSCalgorithms.

For evaluating the cost function, we will modify the continuous independent
variables such that they belong to a xed mesh in R":. Since the iterates
of PSO algorithms typically cluster during the last iterati ons, this reduces
in many cases the number of simulation calls during the optinization. The

modi cation is done by replacing the cost function f : R"¢  Z"¢ 1 R in Model

Algorithm 5.4.1as follows: LetXg, (Xc.o0;Xd:0) 2 R" Z"c denote the initial

iterate, let X be the feasible set for the continuous independent variabke
de ned in (4.5b), let r;s 2 N, with r> 1, be user-speci ed parameters, let

1
s (5.23)
and let the mesh be de ned as
( . )
M(Xco: :S), Xco+ msejm2z' (5.24)

i=1
wheres 2 R"¢ is equal to the value de ned by the variable Step in GenOpt's

command le (see page88). Then, we replacef (; ) by : Re  zMa  RONe
R R" ! R, dened by

(Xe; Xai X0, 58), f( (Xe);Xa); (5.25)

where : R" I R" is the projection of the continuous independent variable
to the closest feasible mesh point, i.e., (X¢) 2 M(X¢.0; ;S)\ X¢. Thus, for

evaluating the cost function, the continuous independent \ariables are replaced
by the closest feasible mesh point, and the discrete indepelent variables re-
main unchanged.

Good numerical results have been obtained by selecting2 R": andr;s 2
N such that about 50 to 100 mesh points are located along each odadinate
direction.

5.4.5 Population Size and Number of Generations

Parsopoulos and Vrahatis PV02b] use forx 2 R"¢ a population size of
about 5n up to n = 15. For n  10:::20, they usenp 10n. They set
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the number of generations tong = 1000 up to n = 20 and to ng = 2000 for
n = 30.

Van den Bergh and Engelbrecht ydBEO1] recommend using more than 20
particles and 2000 to 5000 generations.

Kennedy and Eberhart [KESO1] use, for test cases with thelbest neigh-
borhood topology of sizel =2 and n =2 and n = 30, a population size of
np =20 :::30. They report that 10 :::50 particles usually work well. As a rule
of thumb, they recommend for the Ibest neighborhood to select the neighbor-
hood size such that each neighborhood consists of 10: 20% of the population.

5.4.6 Keywords

For the Particle Swarm algorithm, the command le (see page88) can con-
tain continuous and discrete independent variables.

The di erent speci cations for the Algorithm section of the GenOpt com-
mand le are as follows:

PSO algorithm with inertia weight:

Algorithm{
Main = PSOIW;
NeighborhoodTopology = gbest | Ibest | vonNeumann;
NeighborhoodSize = Integer; // 0 < NeighborhoodSize
NumberOfParticle = Integer,
NumberOfGeneration = Integer;
Seed = Integer;
CognitiveAcceleration = Double; // 0 < CognitiveAccelerat ion
SocialAcceleration = Double; /I 0 < SocialAcceleration
MaxVelocityGainContinuous = Double;
MaxVelocityDiscrete = Double; /I 0 < MaxVelocityDiscrete
InitiallnertiaWeight = Double; /I 0 < InitiallnertiaWeigh t
FinallnertiaWeight = Double; // 0 < FinallnertiaWeight

}

PSO algorithm with constriction coe cient:

Algorithm{
Main = PSOCC;
NeighborhoodTopology = gbest | lbest | vonNeumann;
NeighborhoodSize = Integer; // 0 < NeighborhoodSize
NumberOfParticle = Integer,
NumberOfGeneration = Integer;
Seed = Integer;
CognitiveAcceleration Double; /I 0 < CognitiveAccelerat ion

SocialAcceleration = Double; // 0 < SocialAcceleration
MaxVelocityGainContinuous = Double;

MaxVelocityDiscrete = Double; /I 0 < MaxVelocityDiscrete
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ConstrictionGain = Double; // 0 < ConstrictionGain <= 1

}

PSO algorithm with constriction coe cient and continuous i ndependent vari-
ables restricted to a mesh:

Algorithm{
Main = PSOCCMesh;
NeighborhoodTopology = gbest | Ibest | vonNeumann;
NeighborhoodSize = Integer; // 0 < NeighborhoodSize
NumberOfParticle = Integer;
NumberOfGeneration = Integer;
Seed = Integer,;
CognitiveAcceleration = Double; // 0 < CognitiveAccelerat ion
SocialAcceleration = Double; // 0 < SocialAcceleration

MaxVelocityGainContinuous = Double;

MaxVelocityDiscrete Double; /I 0 < MaxVelocityDiscrete
ConstrictionGain Double; // 0 < ConstrictionGain <= 1
MeshSizeDivider = Integer; /I 1 < MeshSizeDivider
InitiaIMeshSizeExponent = Integer; // 0 <= InitialMeshSiz eExponent

}

The entries that are common to all implementations are de ned as follows:

Main The name of the main algorithm. The implementation PSOIWises the
location update equation (5.20) for the continuous independent variables,
and the implementation PSOCGses 6.21) for the continuous independent
variables. All implementations use (.22 for the discrete independent
variables.

NeighborhoodTopology This entry de nes what neighborhood topology is
being used.

NeighborhoodSize For the Ibestneighborhood topology, this entry is equal
to I in (5.189. For the gbhestand the von Neumannneighborhood topol-
ogy, the value of NeighborhoodSize is ignored.

NumberOfParticle This is equal to the variable np 2 N.
NumberOfGeneration This is equal to the variableng 2 N in Algorithm 5.4.1
Seed This value is used to initialize the random number generator
CognitiveAcceleration This is equal to the variable ¢c; 2 R .
SocialAcceleration  This is equal to the variablec, 2 R. .

MaxVelocityGainContinuous  This is equal to the variable 2 R, in (5.20d
and in (5.210. If MaxVelocityGainContinuous is set to zero or to a
negative value, then no velocity clamping is used, and hences! (k+1) =

MaxVelocityDiscrete  This is equal to the variable vimax 2 R+ in (5.22h).
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For the PSOIWmplementation, following additional entries must be sped ed:
InitiallnertiaWeight This is equal to wp 2 R+ in (5.208.
FinallnertiaWeight  This is equal to w; 2 Ry in (5.209.

For the PSOC@nplementation, following additional entries must be speg ed:
ConstrictionGain  This is equal to 2 (0;1] in (5.218.

Notice that for discrete independent variables, the entries of InitiallnertiaWeight ,
FinallnertiaWeight , and ConstrictionGain are ignored.

For the PSOCCMeghplementation, following additional entries must be spee
i ed:

MeshSizeDivider This is equaltor 2 N, with r> 1, used in 6.23).
InitiaIMeshSizeExponent  This is equal to s 2 N used in (5.23.
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5.5 Hybrid Generalized Pattern Search Algorithm
with Particle Swarm Optimization Algorithm

This hybrid global optimization algorithm can be used to solve problemP .
de ned in (4.2) and problem Py de ned in (4.6). Problem P4 de ned in (4.3
and problem P ¢qq de ned in (4.7) can be solved if the constraint functionsg( )
are implemented as described in Sectio8.2

This hybrid global optimization algorithm starts by doing a Particle Swarm
Optimization (PSO) on a mesh, as described in Section5.4.4 for a user-
speci ed number of generationsng 2 N. Afterwards, it initializes the Hooke-
Jeeves Generalized Pattern Search (GPS) algorithm, desdyed in Section5.2.2
using the continuous independent variables of the particlewith the lowest cost
function value. If the optimization problem has continuous and discrete in-
dependent variables, then the discrete independent variales will for the GPS
algorithm be xed at the value of the particle with the lowest cost function
value.

We will now explain the hybrid algorithm for the case where al independent
variables are continuous, and then for the case with mixed catinuous and
discrete independent variables. Throughout this section,we will denote the
dimension of the continuous independent variables by 2 N and the dimension
of the discrete independent variables byng 2 N.

5.5.1 Hybrid Algorithm for Continuous Variables

We will now discuss the hybrid algorithm to solve problem P, de ned
in (4.2. However, we require the constraint setX R"c dened in (4.1) to

First, we run the PSO algorithm 5.4.1, with user-speci ed initial iterate
Xo 2 X for a user-speci ed number of generationsig 2 N on the mesh de ned
in (5.24). Afterwards, we run the GPS algorithm 5.1.8where the initial iterate
Xo is equal to the location of the particle with the lowest cost function value,
ie.,

Xo, P, argmin f (x); (5.26)
x2f xj (k) jj2f 1;:npg; k2f 15050 g gg

Since the PSO algorithm terminates after a nite number of iterations, all
convergence results of the GPS algorithm hold. In particula, if the cost func-
tion is once continuously di erentiable, then the hybrid al gorithm constructs
accumulation points that are feasible stationary points of problem (4.2) (see
Theorem 5.1.13.
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Since the PSO algorithm is a global optimization algorithm, the hybrid al-
gorithm is, compared to the Hooke-Jeeves algorithm, lesskely to be attracted
by a local minimum that is not global. Thus, the hybrid algori thm combines
the global features of the PSO algorithm with the provable cawergence prop-
erties of the GPS algorithm.

If the cost function is discontinuous, then the hybrid algorithm is, compared
to the Hooke-Jeeves algorithm, less likely to jam at a discotnuity far from a
solution.

5.5.2 Hybrid Algorithm for Continuous and Discrete
Variables

For problem P4 de ned in (4.6) with continuous and discrete independent
variables, we run the PSO algorithm 5.4.1, with user-speci ed initial iterate
Xo2 X, X¢ Xg R" Z" for a user-speci ed number of generations
ng 2 N, where the continuous independent variables are restrictg to the mesh
de ned in (5.24). We require the constraint set X, R"¢ de ned in (4.5b) to

Afterwards, we run the GPS algorithm 5.1.8 where the initial iterate X 2
X isequaltop: 2 X, which we de ne as the continuous independent variables
of the particle with the lowest cost function value, i.e., p, (Pc;pd) 2 Xec
X4, where p is de ned in (5.26). In the GPS algorithm, we x the discrete
components atpy 2 X4 for all iterations. Thus, we use the GPS algorithm
to re ne the continuous components of the independent varidles, and x the
discrete components of the independent variables.

5.5.3 Keywords

For this algorithm, the command le (see page88) can contain continuous
and discrete independent variables. It must contain at leas one continuous
parameter.

The speci cations of the Algorithm section of the GenOpt command le
is as follows:

Note that the rst entries are as for the PSO algorithm on page 39 and the
last entries are as for GPS implementation of the Hooke-Jeas algorithm on
page 24.

Algorithm{

Main = GPSPSOCCHYJ;

NeighborhoodTopology = gbest | Ibest | vonNeumann;

NeighborhoodSize = Integer; // 0 < NeighborhoodSize

NumberOfParticle = Integer;

NumberOfGeneration = Integer;

Seed = Integer;
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CognitiveAcceleration Double; /I 0 < CognitiveAccelerat ion
SocialAcceleration Double; /I 0 < SocialAcceleration
MaxVelocityGainContinuous = Double;

MaxVelocityDiscrete Double; // 0 < MaxVelocityDiscrete
ConstrictionGain Double; /I 0 < ConstrictionGain <= 1

MeshSizeDivider = Integer; // 1 < MeshSizeDivider
InitiaIMeshSizeExponent = Integer; // 0 <= InitialMeshSiz eExponent
MeshSizeExponentincrement = Integer; // 0 < MeshSizeExpon entincrement
NumberOfStepReduction = Integer; // 0 < NumberOfStepReduc tion

The entries are de ned as follows:
Main The name of the main algorithm.

NeighborhoodTopology This entry de nes what neighborhood topology is
being used.

NeighborhoodSize This entry is equal to | in (5.18. For the gbestneigh-
borhood topology, the value of NeighborhoodSize will be ignored.

NumberOfParticle This is equal to the variable np 2 N.
NumberOfGeneration This is equal to the variableng 2 Nin Algorithm 5.4.1
Seed This value is used to initialize the random number generator

CognitiveAcceleration This is equal to the variable ¢c; 2 R;+ used by the
PSO algorithm.

SocialAcceleration  This is equal to the variablec, 2 R. used by the PSO
algorithm.

MaxVelocityGainContinuous  This is equal to the variable 2 R, in (5.20d
and in (5.21d. If MaxVelocityGainContinuous is set to zero or to a
negative value, then no velocity clamping is used, and hencev! (k +1) =

MaxVelocityDiscrete  This is equal to the variable vimax 2 R+ in (5.22D).
ConstrictionGain  This is equal to 2 (0;1] in (5.218.

MeshSizeDivider This is equal tor 2 N, with r > 1, used by the PSO
algorithm in (5.23 and used by the GPS algorithm to compute  ,
1=rs¢ (see equation 6.68). A common value isr = 2.

InitialMeshSizeExponent  This is equal to s 2 N used by the PSO algo-
rithm in ( 5.23 and used by the GPS algorithm in (5.68. A common
value issp = 0.

MeshSizeExponentincrement The value for ty 2 N (xed for all k 2 N)
used by the GPS algorithm in (5.68). A common value isty = 1.

NumberOfStepReduction The maximum number of step reductions before
the GPS algorithm stops. Thus, if we use the notationm , NumberOfStepReduction
then we have for the last iterations = 1=rSo*Mtx = A common value
ism =4,
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5.6 Hooke-Jeeves

This algorithm is implemented for compatibility with previous GenOpt ver-
sions and is no longer supported. We recommend using the imghentation of
the Hooke-Jeeves algorithm described in Sectiob.2.2 on page23.

The Hooke-Jeeves pattern search algorithmHJ61] is a derivative free op-
timization algorithm that can be used to solve problem P de ned in (4.2) for
n> 1. ProblemP .4 de ned in (4.3) can be solved by implementing constraints
on the dependent parameters as described in Sectidh

For problem (4.2), if the cost function is continuously di erentiable and
has bounded level sets, then the Hooke-Jeeves algorithm ceerges to a point
x 2 R" that satis es kr f (x )k =0 (see [Tor97, AD03, KLT03]).

Hooke and Jeeves found empirically that the number of functbn evaluations
increases only linearly with the number of independent varables HJ61].

5.6.1 Modi cations to the Original Algorithm

Now, we explain modi cations to the original algorithm of [ HI61] which
are implemented in GenOpt.

Smith [Smi69 reports that applying the same step size for each variable
causes some parameters to be essentially ignored during muof the search
process. Therefore, Smith proposes to initialize the stepise for each variable
by . .

x'= jxgi; (5.27)
where > 0 is a fraction of the initial step length and xo 2 R" is the ini-
tial iterate. In GenOpt's implementation, X' is set equal to the value of the
parameter Step, which is specied in the command le (see page88). This
allows taking the scaling of the components of the independs parameter into
account.

In [HJ61], the search of the exploration move is always done rst in the
positive, then in the negative direction along the coordinde vectors, g 2 R",

that led in the last exploration move to a reduction of the cog function. This
increases the probability to reduce the cost function alredy by the rst explo-
ration move, thus allows skipping the second trial.

De Vogelaere DV68] proposed changing the algorithm such that the max-
imum number of function evaluations cannot be exceeded, wich can be the
case in the original implementation.

All three modi cations are implemented.
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To implement the box constraints of problem P, and Py, de ned in (4.2)
and (4.3), respectively, we assigrf (;x)= 1 forall x 62X whereX is de ned
in (4.2).

5.6.2 Algorithm Description

Hooke and Jeeves divide the algorithm in aninitial exploration (1), a basic
iteration (1), and a step size reduction(lll). (I) and (II) make use of so-called
exploratory movesto get local information about the direction in which the
cost function decreases.

The exploratory moves are executed as follows (see Fi§.3):
Let x' 2 R be the step size of thei-th independent parameter, ande 2 R"
the unit vector along the i-th coordinate direction. Assume we are given a base
point, called the resulting base pointx, and its function value, sayf,, f(x;).
Then we make a sequence of orthogonal exploratory moves. Toodso, we set
i =0 and assign .
X X+ x'e: (5.28)

Provided that x, is feasible, that isx, 2 X, we evaluate the cost function
and assignf f (x). If f, <fp, then the new point becomes the resulting
base point, and we assign

T (5.29)
Otherwise, we assign
X! X' (5.30)
Xr X, +2 X e (5.31)
evaluate f (x;) and assignf, f (x;). If this exploration reduced the cost

function, we apply (5.29. Otherwise, we reset the resulting base point by
assigning .
Xr X X' g (5.32)

so that the resulting base point has not been altered by the eploration in
the direction along g . Therefore, if any of the exploration moves have been
successful, we have a new resulting base point; and a new function value
fp = f(xr). Using the (probably new) resulting base point x, the same pro-
cedure is repeated along the next coordinate direction (i.e along €+1 ,) until

Note that according to (5.31) x' has in the next exploration move alonge,
the sign that led in the last exploration to a reduction of the cost function (if
any reduction was achieved).

At the end of the n exploratory moves, we have a new resulting base point
X if and only if at least one of the exploratory moves led to a rediction of the
cost function.

(I) Initial Iteration
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Given x , fp=f(xr)

i=0,n=dim(x)

»
Ll

Ched first diredion:

X~ X+ Dxe
f- f(x)
T F
Failure, ched other diredion:
Dx - - DX
X- x+2Dxe
f,- ()
4 T fr < fp a3
A
Success Failure, reset coordinate:
fom f X~ x- Ddg

Figure 5.3: Flow chart of the exploration move,E (x;; f;).
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Evaluate function
S » atinitial base point: ’p@
m=0 fr f(x)
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Set base point: Pattern move: Explore:
f-f; :
R Ll X7 XT(6x ) f} E(x, f 0
@ X7 XX X fom f(x,) B i B )

v

Reducestep size
Dx- cDx; —P@
F

m- 1

Figure 5.4: Flow chart of Hooke-Jeeves algorithm.

In the initial iteration, we have a current base point, x.. We assignx; Xc
and make the exploration moves aroundx, . If at least one of the exploration
move leads to a reduction of the cost function, then we go to tle basic iteration
(1), otherwise we reduce the step size according to (I11).

(I1) Basic lteration
We update the function value of the base point by assigning

fo o fp; (5.33)

and assign to the previous base poinkp the value of the current base pointxc
and to the current base point X the value of the resulting base pointx;,, i.e.,

Xp Xc; (5.34)
Xc Xr - (5.35)

Then, we make a pattern move, given by
Xr o Xe (X Xp): (5.36)

Now, we assignf,  f (x;). Regardless of whether the pattern move leads to
a reduction of the cost function, we do exploratory moves arand x;. If any
of the exploratory moves is successful, therx; and consequentlyf, = f (x)
are altered. Now, we check whetherf, f,. If so, the pattern move might
no longer be appropriate and we do an initial step (I). Otherwise, the pattern
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move and the exploration steps lead to an improvement and we @ a basic
iteration again (I1).

(1) Step Size Reduction
The relative step size for the exploration moves is reducedaording to

X C X (5.37)

where 0< ¢ < 1 is the constant step reduction factor. A common value forc is
0:5. X is considered as the minimum point and the algorithm stops ifthe step
size has been reducethmax times. mpmax iS @ user input.

Further discussion of this algorithm can be found in HJ61, Wil64, Avr76,
Wal75].
5.6.3 Keywords

For the Hooke-Jeeves algorithm, the command le (see pag88) must only

contain continuous parameters.

To invoke the Hooke-Jeeves algorithm, theAlgorithm section of the GenOpt
command le must have the following form:

Algorithm{
Main = HookeJeeves;
StepReduction = Double; /I 0 < StepReduction
NumberOfStepReduction = Integer; // 0 < NumberOfStepReduc tion
}

The entries are de ned as follows:
Main The name of the main algorithm.

StepReduction The step reduction factor, c in (5.37), where 0<c< 1. A
common value isc = 0:5.

NumberOfStepReduction This integer speci es how many times a step re-
duction has to be done before a point is considered as being aimimum
point. NumberOfStepReductionis equal to the parametermy,x in Fig.
5.4. A common value ismpax = 2, but mpax depends on the step size
and the required accuracy.
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5.7 Simplex Algorithm of Nelder and Mead with
the Extension of O'Neill

The Simplex algorithm of Nelder and Mead is a derivative freeoptimization
algorithm. It can be used to seek a solution of problenP . de ned in (4.2) and
problem Py de ned in (4.3), with constraints on the dependent parameters
implemented as described in Sectior8. The number of independent parame-
ters n must be larger than 1.

The Simplex algorithm constructs an n-dimensional simplex in the space
that is spanned by the independent parameters. At each of th€n + 1) vertices
of the simplex, the value of the cost function is evaluated. h each iteration
step, the point with the highest value of the cost function isreplaced by another
point. The algorithm consists of three main operations: (@) point re ection ,
(b) contraction of the simplex and (c) expansion of the simplex

Despite the well known fact that the Simplex algorithm can fail to converge
to a stationary point [ Kel99b, Tor89, Kel99a, Wri96, McK98, LRWW98], both
in practice and theory, particularly if the dimension of ind ependent variables
is large, say bigger than 10 Tor89], it is an often used algorithm. Several
improvements to the Simplex algorithm or algorithms that were motivated by
the Simplex algorithm exist, see for example Kel99b, Tor89, Kel99a, Tse99.
However, in GenOpt, we use the original Nelder-Mead algoritm [NM65] with
the extension of O'Neill [O'N71]. Optionally, the here implemented algorithm
allows using a modi ed stopping criteria.

We will now explain the di erent steps of the Simplex algorithm.

5.7.1 Main Operations

The notation de ned below is used in describing the main opeations. The
operations are illustrated in Fig. 5.5 where for simplicity a two-dimensional
simplex is illustrated.

We now introduce some notation and de nitions.

1. We will denote by | , f1;:::; n+1g the set of all vertex indices.

2. We will denote by | 2 | the smallest index in| such that

| =argmin f (x;): (5.38a)
i21

Hence,f (x;) f(x;), foralli21.

3. We will denote by h 2 | the smallest index in| such that

h =argmax f (x;): (5.38b)
i2l

Hence,f (xn) f(x;i), forall i2I.
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Figure 5.5: Simplex operations.
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4. Let x;, for i 2 I, denote the simplex vertices, and leth be as in 6.38b).
We will denote by x.; 2 R" the centroid of the simplex, de ned as

1 Xt

n

Xe s Xi (5.38¢)

i=1
i6h
Next, we introduce the three main operations.

Re ection Leth 2 | beasin (6.38h and let x; be asin 6.389. The re ection
of X, 2 R" to a point denoted asx 2 R" is de ned as

X, (I+ )X Xn; (5.39a)

where 2 R, with > 0, is called there ection coe cient .

Expansion of the simplex Let x 2 R" be as in 6.399 and x. be as
in (5.389. The expansion ofx 2 R" to a point denoted asx 2 R" is
de ned as

X ,ox H(@1 )X (5.39b)

where 2 R, with > 1, is called theexpansion coe cient.

Contraction of the simplex Leth 2 | be asin (6.38b and x¢ be asin (6.389.
The contraction of x, 2 R" to a point denoted asx 2 R" is de ned as

X , Xp+( ) Xc; (5.39¢)

where 2 R, with 0 < < 1, is called the contraction coe cient .

5.7.2 Basic Algorithm

In this section, we describe the basic Nelder and Mead algahim [NM65].
The extension of O'Neill and the modi ed restart criterion are discussed later.
The algorithm is as follows:

1. Initialization: Given an initial iterate x; 2 R", a scalarc, with c=1 in
the initialization, a vector s 2 R" with user-speci ed step sizes for each
independent parameter, and the set of unit coordinate vectes fe g, ,

Xis1 = X1+ CS & (5.40)

Compute f (x;), fori 2 1.
2. Re ection: Re ect the worst point, that is, compute x as in (5.399.

3. Test whether we got the best point; Iff (x ) <f (x;), expand the simplex
using (5.39b) since further improvement in this direction is likely. If
f(x )<f (x), then x;, is replaced byx , otherwise x, is replaced by
X , and the procedure is restarted from2.

Copyright (c) 1998-2008 51
The Regents of the University of California (through Lawrenc e Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Depar tment of Energy. All rights reserved.



GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.1.0 Simulation Research Group

AN

ZeA vy Wil
I
e .

It
W T
JL A )

X2

| / o H— +——+1.8687
1.854¢ 1.8550  1.855Z 1.8554  1.855¢ 1.8558  1.8560 1.8562  1.8564

X1

Figure 5.6: Sequence of iterates generated by the Simplex algorithm.

4. If it turned out under 3 that f(x ) f(x), then we check if the new
point x is the worst of all points: If f(x ) >f (x;), for all i 2 I, with
i 6 h, we contract the simplex (seeb); otherwise we replacex,, by x
and go to 2.

5. For the contraction, we rst check if we should try a partial outside
contraction or a partial inside contraction: If f(x ) f(xn), then we
try a partial inside contraction. To do so, we leave our indices as is and
apply (5.399. Otherwise, we try a partial outside contraction. This is
done by replacingxy, by x and applying (5.399. After the partial inside
or the partial outside contraction, we continue at 6.

6. Iff(x ) f(xn)3 we do atotal contraction of the simplex by replacing
Xi (xi + x1)=2, for all i 2 I. Otherwise, we replacex, by x . In both
cases, we continue frong.

3Nelder and Mead [NM65] use the strict inequality f(x ) >f (xn). However, if
the user writes the cost function value with only a few repres entative digits to a text
le, then the function looks like a step function if slow conv ergence is achieved. In
such cases,f (x ) might sometimes be equal to f (xn). Experimentally, it has been
shown advantageous to perform a total contraction rather th an continuing with a
re ection. Therefore, the strict inequality has been chang ed to a weak inequality.
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Fig. 5.6 shows a contour plot of a cost functionf : R" | R with a se-
guence of iterates generated by the Simplex algorithm. The equence starts
with constructing an initial simplex x1, X2, X3. X1 has the highest function
value and is therefore re ected, which generates<s. X4 is the best point in
the set fXxy1;X2;X3;X49. Thus, it is further expanded, which generatesxs. X,
X3 and x5 now span the new simplex. In this simplex,x3 is the vertex with
the highest function value and hence goes over tas and further to x;. The
process of re ection and expansion is continued again two thes, which leads to
the simplex spanned byx7, X9 and X11. X7 goes over toxi» which turns out to
be the worst point. Hence, we do a partial inside contraction which generates
X13. X13 IS better than X7 so we use the simplex spanned byg, X131 and Xi3
for the next re ection. The last steps of the optimization ar e for clarity not
shown.

5.7.3 Stopping Criteria

The rst criterion is a test of the variance of the function va lues at the
vertices of the simplex
0 I 1
1 Xt 1 Xt
@ )" - f(x) A< ? (5.41)
i=1 i=1

then the original implementation of the algorithm stops. Nelder and Mead
have chosen this stopping criterion based on the statistichproblem of nding

the minimum of a sum of squares surface. In this problem, the wrvature
near the minimum yields information about the unknown parameters. A slight
curvature indicates a high sampling variance of the estima¢. Nelder and Mead
argue that in such cases, there is no reason for nding the mimum point

with high accuracy. However, if the curvature is marked, then the sampling
variance is low and a higher accuracy in determining the optinal parameter
set is desirable.

Note that the stopping criterion ( 5.41) requires the variance of the function
values at the simplex vertices to be smaller than a prescribé limit. However,
if () has large discontinuities, which has been observed in buling energy
optimization problems [WWO03], then the test (5.41) may never be satis ed.
For this reason, among others, we do not recommend using thialgorithm if
the cost function has large discontinuities.
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5.7.4 O'Neill's Modi cation

O'Neill modi ed the termination criterion by adding a furth er condition [O'N71].
He checks whether any orthogonal step, each starting from tha best vertex of
the current simplex, leads to a further improvement of the cast function. He
therefore setsc = 0:001 and tests if

F(x) <f (%) (5.42a)
for all x de ned by
X, Xj+cse; i2f1;:::;ng; (5.42b)

where x; denotes the best known point, ands' and g are as in (5.40).

5.7.5 Modi cation of Stopping Criteria

In GenOpt, (5.42 has been modied. It has been observed that users
sometimes write the cost function value with only few repregntative digits to
the output le. In such cases, (5.429 is not satis ed if the write statement
in the simulation program truncates digits so that the di er encef (x;) f (x),
where f () denotes the value that is read from the simulation output | e, is
zero. To overcome this numerical problem, .42b) has been modi ed to

x=x +exp(j)cs &; i2f1:::;ng (5.42¢)

rst trial and increased by one as long asf (x;) = f (x).
If (5.429 fails for any direction, then x computed by (5.429 is the new

constructed. The point x that failed (5.429 is then used as the initial point x;
in (5.40.

Numerical experiments showed that during slow convergencthe algorithm
was restarted too frequently.

Fig. 5.7(a) shows a sequence of iterates where the algorithm was restad
too frequently. The iterates in the gure are part of the iter ation sequence near
the minimum of the test function shown in Fig. 5.7(b). The algorithm gets close
to the minimum with appropriately large steps. The last of th ese steps can be
seen at the right of the gure. After this step, the stopping criterion (5.41)
was satis ed which led to a restart check, followed by a new costruction of
the simplex. From there on, the convergence was very slow dut® the small
step size. After each step, the stopping criterion was satied again which led
to a new test of the optimality condition ( 5.423, followed by a reconstruction
of the simplex. This check is very costly in terms of functionevaluations and,
furthermore, the restart with a new simplex does not allow increasing the step
size, though we are heading locally in the right direction.
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(a) Sequence of iterates in the neighborhood of the (b) 2-dimensional test function \2D1".
minimum.

Figure 5.7: Nelder Mead trajectory.

O'Neill's modi cation prevents both excessive checking ofthe optimality
condition as well as excessive reconstruction of the initiasimplex. This is
done by checking for convergence only after a predeterminedumber of steps
(e.g., after ve iterations). However, the performance of the algorithm depends
strongly on this number. As an extreme case, a few test runs we done where
convergence was checked after each step as in Fif.7(a). It turned out that in
some cases no convergence was reached within a moderate nwaniof function
evaluations if in (5.41) is chosen too large, e.g., =10 3 (see Tab. 5.1).

To make the algorithm more robust, it is modi ed based on the following
arguments:

1. If the simplex is moving in the same direction in the last two steps, then
the search is not interrupted by checking for optimality since we are
making steady progress in the moving direction.

2. If we donot have a partial inside or total contraction immediately beyond
us, then it is likely that the minimum lies in the direction cu rrently being
explored. Hence, we do not interrupt the search with a restat.

These considerations have led to two criteria that both haveto be satis ed
to permit the convergence check according to%.41), which might be followed
by a check for optimality.

First, it is checked if we have done a partial inside contracton or a total
contraction. If so, we check if the direction of the latest two steps in which
the simplex is moving has changed by an angle of at least£ 2). To do so, we
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introduce the center of the simplex, de ned by
1 Xt
el Xi; (5.43)
i=1
where xj, i 2 f1;:::;ng, are the simplex vertices. We also introduce the
normalized direction of the simplex between two steps,

va

Xmk  Xmk 1 .
dy , ;
KXmk  Xmk 1K

(5.44)

wherek 2 N is the current iteration number.

We determine how much the simplex has changed its directiorly between
two steps by computing the inner product hdy 1;dki. The inner product is
equal to the cosine of the angledy ; and di. If

COS k = mk 1, dki 0; (5.45)

then the moving direction of the simplex has changed by at leat =2. Hence,
the simplex has changed the exploration direction. Therefee, a minimum
might be achieved and we need to test the variance of the verties 6.41), pos-
sibly followed by a test of (5.429.

Besides the above modi cation, a further modi cation was tested: In some
cases, a reconstruction of the simplex after a failed checks(429 yields to slow
convergence. Therefore, the algorithm was modied so thatti continues at
point 2 on page 51 without reconstructing the simplex after failing the test
(5.429. However, reconstructing the simplex led in most of the bewhmark
tests to faster convergence. Therefore, this modi cation $§ no longer used in
the algorithm.

5.7.6 Benchmark Tests

Tab. 5.1 shows the number of function evaluations and Fig.5.8 shows the
relative number of function evaluations compared to the orginal implementa-
tion for several test cases. The di erent functions and the mrameter settings
are given in the Appendix. The only numerical parameter that was changed
for the di erent optimizations is the accuracy,

It turned out that modifying the stopping criterion is e ect ive in most
cases, particularly if a new simplex is constructed after tke check 6.429 failed.
Therefore, the following two versions of the simplex algoihm are implemented
in GenOpt:

1. The base algorithm of Nelder and Mead, including the extesion of
O'Neill. After failing ( 5.429, the simplex is always reconstructed with
the new step size.

2. The base algorithm of Nelder and Mead, including the extesion of
O'Neill, but with the modied stopping criterion as explain ed above.
That is, the simplex is only reconstructed if its moving direction changed,
and if we have an inside or total construction beyond us.
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Accuracy
=10 3 =10 °

Test Rosen-| 2D1 Quad | Quad | Rosen-| 2D1 Quad | Quad
function brock with | with brock with | with

ma- | Q ma- ma- | Q ma-

trix trix trix trix
Original, 137 120 3061 | 1075 139 109 1066 | 1165
with recon-
struction
Original, 136 110 1436 | 1356 139 109 1433 | 1253
no recon-
struction
Modi ed, 145 112 1296 | 1015 152 111 1060 | 1185
with recon-
struction
Modi ed, 155 120 1371 | 1347 152 109 1359 | 1312
no recon-
struction

Table 5.1: Comparison of the number of function evaluations for di erent
implementations of the simplex algorithm. See Appendix fothe de nition of
the function.
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Figure 5.8: Comparison of the benchmark tests.
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5.7.7 Keywords
For the Simplex algorithm, the command le (see page88) must only con-
tain continuous parameters.

To invoke the Simplex algorithm, the Algorithm section of the GenOpt
command le must have following form;

Algorithm{
Main = NelderMeadONeill;
Accuracy = Double; /[ 0 < Accuracy
StepSizeFactor Double; // 0 < StepSizeFactor

BlockRestartCheck Integer; // 0 <= BlockRestartCheck
ModifyStoppingCriterion = Boolean;
}

The key words have following meaning:
Main The name of the main algorithm.

Accuracy The accuracy that has to be reached before the optimality codi-
tion is checked. Accuracy is de ned as equal to of (5.41), page 53.

StepSizeFactor A factor that multiplies the step size of each parameter for
(a) testing the optimality condition and (b) reconstructin g the simplex.
StepSizeFactor is equal tocin (5.40 and (5.429.

BlockRestartCheck Number that indicates for how many main iterations
the restart criterion is not checked. If zero, restart might be checked
after each main iteration.

ModifyStoppingCriterion Flag indicating whether the stopping criterion
should be modied. If true , then the optimality check (5.41) is done
only if both of the following conditions are satis ed: (a) in the last step,
either a partial inside contraction or total contraction wa s done, and (b)
the moving direction of the simplex has changed by an angle x of at
least (=2), where  is computed using 6.45).
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Figure 6.1: Interval division.

6 Algorithms for
One-Dimensional Optimization

6.1 Interval Division Algorithms

Interval division algorithm can be used to minimize a functionf : R! R,
(i.e., the function depends on one independent parameter dy) over a user-
speci ed interval. The algorithms do not require derivatives and they require
only one function evaluation per interval division, except for the initialization.

First, we explain a master algorithm for the interval divisi on algorithms.
The master algorithm is used to implement two commonly usedmterval division
algorithms: The Golden Section search and the Fibonacci Diision.

6.1.1 General Interval Division

We now describe the ideas behind the interval division methds. For given
X0;X3 2 R, with xg < x 3, let X , [Xg;X3]. Suppose we want to minimizef ()
on X, and suppose thatf : R! R has a unique minimizerx 2 X. For some
s 2 (0;1), let

X1, XotS(Xzs Xo); (6.1)
X2 , X1+ S(Xz Xi1): (6.2)
If f(x1) f(X2), then x 2 [Xo; Xx2]. Hence, we can eliminate the interval

(X2; X3] and restrict our search to Ko; x2]. Similarly, if f (x1) > f (x2), then
X 2 [X1; x3] and we can eliminate ko; X1). Thus, we reduced the initial inter-
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val to a new interval that contains the minimizer x .

Let i 2 N be the iteration number. We want to nest the sequence of
intervals

[XO;(i+1) » X3;(i+1) 1 [Xoi; Xail; i2f0;1;2;:::0; (6.3)

such that we have to evaluatef () in each step at one new point only. To do so,
we assign the new bounds of the interval such that either)o.(j+1y ; Xa;(i+1) ] =

[Xo;i; X2;i ], OF [Xo:(i+1) 5 Xa:¢i+1) ] = [ X155 X3;], depending on which interval has
to be eliminated. By doing so, we have to evaluate only one newpoint in

the interval. It remains to decide where to locate the new pont. The Golden

Section and Fibonacci Division di er in this decision.

6.1.2 Golden Section Interval Division

Suppose we have three pointxg <x1 <x3 in X R such that for some
g2 (0;1), to be determined later,

jXo  Xij
— =q 6.4a
JXo  X3] a ( )
Hence, . .
JX1  X3)
—— =1 : 6.4b
JXo  X3) a ( )

Suppose thatx, is located somewhere betweex; and x3 and de ne the
ratio . .
w, Xr X2 (6.5)
JXo  Xg]
Depending on which interval is eliminated, the interval in the next iteration
step will either be of length (g+ w) jxo Xsj, or (1 q)jxo Xzj. We select the
location of x, such that the two intervals are of the same length. Hence,

g+tw=1 q: (6.6a)

Now, we determine the fractiong. Since we apply the process of interval division
recursively, we know by scale similarity that

w

T g =q: (6.6b)
Combining (6.68) and (6.6b) leads to
o 39+1=0; (6.7a)
with solutions p_
3 5
o= —5— (6.7b)
Sinceq < 1 by (6.4a), the solution of interest is
P—
gq= 3 > 5 0:382 (6.7¢)
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The fractional distancesq 0:382 and 1 q 0:618 correspond to the
so-calledGolden Section which gives this algorithm its name.

Note that the interval is reduced in each step by the fraction1 g, i.e., we
have linear convergence In the m-th iteration, we have
Xoom  Xzzm] = JXum o Xam] = [Xojm+1) X3 (m+1) )
1 ™" jXo0 Xsof: (6.8)

Hence, the required number of iterations,m, to reduce the initial interval of
uncertainty jXo.0 Xs:.oj to at least a fraction r, de ned as

Xo;m  Xzim] _ Xym o Xzm].
jXo;0  X3;0] jXo0  Xs0f

(6.9)

is given by
Inr

= (6.10)

6.1.3 Fibonacci Division

Another way to divide an interval such that we need one function evaluation
per iteration can be constructed as follows: Given an initid interval [ Xo:i; X3:i]
, i =0, we divide it into three segments symmetrically around its midpoint.
Let di.; <dj; <ds;; denote the distance of the segment endpoints, measured
from Xo.i. Then we have by symmetry ds.; = di.; + dp.i. By the bracket
elimination procedure explained above, we know that we are laninating a
segment of lengthdy;;. Therefore, our new interval is of lengthds; (j+1y = dz;i.
By symmetry we also haveds. (j+1) = di;(i+1) + 02, (i+1) - Hence, if we construct
our segment length such thatds; (j+1y = dy;(j+1) + dp;(i+1) = Oz;i We can reuse
one known point. Such a construction can be done by usingibonacci numbers,
which are de ned recursively by

Fo » F1, L (6.11a)
F, F 1+F 2 12123 :::0 (6.11b)
The rst few numbers of the Fibonacci sequence aré1; 1; 2; 3; 5; 8; 13; 21; :::g.
The length of the intervals d;.; and da.;, respectively, are then given by
Fm i Fm ix

di.j = —; doj = ———; i2f0; 1 :::; mg; (6.12)
Fm i+2 Fm i+

where m > 0 describes how many iterations will be done. Note thatm must

be known prior to the rst interval division. Hence, the algo rithm must be
stopped after m iterations.

The reduction of the length of the uncertainty interval per i teration is given
by

Fm i

d3§ (i+1) _ d2;i _ Fm i+ _ Fm in . (6 13)
ds; i di;i + daj Fm—' + :zm—'ﬂ Fm i+
m o i+2 m i+2
Copyright (c) 1998-2008 62
The Regents of the University of California (through Lawrenc e Berkeley National Laboratory),

subject to receipt of any required approvals from U.S. Depar tment of Energy. All rights reserved.



GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.1.0 Simulation Research Group

After m iterations, we have

dgm _  Ozm  Osm 1) . ds20s1
ds; 0 da:(m 1) da:m 2y da;1 ds;o
FoFz3 .. Fm Fma _ 2

—= = = : 6.14
F3 F4 I:m+1 I:m+2 Fm+2 ( )

The required number of iterations m to reduce the initial interval ds.o to at
least a fraction r, de ned by (6.9), can again be obtained by expansion from

po= Gam _ Gamey _ Gsimeny  dgim L g2 da
ds; 0 ds; o d3m dgm 1 da1dso
= — = = : 6.15
F2 Fs3 Fm+1 Fm+2  Fm+2 (6.19)
Hence,m is given by
m=argmin mijr (6.16)

m2N I:m+2

6.1.4 Comparison of Ef ciency

The Golden Section is more e cient than the Fibonacci Division. Compar-
ing the reduction of the interval of uncertainty, jXo.m  X3.m]j, in the limiting
case form!1 , we obtain

jXo;m  X3:mlcs

. . Fm+2
| —— = | 1 M =0:95 17
mllm JXo;m  X3;m]F ml!rP 2 ( % 0:95 (6.17)

6.1.5 Master Algorithm for Interval Division

The following master algorithm explains the steps of the inerval division
algorithm.
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Algorithm 6.1.1 (Model Interval Division Algorithm)

Data : X0, X3.
Procedure that returns rj, de ned as
i, JXoii  XzijFXo;0  Xs;0)-
Step 0: Initialize
X = X3 Xop,
Xo = Xg+ 1 X,
X1 =Xgt+ o X,
f1="1(x1), f2 = f(x2), and

i =2.
Step 1: Iterate.
Replacei by i + 1.
If (f2<f1)
SetXg = X1, X1 = Xo,
fi= 1>,
Xo = X3 i X,and
f2 = f(x2).
else
Set X3 = Xo, X2 = Xq,
fo= 14,
X1=Xo+TIi X,
f1=1f(x).
Step 2: Stop or go to Step 1.

6.1.6 Keywords
For the Golden Section and the Fibonacci Division algorithm, the com-
mand le (see page88) must contain only one continuous parameter.

To invoke the Golden Section or the Fibonacci Division algoithm, the
Algorithm Section of the GenOpt command le must have following form:

Algorithm{
Main = GoldenSection | Fibonacci;
[AbsDiffFunction Double; | /I 0 < AbsDiffFunction

IntervalReduction = Double; ] // 0 < IntervalReduction

}

The keywords have following meaning
Main The name of the main algorithm.

The following two keywords are optional. If none of them is sgci ed, then
the algorithm stops after Maxlte function evaluations (i.e., after Maxlte 2
iterations), where Maxlte is specied in the section OptimizationSettings

If both of them are speci ed, an error occurs.
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AbsDiffFunction  The absolute di erence de ned as
f, jminff (Xo); f (x3)g minff (x1); f (x2)gj: (6.18)

If f is lower than AbsDiffFunction , the search stops successfully.
Note: Since the maximum number of interval reductions must be knowm
for the initialization of the Fibonacci algorithm, this key word can be
used only for the Golden Section algorithm. It must not be spei ed for
the Fibonacci algorithm.

IntervalReduction  The required maximum fraction, r, of the end interval
length relative to the initial interval length (see equation (6.9)).
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7 Algorithms for Parametric
Runs

Parametric runs can be used to determine how sensitive a fution is with
respect to a change in the independent variables.

7.1 Parametric Runs by Single Variation

7.1.1 Algorithm Description

The Parametric algorithm allows doing parametric runs where one param-
eter at a time is varied and all other parameters are xed at their initial values
(speci ed by the keyword Ini ). Each parameter must have a lower and upper
bound. For the logarithmic scale, lower and upper bound mustbe bigger than
zero. To allow negative increments, the lower bound can be lger than the
upper bound. The absolute value of the keywordStep de nes in how many
intervals each coordinate axis will be divided. If Step < 0, then the spacing is
logarithmic, otherwise it is linear. Set Step = 0 to keep the parameter always
xed at the value specied by Ini .

Next, we explain how the spacing is computed. For simplicity the expla-
nation is done for one parameter. Letl , Min, u, Maxand m, jStepj, where
Min, Maxand Step are speci ed in the command le.

If Step < 0, we compute, fori 2 0;:::; mg,
p = —log—; (7.1a)
xi = 110" (7.1b)

i
Xi =1+ E(u N: (7.1c)
Example 7.1.1 (Parametric run with logarithmic and linear s pacing)
Suppose the parameter speci cation is of the form
Vary{
Parameter{ Name = x1; Ini = 5; Step = -2; Min = 10; Max = 1000; }
Parameter{ Name = x2; Ini = 3; Step = 1; Min = 2; Max = 20; }

}

and the cost function takes two arguments,x;; X2 2 R. Then, the cost function
will be evaluated at the points

(x1;X2) 2 f(10;3); (100; 3); (100G 3); (5;2); (5;20)0. 0
Copyright (c) 1998-2008 66
The Regents of the University of California (through Lawrenc e Berkeley National Laboratory),

subject to receipt of any required approvals from U.S. Depar tment of Energy. All rights reserved.



GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.1.0 Simulation Research Group

7.1.2 Keywords

For this algorithm, the command le (see page 88) can contain both, con-
tinuous and discrete parameters.

The Parametric algorithm is invoked by the following speci cation in the
command le:

Algorithm{
Main = Parametric;
StopAtError = true | false;

}

The keywords have following meaning:
Main The name of the main algorithm.

StopAtError If true , then the parametric run stops if a simulation error
occurs. If false , then the parametric run does not stop if a simulation
error occurs. The failed function evaluation will be assigrd the function
value zero. For information, an error message will be writte to the user
interface and the optimization log le.

Note that the whole section OptimizationSettings  of the command le
is ignored.

7.2 Parametric Runs on a Mesh

7.2.1 Algorithm Description

The EquMeshalgorithm allows making parametric runs on an orthogonal,
equidistant grid that is spanned in the space of the independnt parameters.
To do so, each independent parameter must have a lower and ugp bound.
The value of Step (which must be an integer greater than or equal to zero)
speci es into how many intervals each axis will be divided. The spacing is
computed according to (7.19. Hence, we also allowMin > Max

Example 7.2.1 (Parametric run on a mesh)
Suppose the parameter speci cation is of the form
Vary{
Parameter{ Name
Parameter{ Name

x0; Min
x1; Min

-10; Ini = 99; Max = 10; Step
1; Ini = 99; Max = -1; Step

1; }
2;}

}

and the cost function takes two arguments,x;; X, 2 R. Then, the cost function

will be evaluated at the points
(x1;%x2) 2, f( 10; 1), (10; 1), ( 1G; 0), (10; 0), ( 10; 1), (10; 1)g. 0

If the value of Step is equal to zero, then this parameter is xed at the
value speci ed by Min.
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Note that the number of function evaluations increases expoentially with
the number of independent parameters. For example, a 5-dimesional grid with
2 intervals in each dimension requires 3 = 243 function evaluations, whereas
a 10-dimensional grid would require 3° = 59049 function evaluations.

7.2.2 Keywords

For this algorithm, only continuous parameters but no discrete parameters
are allowed (see command le, page8).

The EquMeshalgorithm is invoked by the following speci cation in the
command le:

Algorithm{
Main = EquMesh;
StopAtError = true | false;

}

The keywords have following meaning:
Main The name of the main algorithm.

StopAtError If true , then the parametric run stops if a simulation error
occurs. If false , then the parametric run does not stop if a simulation
error occurs. The failed function evaluation will be assigmed the function
value zero. For information, an error message will be writte to the user
interface and the optimization log le.

Note that the whole section OptimizationSettings  of the command le
is ignored.
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8 Constraints

For some optimization problems it is necessary to impose catraints on the
independent variables and/or the dependent variables, ashe following example
shows.

Example 8.0.2 Suppose we want to minimize the heating energy of a build-
ing, and suppose that the normalized mass owm_of the heating system is
an independent variable, with constraints 0 m 1. Without using con-
straints, the minimum energy consumption would be achievedfor m = 0,
since then the heating system is switched o. To solve this poblem, we
can impose a constraint on a dependent variable. One possiliy is to add
a \penalty" term to the energy consumption. This could be such that every
time a thermal comfort criterion (which is a dependent variable) is violated, a
large positive number is added to the energy consumption. Ths, if ppd(x),
with ppd: R" ! R, denotes the predicted percent of dissatis ed people (in
percentage), and if we require that ppd&) 10%, we could use the inequality
constraint g(x) , ppd(x) 10 O. 0

In Section 8.1.1, the method that is used in GenOpt to implement box
constraints is described. In Section8.2, penalty and barrier methods that can
be used to implement constraints on dependent variables ardescribed. They
involve reformulating the cost function and, hence, are prdlem specic and
have to be implemented by the user.

8.1 Constraints on Independent Variables

8.1.1 Box Constraints

Box constraints are constant inequality constraints that de ne a feasible
set as _ ' '
X, x2R"jI' x'" J;i2f1:::;ng; (8.1)

where 1 '<ul 1 fori2fl;:::;ng.

In GenOpt, box constraints are either implemented directly in the opti-
mization algorithm by setting f (x) = 1 for unfeasible iterates, or, for some
algorithms, the independent variable x 2 X is transformed to a new uncon-
strained variable which we will denote in this section byt 2 R".

Instead of optimizing the constrained variable x 2 X, we optimize with
respect to the unconstrained variablet 2 R". The transformation ensures that
all variables stay feasible during the iteration process. h GenOpt, the follow-
ing transformations are used:

If I x', for somei 2f1;:::;ng,
i P
t = X! It (823)
X' = I+ ()2 (8.2b)
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If 1T x' uf, for somei 2f1;::::ng,
|
i . ' X i .
t' = arcsin TR ; (8.2¢c)
x' = I +(u 1) sin?t: (8.2d)

If X' u', for somei 2f1;::::ng,

[I— P i i-
t = ut o ox (8.2e)

! u' (ti)zz (8.2f)

X

8.1.2 Coupled Linear Constraints

In some cases the constraints have to be formulated in termsfoa linear
system of equations of the form

AX = b; (8.3)
whereA2 R™ R", x2R", b2 R™, and rank(A) = m.

There are various algorithms that take this kind of restriction into account.
However, such restrictions are rare in building simulationand thus not imple-
mented in GenOpt. If there is a need to impose such restrictias, they can be
included by adding an appropriate optimization algorithm and retrieving the
coe cients by using the methods o ered in GenOpt's class Optimizer .

8.2 Constraints on Dependent Variables

We now discuss the situation where the constraints are nonihear and de-
ned by
gx) O (8.4)

whereg: R" ! R™ is once continuously di erentiable. (8.4) also allows formu-
lating equality constraints of the form

h(x)=0; (8.5)

for h: R" I R™, which can be implemented by using penalty functions. In

non-negative, the only feasible value ig( ) = 0. Thus, we will only discuss the
case of inequality constraints of the form @.4).

Such a constraint can be taken into account by addingpenalty or barrier
functions to the cost function, which are multiplied by a positive weighting fac-
tor that is monotonically increased (for penalty functions) or monotonically
decreased to zero (for barrier functions).

We now discuss the implementation of barrier and penalty furctions.
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8.2.1 Barrier Functions

Barrier functions impose a punishment if the dependent varable gets close
to the boundary of the feasible region. The closer the variale is to the bound-
ary, the higher the value of the barrier function becomes.

To implement a barrier function for g(x) 0, whereg: R" ! R™ is a continu-
ously di erentiable function whose elements are strictly monotone increasing,
the cost function f : R" ! R can be modi ed to

1

fx; ), f(x)+ lezlw

(8.6)

wheref®: R" R! R. The optimization algorithm is then applied to the new
function f(x; ). Note that ( 8.6) requires that x is in the interior of the feasible
sett.

A drawback of barrier functions is that the boundary of the feasible set
can not be reached. By selecting the weighting factors smallone can get close
to the boundary. However, too small a weighting factor can case the cost
function to be ill-conditioned, which can cause problems fo the optimization
algorithm.

Moreover, if the variation of the iterates between successe iterations is
too big, then the feasible boundary can be crossed. Such a babior must be
prevented by the optimization algorithm, which can produce additional prob-
lems.

For barrier functions, one can start with a moderately largeweighting factor
and let tend to zero during the optimization process. That s, one castructs
a sequence
0> 11> > . >i> 0 (8.7)
Section 8.2.3shows how ; can be computed in the coarse of the optimization.
Barrier functions do not allow formulating equality constr aints of the form (8.5).

8.2.2 Penalty Functions

In contrast to barrier functions, penalty functions allow crossing the bound-
ary of the feasible set, and they allow implementation of eqality constraints
of the form (8.5). Penalty functions add a positive term to the cost function if
a constraint is violated.

To implement a penalty function for g(x) 0, whereg: R" ! R™ is once
continuously di erentiable and each element is strictly monotone decreasing,
the cost function f : R" ! R can be modi ed to

NG
ex; ), fx)+ max(0; @' (x))?; (8.8)
i=1

wherefé: R® R! Ris once continuously di erentiable in x. The optimization
algorithm is then applied to the new function &(x; ).

l.e., x satis es the strict inequality g(x) > 0.
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As for the barrier method, selecting the weighting factor is not trivial.
Too small a value for produces too big a violation of the constraint. Hence,
the boundary of the feasible set can be exceeded by an unacdaple amount.
Too large a value of can lead to ill-conditioning of the cost function, which
can cause numerical problems.

The weighting factors have to satisfy
0< og<::i< i< a1 <103 (8.9)
with ;11 ,asi!l . See Sectior8.2.3for how to adjust ;.

8.2.3 Implementation of Barrier and Penalty Functions

We now discuss how the weighting factors ; can be adjusted. Fori 2 N,
let x ( i) be de ned as the solution

x (i), argminfx; i); (8.10)

where f&(x; ;) is as in (8.6) or (8.8), respectively. Then, we initialize i = 0,
select an initial value ¢ > 0 and computex ( o). Next, we selecta +1 such
that it satis es ( 8.7) (for barrier functions) or ( 8.9) (for penalty functions), and
compute X ( j+1 ), using the initial iterate x ( i), and increase the counteri
to i +1. This procedure is repeated until ; is su ciently close to zero (for
barrier functions) or su ciently large (for penalty functi ons).

To recompute the weighting factors , users can request GenOpt to write
a counter to the simulation input le, and then compute ; as a function of
this counter. The value of this counter can be retrieved by sting the keyword
WriteStepNumber in the optimization command le to true , and specifying
the string %stepNumber% the simulation input template le. GenOpt will
replace the string %stepNumberdith the current counter value when it writes
the simulation input le. The counter starts with the value 1 and its increment
is 1.

Users who implement their own optimization algorithm in GenOpt can call
the method increaseStepNumber(...)  in the classOptimizer to increase the
counter. If the keyword WriteStepNumber in the optimization command le is
set to true , the method calls the simulation to evaluate the cost functon for
the new value of this counter. If WriteStepNumber is false , no new function
evaluation is performed by this method since the cost functbn does not depend
on this counter.

Copyright (c) 1998-2008 72
The Regents of the University of California (through Lawrenc e Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Depar tment of Energy. All rights reserved.



GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.1.0 Simulation Research Group
Input Files
initialization: Speci cation of le location
(input les, output les, log les, etc.)
command: Speci cation of parameter names, initial values,
upper/lower bounds, optimization algorithm, etc.
con guration: Con guration of simulation program

(error indicators, start command, etc.)
simulation input template: Templates of simulation input les

c
i)
o - simulation ©
initialization command con guration input template g
| g
- - (@)
simulation output 1
retrieval e
output 8
©
=]
£
)
Bt  ——T
log program
call
: Simulation
input I Program

Figure 9.1: Interface between GenOpt and the simulation program that e-
uates the cost function.

9 Program

GenOpt is divided into a kernel part and an optimization part. The kernel
reads the input les, calls the simulation program, stores the results, writes
output les, etc. The optimization part contains the optimi zation algorithms.
It also contains classes of mathematical functions such ashbse used in linear
algebra.

Since there is a variety of simulation programs and optimizdion algorithms,
GenOpt has a simulation program interface and an optimizaton algorithm in-
terface. The simulation program interface allows using anysimulation software
to evaluate the cost function (see below for the requiremerst on the simulation
program), and allows implementing new optimization algorithms with little
e ort.

9.1 Interface to the Simulation Program

Text les are used to exchange data with the simulation program and to
specify how to start the simulation program. This makes it possible to couple
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any simulation program to GenOpt without requiring code adaptation on either
the GenOpt side or the simulation program side. The simulatbn program must
satisfy the following requirements:

1. The simulation program must read its input from one or moretext les,
must write the value of the cost function to a text le, and must write
error messages to a text le.

2. It must be able to start the simulation program by a command and the
simulation program must terminate automatically. This means that the
user does not have to open the input le manually and shut downthe
simulation program once the simulation is nished.

The simulation program may be a commercially available progam or one
written by the user.

9.2 Interface to the Optimization Algorithm

The large variety of optimization algorithms led to the development of
an open interface that allows easy implementation of optimzation algorithms.
Users can implement their own algorithms and add them to the ibrary of avail-
able optimization algorithms without having to adapt and re compile GenOpt.
To implement a new optimization algorithm, the optimizatio n algorithm must
be written according to the guidelines of Section9.4. Thus, GenOpt can not
only be used to do optimization with built-in algorithms, bu t it can also be
used as a framework for developing, testing and comparing djmization algo-
rithms.

Fig. 9.2 shows GenOpt's program structure. The classOptimizer is the
superclass of each optimization algorithm. It o ers all the functions required
for retrieval of parameters that specify the optimization settings, performing
the evaluation of the cost function and reporting results. For a listing of its
methods, seénttp://SimulationResearch.Ibl.gov or the Javadoc code doc-
umentation that comes with GenOpt's installation.

9.3 Package genopt.algorithm

The Java packagegenopt.algorithm consists of all classes that contain
mathematical formulas that are used by the optimization algorithm. The fol-
lowing packages belong tagenopt.algorithm

genopt.algorithm  This package contains all optimization algorithms. The
abstract classOptimizer , which must be inherited by each optimization
algorithm, is part of this package.

genopt.algorithm.util.gps contains a model Generalized Pattern Search
optimization algorithm.

genopt.algorithm.util.linesearch contains classes for doing a line search
along a given direction.
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Optimization
Algorithm

Utility Classes

Shared library
for commonly
used methods,
e.g., for

- linear algebra

- optimality check
Optimizer - line search

GenOpt
Kernel

Optimization
Algorithm

External

Simulation - etc.

Program Opt|m|Zat|0n

Algorithm

Simulation Program Superclass "Optimizer"
Any simulation program with O ers methods to easily access
text-based 1/0, e.g., GenOpt's kernel, e.g., for
- EnergyPlus - input retrieving
- SPARK - cost function evaluation
- DOE-2 - result reporting
- TRNSYS - error reporting

- etc. - etc.

Figure 9.2: Implementation of optimization algorithms into GenOpt.
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genopt.algorithm.util.math contains classes for mathematical operations.
genopt.algorithm.util.optimality contains classes that can be used to

check whether a variable value is at a minimum point or not.

genopt.algorithm.util.pso contains a model Particle Swarm Optimiza-

tion algorithm.

These packages are documented in the Javadoc source code do@ntation that
comes with GenOpt's.

9.4

Implementing a New Optimization Algorithm

To implement a new optimization algorithm, you must write a J ava class
that has the syntax shown in Fig. 9.3, The class must use the methods of
the abstract class Optimizer to evaluate the cost function and to report the
optimization steps. The methods of the Optimizer class are documented in
the Javadoc source code documentation.

Follow these steps to implement and use your own optimizatio algorithm:

1.
2.

Put the byte-code (ClassNameclass ) in the directory genopt/algorithm

Set the value of the keywordMain in the Algorithm section of the op-
timization command le to the name of the optimization class (without
le extension).

Add any further keywords that the algorithm requires to th e Algorithm
section. The keywords must be locatedafter the entry Main of the opti-
mization command le. The keywords must be in the same sequete as
they are called in the optimization code.

Call the method Optimizer.report(final Point, final boolean) af-
ter evaluating the cost function. Otherwise, the result will not be re-
ported.

Call either the method Optimizer.increaseStepNumber()  or the method
Optimizer.increaseStepNumber(final Point) after the optimization
algorithm converged to some point. These methods increase eounter
that can be used to add penalty or barrier functions to the co$ func-
tion. In particular, the methods Optimizer.increaseStepNumber()
and Optimizer.increaseStepNumber(finalPoint) increase the vari-
able stepNumber(see Section8) by one.
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package genopt.algorithm;

import genopt.GenOpt;
import genopt.lang.OptimizerException;
import genopt.io.InputFormatException;

public class ClassName extends Optimizer f

public ClassName (GenOpt genOptData)
throws InputFormatException, OptimizerException,
IOException, Exception

/I set the mode to specify whether the

/I default transformations for the box
/I constraints should be used or not
int constraintMode = XxXxxx;

super(genOptData, constraintMode);

/I remaining code of the constructor
g

public int run() throws OptimizerException, IOException
f
/I the code of the optimization algorithm

g

/[ add any further methods and data members

Figure 9.3: Code snippet that species how to implement an optimization
algorithm.
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10 Installing and Running
GenOpt

10.1 System Requirements
To run GenOpt and the GenOpt installation program, a Java 2 v1.5.0 run-

time environment is required. Java may be obtained fromhttp://java.sun.com
GenOpt should run on any operating system that can run Java aplications.

10.2 Installing and uninstalling GenOpt

To install GenOpt, download the installation program genopt-install.jar

from http://SimulationResearch.Ibl.gov/GO . Then, either double-click on
the le genopt-install.jar L or open a command shell, change to the direc-
tory that contains genopt-install.jar and type

java -jar genopt-install.jar

No environment variables need to be set to run GenOpt. (This § new since
GenOpt 2.1.0.)
To uninstall GenOpt, delete the directory in which GenOpt was installed.

10.3 Running GenOpt

10.3.1 Running GenOpt from the le explorer

To run GenOpt from the le explorer, double-click on the le genopt.jar .
This will start the graphical user interface. From the graphical user interface,
selectFile , Start...  and select a GenOpt initialization le.

10.3.2 Running GenOpt from the command line

GenOpt can also be run as a console application, either with owithout
the graphical user interface. To run GenOpt as a console appation with the
graphical user interface, open a shell, change to the direoty that contains
genopt.jar and type

java -jar genopt.jar [initializationFile]

where [initializationFile] is an optional argument that can be replaced
with the GenOpt initialization le (see example below). To start GenOpt
without the graphical user interface, type

java -classpath genopt.jar genopt.GenOpt [initializatio nFile]

!Depending on your Java installation, the le extension jar may not be associated
with Java. In this situation, please consult the instructio ns of your operating system
for how to associate le extensions with programs.
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Figure 10.1: Output of GenOpt on Mac OS X for the example le in the
directory example/quad/GPSHookeJeeves

For instance, to run the example le provided with GenOpt tha t minimizes
a quadratic function using the Hooke-Jeeves algorithm, tyg on Mac OS X

java -jar genopt.jar example/quad/GPSHookeJeeves/optMa cOSX.ini
on Linux

java -jar genopt.jar example/quad/GPSHookeJeeves/optLi nux.ini
and on Windows

java -jar genopt.jar example\quad\GPSHookeJeeves\optWi  nXP.ini

This should produce the window shown in Fig.10.1
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11 Setting Up an Optimization
Problem

We will now discuss how to set up an optimization problem.

First, de ne a cost function. The cost function is the functi on that needs
to be minimized. It must be evaluated by an external simulation program
that satis es the requirements listed on page74. To maximize a cost function,
change the sign of the cost function to turn the maximization problem into a
minimization problem.

Next, specify possible constraints on the independent vagbles or on de-
pendent variables (dependent variables are values that areomputed in the
simulation program). To do so, use the default scheme for boxconstraints
on the independent variables or add penalty or barrier functons to the cost
function as described in Chapter8.

Next, make sure that the simulation program writes the cost function value
to the simulation output le. It is important that the cost function value is
written to the output le without truncating any digits (see Section11.3. For
example, if the cost function is computed by a Fortran program in double
precision, it is recommended to use theE24.16 format in the write statement.

In the simulation output le, the cost function value must be indicated by
a string that stands in front of the cost function value (see page 85).

Then, specify the les described in Sectionl1.1and, if required, implement
pre- and post-processing, as described in Sectighl.2

11.1 File Speci cation

This section de nes the le syntax for GenOpt. The directory example of
the GenOpt installation contains several examples.

The following notation will be used to explain the syntax:

1. Text that is part of the le is written in  fixed width fonts

2. | stands for possible entries. Only one of the entries that areseparated
by | is allowed.

3. [ ] indicates optional values.
4. The le syntax follows the Java convention. Hence,
(@) /I indicates a comment on a single line,
(b) /* and */ enclose a comment,
(c) the equal sign,=, assigns values,
(d) a statement has to be terminated by a semi-colon;; ,
(e) curly braces,{ } , enclose a whole section of statements, and
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(f) the syntax is case sensitive.

The following basic types are used:

String Any sequence of characters.

If the sequence contains a blank character,

it has to be enclosed in apostrophes"().

If there are apostrophes within quoted text,

they must be speci ed by a leading backslash (i.e.\" ).
Similarly, a backslash must be preceded by another
backslash (i.e.,"c:\\\go_prg" ).

StringReference | Any name of a variable that appears in the same section.
Integer Any integer value.

Double Any double value (including integer).

Boolean Either true or false

The syntax of the GenOpt les is structured into sections of parameters
that belong to the same object. The sections have the form

ObjectKeyWord { Obiject }

where Object can either be another ObjectKeyWord or an assignment of the
form

Parameter = Value ;

Some variables can be referenced. References have to be vt in the
form

Parameter = ObjectKeyWord1.ObjectKeyWord2.Value ;

where ObjectKeyWord1lrefers to the root of the object hierarchy as specied
in the corresponding le.

11.1.1 Initialization File
The initialization le species
1. where the les of the current optimization problems are located,
2. which simulation les the user likes to have saved for late inspection,

3. what additional strings have to be passed to the command tht starts
the simulation (such as the name of the simulation input le),

4. what number in the simulation output le is a cost function value,

5. whether and if so, how, the cost function value(s) have to le post-
processed, and

6. which simulation program is being used.
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The sections must be speci ed in the order shown below. The ater of the
keywords in each section is arbitrary, as long as the numberghat follow some
keywords (such asFilel ) are in increasing order.

The initialization le syntax is

Simulation {
Files {
Template {
Filel = String | StringReference;
[ Pathl = String | StringReference; ]
[ File2 = String | StringReference;
[ Path2 = String | StringReference; ]

[..]]

Input { // the number of input file must be equal to
/I the number of template files

Filel = String | StringReference;
[ Pathl = String | StringReference; ]
[ SavePathl = String | StringReference; ]

[ File2 = String | StringReference;

[ Path2 = String | StringReference; ]

[ SavePath2 = String | StringReference; ]

[ 1]

}
Log {
The Log section has the same syntax as thmput section.
}
Output {
The Output section has the same syntax as thiaput section.
}

Configuration {
Filel = String | StringReference;
[ Pathl = String | StringReference; ]
}
} /I end of section Simulation.Files
[CallParameter {
[Prefix = String | StringReference;]
[Suffix = String | StringReference;]

1
[ObjectiveFunctionLocation {
Namel = String;
Delimiterl = String | StringReference; | Functionl = String ;
[ Name2 = String;
Delimiter2 = String | StringReference; | Function2 = String ;
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[ 1]
1]

} // end of section Simulation
Optimization {
Files {
Command {
Filel = String | StringReference;
[ Pathl = String | StringReference; ]
}
}

} // end of section Optimization
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The sections have the following meaning:

Simulation.Files. Template GenOpt writes the value of the independent
variables to the simulation input les. To do so, GenOpt reads the simu-
lation input template les, replaces each occurrence d¥variableName%
by the numerical value of the corresponding variable, and tle result-
ing le contents are written as the simulation input les. Th e string
%variableName%efers to the name of the variable as specied by the
entry Namen the optimization command le on page 88.

The independent variables can be written to several simulabn input
les if required. To do so, specify as manyFilei and Pathi assignments
as necessary (wheré stands for a one-based counter of the le and path
name). Note that there must obviously be the same number of ks and
paths in the Input section that follows this section.

If there are multiple simulation input template les, each le will be
written to the simulation input le whose keyword ends with t he same
number.

The following rules are imposed:

1. Each variable name speci ed in the optimization command le must
occur in at least one simulation input template le or in at le ast one
function that is speci ed in the section ObjectiveFunctionLocation
below.

2. Multiple occurrences of the same variable name are allowkin the
same le and in the same function speci cation (as speci ed ty the
keyword Functioni ,i =1;2;:::).

3. Ifthe value WriteStepNumberin the section OptimizationSettings
of the optimization command le is set to true , then rule 1 and 2
apply also to %stepNumber%f WriteStepNumber is set to false ,
then %stepNumber%an occur, but it will be ignored.

Simulation.Files.Input The simulation input le is generated by GenOpt
based on the current parameter set and the corresponding siofation in-
put template le, as explained in the previous paragraph. Obviously, the
number of simulation input les must be equal to the number of simula-
tion input template les.

The sectionlnput has an optional keyword, calledSavePath. If SavePath
is speci ed, then the corresponding input le will after each simulation

be copied into the directory speci ed by SavePath. The copied le will

have the same name, but with the simulation number added as & x.

Simulation.Files.Log GenOpt scans the simulation log le for error mes-
sages. The optimization terminates if any of the strings spei ed by the
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variable ErrorMessage in the SimulationError  section of the GenOpt
con guration le is found. At least one simulation log le mu st be spec-
ied.

The section Log also has the optional keywordSavePath. It has the
same functionality as explained in the previous section.

Simulation.Files.Output GenOpt reads the cost function value from this
le. GenOpt assumes that the value that is written after the last occur-
rence of the string speci ed by Delimiteri (i =1;2;:::) in the section
ObjectiveFunctionLocation  is the cost function value. The number
of cost function values is arbitrary (but at least one must be speci ed).
The optimization algorithms minimize the rst cost functio n value. The
other values can be used for post-processing of the simulaih output.
They will also be reported to the output les and the online chart.

GenOpt searches for the cost function value as follows:

1. After the rst simulation, GenOpt searches for the rst co st func-
tion value in the rst output le. The number that occurs afte r the
last occurrence of the string speci ed by the variableDelimiteri
(i = 1;2;:::) in the section ObjectiveFunctionLocation is as-
sumed to be the cost function value. If the rst output le doe s
not contain the rst cost function value, then GenOpt reads the
second output le (if present) and so on until the last output le is
read. If GenOpt cannot nd the cost function value in any of the
output les or function de nitions, it will terminate with a n error.
The same procedure is repeated with the second cost functiovalue
(if present) until all cost function values have been found.

2. In the following iterations, GenOpt will only read the le (s) where it
found the cost function value(s) after the rst simulation. The les
that did not contain a cost function value after the rst simu lation
will not be read anymore.

This section also contains the optional keywordSavePath. If this key-
word is speci ed, then GenOpt copies the output le. This is particularly
useful for doing parametric runs.

Simulation.Files.Configuration The entries in this section specify the
simulation con guration le, which contains information t hat is related
to the simulation program only, but not related to the optimi zation prob-
lem. The simulation con guration le is explained below.

Simulation.CallParameter  Here, a pre x and su x for the command that
starts the simulation program can be added. With these entres, any
additional information, such as the name of the weather le, can be
passed to the simulation program. To do so, one has to refer teither of
these entries in the argument of the keywordComman(see pages7).
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Simulation.ObjectiveFunctionLocation This section speci es where the

cost function values can be found in the simulation output les, and
possibly how these values have to be post-processed befoteey will be
passed to the optimization algorithm.

GenOpt reads the value after the last occurrence of Delimiteri (i
= 1;2;:::) as the cost function value. The value ofNameiis used to
label the results in the output reports.

Alternatively to the entry Delimiteri , an entry Functioni can be spec-
i ed to de ne how the cost function values should be post-processed. See
page 92 for an example.

For convenience, the sectionObjectiveFunctionLocation  can option-
ally be speci ed in the initialization le, but its speci ca tion is required
in the con guration le. If this section is speci ed in both  les, then the
speci cation in the initialization le will be used.

Specifying the sectionObjectiveFunctionLocation  in the initialization

le is of interest if a simulation program is used for di erent problems
that require di erent values of this section. Then, the same (simulation
program speci c) con guration le can be used for all runs and the dif-
ferent settings can be specied in the (project dependent) iitialization

le rather than in the con guration le.

Optimization.Files.Command This section speci es where the optimiza-
tion command le is located. This le contains the mathemati cal infor-
mation of the optimization. See page88 for a description of this le.

11.1.2 Con guration File

The con guration le contains information related only to t he simulation
program used and not to the optimization problem. Hence, it has to be written
only once for each simulation program and operating systemWe recommend
to put this le in the directory cfg so that it can be used for dierent op-
timization projects. Some con guration les are provided with the GenOpt
installation.
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The syntax is speci ed by

/I Error messages of the simulation program.
SimulationError{
ErrorMessage = String;
[ErrorMessage = String;
[ 1]
}

/I Number format for writing simulation input files.
10{

NumberFormat = Float | Double;
}

/I Specifying how to start the simulation program.
SimulationStart{

Command = String;

WritelnputFileExtension = Boolean;

}

/I Specifying the location of the
/I cost function value in the simulation output file
ObjectiveFunctionLocation{

Namel = String;
Delimiterl = String | StringReference; | Functionl = String ;
[ Name2 = String;
Delimiter2 = String | StringReference; | Function2 = String ;

[ 1]
}

The entries have the following meaning:

SimulationError  The error messages that might be written by the simu-
lation program must be assigned to the keywordErrorMessage so that
GenOpt can check whether the simulation has completed sucessfully.
At least one entry for ErrorMessage must be given.

I0 The keyword NumberFormaspeci es in what format the independent pa-
rameters will be written to the simulation input le. The set ting Double
is recommended, unless the simulation program cannot reachis number
format.

SimulationStart  The keyword Commanspeci es what string must be used
to start the simulation program. It is important that this co mmand waits
until the simulation terminates (see the directory cfg for examples). The
value of the variable Commani$ treated in a special way: Any value of
the optimization initialization le can be automatically ¢ opied into the
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value of Commandro do so, surround the reference to the corresponding
keyword with percent signs. For example, a reference to the dyword
Prefix of the initialization le looks like

%Simulation.CallParameter.Prefix%

By setting WritelnputFileExtension to false , the value of the key-
word Simulation.Input.Filei (where i stands for 1, 2, 3) is copied
into Commanand the le extension is removed.

ObjectiveFunctionLocation Note that this section can also be speci ed in
the initialization le. The section in this le is ignored if this section is
also speci ed in the con guration le. See page 86 for a description.

11.1.3 Command File

The command le speci es optimization-related settings such as the inde-
pendent parameters, the stopping criteria and the optimizdion algorithm being
used. The sequence of the entries in all sections of the comma le is arbitrary.

There are two di erent types of independent parameters, continuous pa-
rameters and discrete parameters Continuous parameters can take on any
values, possibly constrained by a minimum and maximum value Discrete pa-
rameters can take on only user-speci ed discrete values, tbe speci ed in this
le.

Some algorithms require all parameters to be continuous, oall parameters
to be discrete, or allow both continuous and discrete parameers. Please refer
to the algorithm section on page15-68.

a) Specication of a Continuous Parameter
The structure for a continuous parameter is

/I Settings for a continuous parameter
Parameter{

Name = String;

Ini = Double;

Step = Double;

[ Min = Double | SMALL,; ]

[ Max = Double | BIG; ]

[ Type = CONTINUOUS; ]
}

The entries are:

NameThe name of the independent variable. GenOpt searches the riula-
tion input template les for this string { surrounded by perc ent signs {
and replaces each occurrence by its numerical value beforewrites the
simulation input les.
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Ini Initial value of the parameter.

Step Step size of the parameter. How this variable is used dependsn
the optimization algorithm being used. See the optimizatin algorithm
descriptions for details.

Min Lower bound of the parameter. If the keyword is omitted or setto
SMALLthe parameter has no lower bound.

Max Upper bound of the parameter. If the keyword is omitted or setto BIG,
the parameter has no upper bound.

Type Optional keyword that speci es that this parameter is conti nuous. By
default, if neither Type nor Values (see below) are speci ed, then the
parameter is considered to be continuous and theParameter section
must have the above format.

b) Speci cation of a Discrete Parameter

For discrete parameters you need to specify the set of admigsde values.
Alternatively, if a parameter is spaced either linearly or logarithmically, specify
the minimum and maximum value of the parameter and the numberof intervals.

First, we list the entry for the case of specifying the set of @missible values:

/I Settings for a discrete parameter

Parameter{
Name = String;
Ini = Integer,

Values = String;
[ Type = SET; ]
}

The entries are:
NameAs for the continuous parameter above.

Ini 1-based index of the initial value. For example, ifValues speci es three
admissible values, thenlni can be eitherl, 2, or 3.

Values Set of admissible values. The entry must be of the form
Values = "valuel, value2, value3";

i.e., the values are separated by a comma, and the list is enz$ed in
apostrophes (). For valuel, value2, etc., numbers and strings are
allowed.

If all entries of Values are numbers, then the result reports contain
the actual values of this entry. Otherwise, the result repots contain
the index of this value, i.e., 1 corresponds tovaluel, 2 corresponds to
value2, etc.

Type Optional keyword that speci es that this parameter is discrete. By
default, if the entry Values is speci ed, a parameter is considered to be
discrete, and the Parameter section must have the above format.
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To obtain linear or logarithmic spacing between a minimum ard maximum
value, the Parameter section can be speci ed as

/I Settings for a discrete parameter, linearly or logarithm ically spaced
Parameter{

Name = String;

Ini = Integer;

Type = SET;

Min = Double;

Max = Double;
Step = Integer,;

NameAs for the continuous parameter above.

Ini 1-based index of the initial value. For example, ifStep is set to +2 or
to 2, thenIni can be set to any integer between 1 and 3.

Type This variable must be equal to SET
Min Minimum value of the spacing.
Max Maximum value of the spacing.

Step Number of intervals. If Step < 0, then the spacing is logarithmic,
otherwise it is linear. SetStep = 0 to keep the parameter always xed
on its minimum value.

The linear or logarithmic spacing is computed using 7.1) on page66.

c) Speci cation of Input Function Objects

The speci cation of input function objects in optional. If a ny input func-
tion object is speci ed, then its name must appear either in another input
function object, in a simulation input template le, or in an output function
object. Otherwise, GenOpt terminates with an error message See Sectiornl1.2
on page92 for an explanation of input and output function objects.

The syntax for input function objects is

/I Input function objects entry
Function f
Name = String;
Function = String;
g

The entries are

NameA unique name that is not used for any other input function object
and for any other independent parameter.

Function A function object (see Section11.2on page92). The string must
be enclosed by apostrophes"(.
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d) Structure of the Command File

Using above structures of theParameter section, the command le has the
structure

/I Settings of the independent parameters
Varyf
/I Parameter entry
List any of the Parameter sections as described
in the Sections11.1.3.a) and 11.1.3.b).

/I Input function object
List any of the Function sections as described
in the Section 11.1.3.c).

g

/I General settings for the optimization process
OptimizationSettings  f
MaxIte = Integer,
WriteStepNumber = Boolean;
[ MaxEqualResults = Integer; ]

g

/I Specification of the optimization algorithm
Algorithm f
Main = String;
... /Il any other entries that are required
/I by the optimization algorithm

g
The di erent sections are:

Vary This section contains the de nition of the independent parameter and
the input function objects. See Sectionsl1.1.3a), 11.1.3b), and 11.1.3c)
for possible entries.

OptimizationSettings  This section speci es general settings of the opti-

mization. Maxlte is the maximum number of iterations. After Maxlte
main iterations, GenOpt terminates with an error message.
WriteStepNumber speci es whether the current step of the optimization
has to be written to the simulation input le or to a function o bject.
The step number can be used to calculate a penalty or barrierunction
(see Section8.2 on page70).
The optional parameter MaxEqualResults speci es how many times the
cost function value can be equal to a value that has previousl been
obtained before GenOpt terminates. This setting is used to érminate
GenOpt if the cost function value is constant for several iteates (see
Section11.3. The default value of MaxEqualResults is 5.
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Algorithm  The setting of Main speci es which algorithm is invoked for doing
the optimization. Its value has to be equal to the class name tat con-
tains the algorithm. Note that additional parameters might be required
depending on the algorithm used (see Sectiob for the implemented
algorithms).

11.1.4 Log File

GenOpt writes a log le to the directory that contains the ini tialization
le. The name of the log le is GenOpt.log.

The GenOpt log le contains general information about the optimization
process. It also contains warnings and errors that occur dung the optimiza-
tion.

11.1.5 Output File

In addition to GenOpt.log, GenOpt writes two output les to the directory
where the optimization command le is located. (The location of the optimiza-
tion command le is de ned by the variable Optimization.Files.Command.Pathl
in the optimization initialization le).

The names of the output les are OutputListingMain.txt ~ and OutputListingAll.txt

They list the optimization steps. OutputListingMain.txt contains only the
main iteration steps, and OutputListingAll.txt contains all iteration steps.

Each time the method genopt.algorithm.Optimizer.report() is called
from the optimization algorithm, the current trial is repor ted in either one of
the les.

11.2 Pre-Processing and Post-Processing

Some simulation programs do not have the capability to pre-pocess the
independent variables, or to post-process values computeduring the simula-
tion. For such situations, GenOpt's input function objects and output function
objectscan be used.

a) Function Objects

Function objects are formulas whose arguments can be the irependent
variables, the keyword stepNumber, and for post-processing, the result of the
simulation.

Following functions are implemented:
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Function Returns
add(x0, x1) x% + x!
add(x0, x1, x2) x%+ x1 + x?
subtract(x0, x1) x0  x!
multiply(x0, x1) x0 x1
multiply(x0, x1, x2) x% x1 x?
divide(x0, x1) x0=xt
log10(x0) log;(x°)

Furthermore, all functions that are de ned in the class java.lang.StrictMath
and whose arguments and return type are of typedouble can be accessed by
typing their name (without the package and class name).

In addition, users can implement any other static method with arguments
and return type double by adding the method to genopt/algorithm/util/math/Fun.java
The method must have the syntax

public static double
double r;
/I do any computations
return r;

g

methodNamédouble x0, double x1) f

The number of arguments is arbitrary.

Compile the le after adding new methods. No other changes a& required.
To compile the le, a Java compiler must be installed (such asthe one from
Sun Microsystems). To compile it, open a console (or DOS winow), change
to the directory genopt/algorithm/util/math and type

javac -source 1.4 Fun.java

This will generate the le Fun.class . If the compilation fails, then the variable
CLASSPATIBl probably not set as described in ChapterlO.

Next, we present an example for pre-processing and afterwes an example
for post-processing.

b) Pre-Processing

Example 11.2.1 Suppose we want to nd the optimal window width and
height. Let wand h denote the window width and height, respectively. Suppose
we want the window height to be 1=2 times the window width, and the window
width must be between 1 and 2 meters. Then, we could specify ithe command
le the section

Parameterf
Name = w;
Ini = 1.5; Step = 0.05;
Min = 1; Max = 2;
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Type = CONTINUOUS;

g
Function f

Name = h; Function = "multiply( %w%, 0.5 )"
g

Then, in the simulation input template les, GenOpt will rep lace all occur-
rences of%w%y the window width and all occurences of%h%y 1=2 times the
numerical value of %w% 0

GenOpt does not report values that are computed by input fundions. To
report such values, a user needs to specify them in the sectidbjectiveFunctionLocation
as shown in Examplel1.2.2below.

c) Post-Processing

Example 11.2.2 Suppose we want to minimize the sum of annual heating
and cooling energy consumption, which we will calltotal energy. Some simu-
lation programs cannot add di erent output variables. For e xample, Energy-
Plus [CLW * 01] writes the heating and cooling energy consumption separafly
to the output le. In order to optimize the total energy, the s imulation output
must be post-processed.

To post-process the simulation results in GenOpt, we can proeed as fol-
lows:
Suppose the cost function delimiter (see Sectiorll.1.]) for the heating and
cooling energy are, respectivelyEheat= and Ecool=. In addition, suppose we
want to report the value of the variable h that has been computed by the input
function object in Example 11.2.1

Then, in the optimization initialization le (see Section 11.1.1) we can
specify the section

ObjectiveFunctionLocation f
Namel = E_tot; Functionl = "add( %E_heat%, %E_cool% )";
Name2 = E_heat; Delimiter2 = "Eheat=";
Name3 = E_cool; Delimiter3 = "Ecool=";
Name4 = height; Function4 = %h%;

g

This speci cation causes GenOpt to (i) substitute the value of h in Function4 ,
(i) read from the simulation output le(s) the numbers that occur after the
strings Eheat= and Ecool=, (iii) substitute these numbers into the function
add( %Eheat%, %Ecool% ), (iv) evaluate the functions Function1l and Function4 ,
and (v) minimize the sum of heating and cooling energy. 0

As arguments of the function de ned above, we can use any namef an in-
dependent variable, of an input function object, or the keyword %stepNumber%
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11.3 Truncation of Digits of the Cost Function

Value
f o)A
0:1 4
\ 00 :4{// .

\2:0 1.5 1.0 0) 0:0 05 1.0 15 X
\ Ajf 01

AN A

N A 02

Figure 11.1: Function (11.1) with machine precision and with truncated digits.
The upper line shows the cost function value with machine peésion, and the
lower line shows the cost function value with only two digitbeyond the decimal
point.

For x°2 R" andf : R" | R, assume there exists a scalar> 0 such that
f(x9 = f(x%forall x°°2 B(x% ), whereB(x% ), fx2 R" jkx® x% < g.
Obviously, in B(x% ), an optimization algorithm can fail because iterates in
B(x% ) contain no information about descent directions outside ¢ B (x% ).
Furthermore, in absence of convexity off (), the optimality of x° cannot be
ascertain in general.

Such situations can be generated if the simulation program wtes the cost
function value to the output le with only a few digits. Fig. 11.1illustrates
that truncating digits can cause problems particularly in domains off (') where
the slope off () is at. In Fig. 11.1, we show the function

f(x), 0:1x 0:1x2+0:04x* (11.1)

The upper line is the exact value off (), and the lower line is the rounded
value of f () such that it has only two digits beyond the decimal point. If the
optimization algorithm makes changes inx in the size of Q2, then it may fail
for 0:25 < x < 1, which is far from the minimum. In this interval, no useful
information about the descent off () can be obtained. Thus, the cost function
must be written to the output le without truncating digits.

To detect such cases, the optimization algorithm can cause €nOpt to check
whether a cost function values is equal to a previous cost futtion value. |If
the same cost function value is obtained more than a user-speed number of
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times, then GenOpt terminates with an error message. The maknum number
of equal cost function values is speci ed by the parameteMaxEqualResults
in the command le (see page88).

GenOpt writes an information to the user interface and to the log le if a
cost function value is equal to a previous function value.
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12 Conclusion

In system optimization it is not possible to apply a general gtimization
algorithm that works e ciently on all problems. What algori thm should be
used depends on the properties of the cost function, such athé¢ number of
independent parameters, the continuity of the cost functian and its derivatives,
and the existence of local minima. Thus a variety of optimizaion algorithms
is needed. To address this need, GenOpt has a library with dierent optimiza-
tion algorithms and an optimization algorithm interface th at users can use to
implement their own optimization algorithm if desired.

The fact that analytical properties of the cost function are unavailable for
the class of optimization problems that GenOpt has been deveped for makes it
possible to separate optimization and function evaluation Therefore, GenOpt
has a simulation program interface that allows coupling anyprogram that ex-
changes input and output using text les. Hence, users are nbrestricted to
using a special program for evaluating the cost function. Réher, they can
use the simulation program they are already using for their gstem design and
development. Thus, the system can be optimized with little additional e ort.

This open environment not only allows coupling any simulation program
and implementing special purpose algorithms, but it also alows sharing algo-
rithms among users. This makes it possible to extend the algithm library
and thus extend GenOpt's applicability.
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14 Legal
14.1 Copyright Notice

GenOpt Copyright (c) 1998-2008, The Regents of the Univergy of Cali-
fornia, through Lawrence Berkeley National Laboratory (subject to receipt of
any required approvals from the U.S. Dept. of Energy). All rights reserved.

If you have questions about your rights to use or distribute this software,
please contact Berkeley Lab's Technology Transfer Departrant at TTD@Ibl.gov.

NOTICE. This software was developed under partial funding from the
U.S. Department of Energy. As such, the U.S. Government has &éen granted
for itself and others acting on its behalf a paid-up, nonexadlsive, irrevocable,
worldwide license in the Software to reproduce, prepare dévative works, and
perform publicly and display publicly. Beginning ve (5) ye ars after the date
permission to assert copyright is obtained from the U.S. Deprtment of Energy,
and subject to any subsequent ve (5) year renewals, the U.SGovernment
is granted for itself and others acting on its behalf a paid-gp, nonexclusive,
irrevocable, worldwide license in the Software to reprodue, prepare derivative
works, distribute copies to the public, perform publicly and display publicly,
and to permit others to do so.

14.2 License agreement

GenOpt Copyright (c) 1998-2008, The Regents of the Univergy of Cali-
fornia, through Lawrence Berkeley National Laboratory (subject to receipt of
any required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without modi-
cation, are permitted provided that the following conditi ons are met:

1. Redistributions of source code must retain the above copyght notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above ®pyright no-
tice, this list of conditions and the following disclaimer in the documen-
tation and/or other materials provided with the distributi on.

3. Neither the name of the University of California, Lawrence Berkeley Na-
tional Laboratory, U.S. Dept. of Energy nor the names of its mntributors
may be used to endorse or promote products derived from thiscftware
without speci ¢ prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
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PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING

IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug xes, patches, or
upgrades to the features, functionality or performance of he source code ("En-
hancements") to anyone; however, if you choose to make your ithancements
available either publicly, or directly to Lawrence Berkeley National Laboratory,
without imposing a separate written license agreement for gch Enhancements,
then you hereby grant the following license: a non-exclusi®, royalty-free per-
petual license to install, use, modify, prepare derivativeworks, incorporate
into other computer software, distribute, and sublicense sich enhancements or
derivative works thereof, in binary and source code form.
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A Benchmark Tests

This section lists the settings used in the benchmark tests o page 56.

The settings in OptimizationsSettings  and Algorithm are the same for
all runs expect for Accuracy, which is listed in the result chart on page57.

The common settings were:

OptimizationSettings  f
MaxIte = 1500;
WriteStepNumber = false;

g

Algorithm f
Main = NelderMeadONeill;
Accuracy = see paged7,
StepSizeFactor = 0.001;
BlockRestartCheck = 5;
ModifyStoppingCriterion = see pages7?,

g

The benchmark functions and the Parameter settings in the Vary section are
shown below.

A.1 Rosenbrock

The Rosenbrock function that is shown in FigA.1 is de ned as
f(x), 100 x2 (x})2 2+ xbH2 (A1)
where x 2 R2. The minimum is at x =(1; 1), with f (x )=0.

The section Vary of the optimization command le was set to

Vary{
Parameter{
Name = x1; Min = SMALL;
Ini = -1.2; Max = BIG;
Step = 1,
}
Parameter{
Name = x2; Min = SMALL,;
Ini = 1; Max = BIG;
Step = 1,
}
}
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Figure A.1: Rosenbrock function.

A.2 Function 2D1

This function has only one minimum point. The function is de ned as

x
f(x), f'(x); (A.2)
i=1
with
1 .
flx) tb; xi + Shq Qxi; b, ; ; Q, 160 g ;o (A3)
f2(x) , 100arctan(2 xY)%2+(2 x?)?; (A.4)
f3(x) , 50 arctan (0:5+ x})?+(0:5+ x?)? ; (A.5)

where x 2 R?. The function has a minimum at x = (1:855340 1:868832),
with f(x )= 12681271. It has two regions where the gradient is very small
(see Fig. A.2).
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Figure A.2: Contour plot of % =0 and % =0, wheref (x) is as in

(A.2).

The section Vary of the optimization command le is

Vary{
Parameter{
Name = x0; Min = SMALL;
Ini = -3; Max = BIG;
Step = 0.1;
}
Parameter{
Name = x1; Min = SMALL;
Ini = -3; Max = BIG;
Step = 0.1;
}
}

A.3 Function Quad

The function \Quad" is de ned as
1 .
f(x), ho;x + Eh><; M Xxi;
whereb;x2 R¥® M 2 R 10 and

b, (10;10;:::;10)":

(A.6)

(A.7)

This function is used in the benchmark test with two di erent positive de nite
matrices M . In one test caseM is the identity matrix | and in the other test
caseM is a matrix, called Q, with a large range of eigenvalues. The matrixQ

has elements
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579:7818 227:6855 49 :2126 60:3045 152:4101 207:2424 8:0917 33 :6562 204 :1312 3:7129
227:6855 236 :2505 16:7689 40:3592 179 :8471 80 :0880 64:8326 15 :2262 92:2572 40 :7367
49:2126 16:7689 84 :1037 71:0547 20 :4327 5:1911 58:7067 36:1088 62:7296 7 :3676
60:3045 40:3592 71:0547 170 :3128 140:0148 8:9436 26 : 7365 125 :8567 62 :3607 21:9523
152:4101 179 :8471 20 :4327 140:0148 301 :2494 45 :5550 31:3547 95:8025 164:7464 40 :1319
207:2424 80 :0880 5:1911 8:9436 45 :5550 178 :5194 22 :9953 39:6349 88:1826 29:1089
8:0917 64:8326 58:7067 26 :7365 31:3547 22 :9953 124 :4208 43:5141 75 :5865 32:2344
33:6562 15 :2262 36:1088 125 :8567 95:8025 39:6349 43:5141 261 :7592 86 :8136 22 :9873
204:1312 92:2572 62:7296 62 :3607 164 :7464 88:1826 75 :5865 86 :8136 265 :3525 1:6500
3:7129 40 :7367 7 :3676 21:9523 40 :1319 29:1089 32:2344 22 :9873 1:6500 49 :2499
The eigenvalues ofQ are in the range of 1 to 1000.
The functions have minimum points x at
Matrix M: Q
X 10 22351810
x 10 11024510
X’ 10 7906100
X’ 10 6052480
x " 10 28:8760
X 10 2287640
x ° 10 2718830
x 10 33123890
x° 10 28467870
x° 10 7181490
f(x) 500 0
Both test functions have been optimized with the same paramter settings.
The settings for the parametersx0 to x9 are all the same, and given by
Vary{
Parameter{
Name = x0; Min = SMALL;
Ini = 0; Max = BIG;
Step = 1,
}
}
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